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The Quantum Internet: The Future of Secure Communications 
 Current internet security relies on di�cult maths to secure information
 The development of a quantum computer will make current security ine�ective
 Quantum key distribution (QKD) o�ers absolute security of information transfer
 QKD relies on encoding 0s and 1s onto single particles of light (”photons”)
 QKD’s distance is limited to only a few hundred kilometers in optical �bre
 Unlike classical optical �bre networks (i.e., NBN) we cannot simply amplify the signal
Quantum Repeaters: Extending the Distance of Quantum Key Distribution
 Quantum repeaters use teleportation to reduce the loss of photons over long distances
 Including quantum repeaters in an optical �bre network will allow for long-distance 
 quantum-secured information networks
 The key component of a quantum repeater is a “quantum memory” 
 - a device that can freeze light in place
 The problem: quantum memories typically operate in the near infra-red (~800 nm) 
 while �bre transmission is most e�cient at 1550 nm
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Changing Colours: Four is the Magic Number
Rubidium: the Atom that Keeps on Giving
 Rb is a Group 1 element with “simple” electron structure
 Strongly absorbs light, making for e�cient quantum memories
 Ground-state absorption occurs for photons around 800 nm
 Has excited state energy levels within telecom band at 1530 nm
 Can use “four-wave mixing” (FWM) technique to change the     
 wavelength of light from e�cient storage to e�cient transmission
 At the University of Adelaide we have loaded rubidium atoms   
 into special hollow optical �bres to maximise FWM e�ciency [1]
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Engagement
The University of Adelaide Laser Radio
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Aims to inspire & excite the next generation 
of scientists and engineers
Students construct the device, which sends 
sound information over light
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Appeared on ABC News & Scope (Ch 10) 
Presented to politicians such as              
Christopher Pyne & Tanya Plibersek
Presented to Google co-founders Sergey 
Brin and Larry Page 
More info at laserradio.wordpress.com

Greatest Hits:

Fulbright Future Scholarship: Columbia University
Temporal Lensing: Breaking the Picosecond Barrier
 The Gaeta group at Columbia University are the only group to have demonstrated 
 FWM in hollow �bres [2]
 For my Fulbright Future Fellowship I will learn key aspects of FWM and apply it to 
 stretching pulses in time (”temporal lensing”) in nonlinear �bres
 Our goal is to stretch picosecond pulses to nanoseconds, allowing for the      
 detection of  ultrashort pulses with the most e�icient optical detectors available
 Applications include �elds such as biology, spectroscopy and quantum optics

Initial Columbia Expansion Results:
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Spatial Lensing: making lasers smaller

Temporal Lensing: making lasers shorter
 (or longer)

(or larger)
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