
SIAM CSE 2019

ROLE OF REQUIREMENTS IN SCIENTIFIC SOFTWARE

SCIENTIFIC SOFTWARE:
PRACTICES, CONCERNS, AND SOLUTION STRATEGIES (PART II OF II)

erhtjhtyhy

JARED O’NEAL
Mathematics & Computer Science
Argonne National Laboratory

25 February 2019
Spokane, Washington, USA

ACKNOWLEDGMENTS & FUNDING

§ This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration.

§ This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

2

https://ideas-productivity.org https://www.exascaleproject.org https://bssw.io

https://ideas-productivity.org/
https://www.exascaleproject.org/
https://bssw.io/

INFORMAL DEFINITION
A complete collection of well-defined, mutually-consistent statements that define
what you want to build and why these statements are important.
§ What qualifies as “complete” is up to team
§ Well-defined & mutually-consistent should not be optional

Requirements
§ help understand what we want before we address how to build it,
§ should be verifiable, and
§ should be documented.

3

FUNCTIONAL VS. NON-FUNCTIONAL
Functional Requirements communicate what services should or should not be provided. This
can include how they react to
§ inputs and
§ to corner/edge cases.
Example: A new feature shall be added to the SW such that simulations Z can be configured at runtime to
use a lower-order, but more performant solver.

Non-functional Requirements communicate constraints on the services and functionality.
These could be related to performance, portability, process, etc.
Example: The SW shall be developed as an open source project that is hosted on a Git-based version
control host and shall have automated testing integrated in the repository for use with Continuous
Integration.

4

LOW-LEVEL REQUIREMENTS

§ Technically-detailed or result of heavy constraints
§ Possibly informed by implementation ideas & constraints
§ Overly specific can hinder design, creativity, & freedom
§ Functions, classes, and sub-systems can be developed through design by

contract (interface specification)

Example: The SW architecture shall be upgraded such that a simulation can be
run on nodes with Model X CPUs and Model Y GPUs. The use of GPUs shall be
determined by the pre-processor.

5

HIGH-LEVEL REQUIREMENTS

§ Broad ideas, concepts, constraints, and abstractions
§ Little technical detail
§ Can be understood by people from different disciplines
§ Not affected as strongly by changes
§ Can be difficult for non-experts to turn into implementations

Example: The SW architecture shall be upgraded such that a simulation can be
built to run on a node with only CPUs or on a node with accelerators.

6

EXTERNALLY-IMPOSED

Functional or Non-functional requirements due to
§ Use of third-party libraries
§ Working as a team of teams, or
§ Including standardization (e.g. xSDK Community Package Policies)

7

https://xsdk.info/policies/

PARTICIPANTS

Requirements should capture viewpoints of different roles related to the
development, maintenance, and use of the SW so that we discover more
constraints & identify problems early

§ Domain experts can define need, limits, & tolerances
§ Developers & technical experts understand technical constraints
§ Users define interfaces

8

EXAMPLE DESIGN WORKFLOW
§ Science/Engineering Cases
§ Derive Requirements from S/E Cases

– Requirement elicitation, specification, & validation
– Determine tests needed to confirm that requirements are satisfied

§ Convert Requirements into Design
– Generate low-level technical specifications
– Create design that satisfies specifications

§ Implement
§ Verification – did we satisfy the requirements
§ Validation – do the requirements result in SW that has correct/useful results

9

USER STORIES

As a …, I would like … so that ….

These statements
§ express what needs to be done or a constraint on what we can do and
§ encapsulate the reasons why the need or constraint should be considered.

User stories should start a discussion that concludes with requirements and
possibly tasks to start work.

A form of requirement elicitation

10

ELICITATION & SPECIFICATION

V1: The SW shall record simulation results, configuration values, hardware information, and
telemetry via a parallel IO library and using a standard file format.
V2: The SW shall record simulation results, configuration values, hardware information, and
telemetry via a parallel IO library and using a file format that is included in python, R,
MATLAB, and C/C++.
V3: The SW shall record simulation results, configuration values, hardware information, and
telemetry via parallel IO library XYZ v1.2.3 or greater.

As a user of the SW, I would like the storage of data to make good
use of HPC resources and to leverage pre-existing libraries for
reading data so that my simulations run in less time and time to
results is reduced.

11

ITERATION & PROTOTYPING
Requirements require refining

12

Larger/Formal Smaller/Exploratory
Start

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

Science
Reqs

Science
Reqs

Feasiblity

User
Reqs

Partial
Reqs

Prototyping

Technical
Reqs

Full
Reqs

Review

Start

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

Full
Reqs

Full
Reqs

Prototyping

Updates

Updated
Reqs

Prototype
in Situ

Refinements

Final
Reqs

Review

DOCUMENTATION
Requirements Management

13

§ Documents should be clear, readable by many, & living
§ Documentation maintenance should be easy & simple
§ Design-by-contract requirements & motivation can be comments and inline

documentation
§ Should high-level or system-level requirements

– Go into dedicated document?
– Be included in the developer’s guide or adapted for user guide?
– Be a history of static requirements documents?
– Be encoded in system-level test cases?

ARE REQUIREMENTS FOR CSE?

§ Can be challenging and frustrating
§ Can be seen as impediment to immediate progress
§ Requirements change

– Due to changing environment
– Due to improved understanding

§ Hard to know when enough is enough

The Bad & Ugly

14

ARE REQUIREMENTS FOR CSE?

§ Achieve a clear & shared understanding of what needs to be done,
§ Arrive at definitions & concepts that are understood by all,
§ Bring out in the open ideas that seem obvious to some and usually go unstated,
§ Bridge differences between disciplines & levels of expertise,
§ Discover constraints/problems early,
§ Link requirements with verification,
§ Build a team where members feel like an important part of the process, and
§ Arrive at idea of SW architecture through structuring/grouping requirements.

15

The Good

SOURCES

Textbooks
1. Ian Sommerville, Software Engineering.
2. Benjamin S. Blanchard and Wolter J. Fabrycky, Systems Engineering and Analysis.
Popular books
1. Andrew Hunt and David Thomas, The Pragmatic Programmer.
2. Steve McConnell, Code Complete 2.
Chapters
1. Alberto Sillitti and Giancarlo Succi, ”Requirements Engineering for Agile Methods” in

Engineering and Managing Software Requirements.

Selected Books

16

SOURCES

1. Yang Li, Emitza Guzman & Bernd Brügge, Effective Requirements Engineering for CSE
Projects: A Lightweight Tool, 2015.

2. Dustin Heaton & Jeffrey C. Carver, Claims about the use of software engineering
practices in science: A systematic literature review, 2015.

3. Yang Li, Matteo Harutunian, Nitesh Narayan, Bernd Brügge and Gerrit Buse, Requirements
Engineering for Scientific Computing: A Model-Based Approach, 2011.

4. Sarah Thew, Alistair Sutcliffe, Rob Procter, Oscar de Bruijn, John McNaught, Colin C.
Venters, & Iain Buchan, Requirements Engineering for E-science: Experiences in
Epidemiology, 2009.

Selected Articles

17

