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INFORMAL DEFINITION
A complete collection of well-defined, mutually-consistent statements that define 
what you want to build and why these statements are important.
§ What qualifies as “complete” is up to team
§ Well-defined & mutually-consistent should not be optional

Requirements
§ help understand what we want before we address how to build it, 
§ should be verifiable, and 
§ should be documented.
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FUNCTIONAL VS. NON-FUNCTIONAL
Functional Requirements communicate what services should or should not be provided.  This 
can include how they react to
§ inputs and
§ to corner/edge cases.
Example:  A new feature shall be added to the SW such that simulations Z can be configured at runtime to 
use a lower-order, but more performant solver.

Non-functional Requirements communicate constraints on the services and functionality.  
These could be related to performance, portability, process, etc.
Example: The SW shall be developed as an open source project that is hosted on a Git-based version 
control host and shall have automated testing integrated in the repository for use with Continuous 
Integration.
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LOW-LEVEL REQUIREMENTS

§ Technically-detailed or result of heavy constraints
§ Possibly informed by implementation ideas & constraints
§ Overly specific can hinder design, creativity, & freedom
§ Functions, classes, and sub-systems can be developed through design by 

contract (interface specification)

Example: The SW architecture shall be upgraded such that a simulation can be 
run on nodes with Model X CPUs and Model Y GPUs.  The use of GPUs shall be 
determined by the pre-processor.
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HIGH-LEVEL REQUIREMENTS

§ Broad ideas, concepts, constraints, and abstractions
§ Little technical detail
§ Can be understood by people from different disciplines
§ Not affected as strongly by changes
§ Can be difficult for non-experts to turn into implementations

Example:  The SW architecture shall be upgraded such that a simulation can be 
built to run on a node with only CPUs or on a node with accelerators.
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EXTERNALLY-IMPOSED

Functional or Non-functional requirements due to
§ Use of third-party libraries
§ Working as a team of teams, or
§ Including standardization (e.g. xSDK Community Package Policies)

7

https://xsdk.info/policies/


PARTICIPANTS

Requirements should capture viewpoints of different roles related to the 
development, maintenance, and use of the SW so that we discover more 
constraints & identify problems early

§ Domain experts can define need, limits, & tolerances
§ Developers & technical experts understand technical constraints
§ Users define interfaces
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EXAMPLE DESIGN WORKFLOW
§ Science/Engineering Cases
§ Derive Requirements from S/E Cases

– Requirement elicitation, specification, & validation
– Determine tests needed to confirm that requirements are satisfied

§ Convert Requirements into Design
– Generate low-level technical specifications
– Create design that satisfies specifications

§ Implement
§ Verification – did we satisfy the requirements
§ Validation – do the requirements result in SW that has correct/useful results
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USER STORIES

As a …, I would like … so that ….

These statements
§ express what needs to be done or a constraint on what we can do and
§ encapsulate the reasons why the need or constraint should be considered.

User stories should start a discussion that concludes with requirements and 
possibly tasks to start work.

A form of requirement elicitation
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ELICITATION & SPECIFICATION

V1: The SW shall record simulation results, configuration values, hardware information, and 
telemetry via a parallel IO library and using a standard file format.
V2: The SW shall record simulation results, configuration values, hardware information, and 
telemetry via a parallel IO library and using a file format that is included in python, R, 
MATLAB, and C/C++.
V3: The SW shall record simulation results, configuration values, hardware information, and 
telemetry via parallel IO library XYZ v1.2.3 or greater.

As a user of the SW, I would like the storage of data to make good 
use of HPC resources and to leverage pre-existing libraries for 
reading data so that my simulations run in less time and time to 
results is reduced.
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ITERATION & PROTOTYPING
Requirements require refining
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DOCUMENTATION
Requirements Management
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§ Documents should be clear, readable by many, & living
§ Documentation maintenance should be easy & simple
§ Design-by-contract requirements & motivation can be comments and inline 

documentation
§ Should high-level or system-level requirements 

– Go into dedicated document?
– Be included in the developer’s guide or adapted for user guide?
– Be a history of static requirements documents?
– Be encoded in system-level test cases?



ARE REQUIREMENTS FOR CSE?

§ Can be challenging and frustrating
§ Can be seen as impediment to immediate progress
§ Requirements change

– Due to changing environment
– Due to improved understanding

§ Hard to know when enough is enough

The Bad & Ugly
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ARE REQUIREMENTS FOR CSE?

§ Achieve a clear & shared understanding of what needs to be done, 
§ Arrive at definitions & concepts that are understood by all,
§ Bring out in the open ideas that seem obvious to some and usually go unstated,
§ Bridge differences between disciplines & levels of expertise,
§ Discover constraints/problems early,
§ Link requirements with verification,
§ Build a team where members feel like an important part of the process, and
§ Arrive at idea of SW architecture through structuring/grouping requirements.
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