
exascaleproject.org xsdk.info

An introduction to the xSDK,
a community of diverse numerical
HPC software packages

xSDK Developers

3rd ECP Annual Meeting
January 15, 2019

2 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Who are we?

• Developers of high-quality, robust, portable high-performance math libraries

Why are we leading this tutorial?
• Explain how the xSDK’s approach toward a scientific software ecosystem

improves quality, sustainability, and combined use of independent packages,
as needed for extreme-scale computational science and engineering

• Encourage discussions with package developers: How you can leverage math
libraries for extreme-scale computational science

PETSc/TAO

SuperLU

PHIST

TASMANIANSTRUMPACK Omega_h DTK

3 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK collaborators

xSDK Release 0.4.0, Dec 2018

• xSDK release lead: Jim Willenbring, SNL

• xSDK planning

– Lois Curfman McInnes (ANL)

– Ulrike Meier Yang (LLNL)

• Leads for xSDK testing

– Satish Balay, ANL: ALCF testing

– Piotr Luszczek, UTK: OLCF testing

– Aaron Fischer, LLNL: NERSC testing

– Cody Balos, LLNL: general testing

– Keita Teranishi, SNL: general testing

• Spack liaison: Todd Gamblin, LLNL

• Package compatibility with xSDK community policies and
software testing:

– AMReX: Ann Almgren, Michele Rosso (LBNL)

– DTK: Stuart Slattery, Bruno Turcksin (ORNL)

– deal.II: Wolfgang Bangerth (Colorado State University)

– hypre: Ulrike Meier Yang, Sarah Osborn, Rob Falgout (LLNL)

– MAGMA and PLASMA: Piotr Luszczek (UTK)

– MFEM: Aaron Fischer, Tzanio Kolev (LLNL)

– Omega_h: Dan Ibanez (SNL)

– PETSc/TAO: Satish Balay, Alp Denner, Barry Smith (ANL)

– PUMI: Cameron Smith (RPI)

– SUNDIALS: Cody Balos, David Gardner, Carol Woodward (LLNL)

– SuperLU and STRUMPACK: Sherry Li and Pieter Ghysels (LBNL)

– TASMANIAN: Miroslav Stoyanov, Damien Lebrun Grandie (ORNL)

– Trilinos: Keita Teranishi, Jim Willenbring, Sam Knight (SNL)

– PHIST: Jonas Thies (DLR, German Aerospace Center)

– SLEPc: José Roman (Universitat Politècnica de València)

– Alquimia: Sergi Mollins (LBNL)

– PFLOTRAN: Glenn Hammond (SNL)

and many more …

4 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Who are you?

• Extreme-scale computational science community
– Developers of extreme-scale scientific applications

– Developers of high-performance software packages and tools

– Project leaders, stakeholders, program managers

– Others

Learning objectives:
• Understand

– Why a software ecosystem perspective is essential for extreme-scale
computational science

• Strategic objectives: building community and building sustainability

– How to download and use the xSDK and member packages

– How ECP math library capabilities can help your science

5 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Tutorial outline:
xSDK Approach and Experiences

• Introduction

– Math libraries and scientific software ecosystems

– Building community and sustainability

– xSDK history and goals to fulfill ECP needs

• About the xSDK

– xSDK community policies

– Short introduction to Spack

– xSDK release process

– Installing the xSDK

– Using the xSDK in ECP applications

• Lessons learned

• xSDK package overviews

6 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Software libraries facilitate progress in
computational science and engineering

• Software library: a high-quality,
encapsulated, documented, tested,
and multiuse software collection that
provides functionality commonly
needed by application developers

– Organized for the purpose of being reused
by independent (sub)programs

– User needs to know only

• Library interface (not internal details)

• When and how to use library functionality
appropriately

• Key advantages of software libraries

– Contain complexity

– Leverage library developer expertise

– Reduce application coding effort

– Encourage sharing of code, ease distribution
of code

• References:
• https://en.wikipedia.org/wiki/Library_(computing)

• What are Interoperable Software Libraries? Introducing
the xSDK

https://en.wikipedia.org/wiki/Library_(computing)
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

7 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Why is reusable scientific software important for you?

User perspective:

Focus on primary interests

• Reuse algorithms and data structures
developed by experts

• Customize and extend to exploit
application-specific knowledge

• Cope with complexity and changes
over time

Provider perspective:

Share your capabilities

• Broader impact of your work

• Motivate new directions of
research

• More efficient, robust, reliable, sustainable software

• Improve developer productivity

• Better science

Software
user

Software
provider

8 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Software libraries are not enough

• Well-designed libraries provide critical functionality … But alone are

not sufficient to address all aspects of next-generation scientific

simulation and analysis.

• Applications need to use software packages in combination on ever

evolving architectures

“The way you get programmer productivity is

by eliminating lines of code you have to write.”

– Steve Jobs, Apple World Wide Developers Conference, Closing Keynote, 1997

http://www.youtube.com/watch?v=3LEXae1j6EY#t=41m26s

9 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Need software ecosystem perspective

Ecosystem: A group of independent but interrelated elements
comprising a unified whole

Ecosystems are challenging!

“We often think that when we have completed

our study of one we know all about two,

because ‘two’ is ‘one and one.’ We forget that

we still have to make a study of ‘and.’ ”

− Sir Arthur Stanley Eddington (1892−1944), British astrophysicist

10 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Difficulties in combined use of independently
developed software packages

Challenges:

• Obtaining, configuring, and installing multiple
independent software packages is tedious and error
prone.

– Need consistency of compiler (+version, options),
3rd-party packages, etc.

• Namespace conflicts

• Incompatible versioning

• And even more challenges for deeper levels of
interoperability

Levels of package

interoperability:
• Interoperability level 1

• Both packages can be used

(side by side) in an application

• Interoperability level 2

• The libraries can exchange

data (or control data) with

each other

• Interoperability level 3

• Each library can call the other

library to perform unique

computations

Ref: What are Interoperable Software Libraries? Introducing the xSDK

https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

11 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Ecosystem imperative for math software

• Classic application development approach:

– Application developers write most code; source code considered private

– Occasionally use libraries, but typically only those “baked into” the OS

– Portability challenges, unmanaged disruptions: Low risk. But…

• Ecosystem-based application development approach:

– App developers use composition, write glue code & unique functionality

– Source code includes substantial 3rd party packages

– Risks (if 3rd party code is poor):

• Dependent on portability of 3rd party code

• Upgrades of 3rd party package can be disruptive (interface changes, regressions)

– Opportunities (if 3rd party code is good):

• 3rd party improvements are yours (for free!)

• Portability to new architectures is seamless

Webinar track launched Nov 2017

Scientific Software
Ecosystems

https://bluewaters.ncsa.illinois.edu/webinars

Objectives:

• Promote quality reusable

research software for

computational and data-

enabled discovery

• Promote community efforts to

improve research software

quality, culture, credit,

collaboration, …

While considering issues in

scientific software ecosystems

Dialogue with the broader CSE / HPC community

https://bluewaters.ncsa.illinois.edu/webinars

12 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

Extreme-scale

Scientific

Software

Ecosystem

13 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of

extreme- scale computing, through a new interdisciplinary and agile

approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware and

increasing demands for predictive multiscale,

multiphysics simulations.

Respond to trend of continuous refactoring with

efficient agile software engineering

methodologies and improved software design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting methodologies and

metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)

BER Lead: David Moulton (LANL)

Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader
scientific community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling

and simulation goals in two Science Focus Area (SFA)

programs and both Next Generation Ecosystem

Experiment (NGEE) programs in DOE Biologic and

Environmental Research (BER).

Software
Productivity for
Extreme-scale

Science
Methodologies

for Software

Productivity

Use Cases:

Terrestrial

Modeling

Extreme-Scale

Scientific Software

Development Kit

(xSDK)

www.ideas-productivity.org

13

IDEAS history

ASCR/BER

partnership began in

Sept 2014

Program Managers:
• Paul Bayer, David Lesmes

(BER)

• Thomas Ndousse-Fetter

(ASCR)

First-of-a-kind

project: qualitatively

new approach based

on making productivity

and sustainability the

explicit and primary

principles for guiding

our decisions and

efforts.

14 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Use cases: Multiscale, multiphysics modeling
of watershed dynamics

• Use Case 1: Hydrological and biogeochemical cycling in the Colorado River
System

• Use Case 2: Thermal hydrology and carbon cycling in tundra at the Barrow
Observatory

• Use Case 3: Hydrologic, land surface, and atmospheric process coupling
over CONUS

• Leverage & complement SBR, TES programs:

– LBNL and PNNL SFAs; NGEE Arctic and Tropics

• Approach:

– Leverage existing open source apps

– Improve software development practices

– Targeted refactoring of interfaces, data structures, and key components to
facilitate interoperability

– Modernize management of multiphysics integration and multiscale coupling

15 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Motivation and history of xSDK

Next-generation scientific simulations
require combined use of independent
packages

• Installing multiple independent software
packages is tedious and error prone

– Need consistency of compiler (+version,
options), 3rd-party packages, etc.

– Namespace and version conflicts make
simultaneous build/link of packages difficult

• Multilayer interoperability among packages
requires careful design and sustainable
coordination

• Prior to xSDK effort, could not build
required libraries into a single

xSDK history: Work began in ASCR/BER
partnership, IDEAS project (Sept 2014)

Needed for BER multiscale, multiphysics
integrated surface-subsurface hydrology models

Program Managers:
Thomas Ndousse-Fetter (ASCR)

Paul Bayer & David Lesmes (BER)

executable due to many incompatibilities

16 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, April 2016

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK History: Version 0.1.0: April 2016

Multiphysics Application C

Application B

April 2016
• 4 math libraries
• 1 domain

component
• PETSc-based

xSDK installer
• 14 mandatory

xSDK
community
policies

Notation: A B:

A can use B to provide

functionality on behalf of A

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia
hypre

Trilinos

PETSc

SuperLU

More

contributed

librariesMore

domain

components

xSDK

Installer

17 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Feb 2017

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK History: Version 0.2.0: February 2017

Multiphysics Application C

Application B

Notation: A B:

A can use B to provide

functionality on behalf of A

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU

More

contributed

libraries

PFLOTRAN

More

domain

components

February 2017
• 4 math libraries
• 2 domain

components
• Spack xSDK

installer
• 14 mandatory

xSDK
community
policies

18 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Dec 2017

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B

Notation: A B:

A can use B to provide

functionality on behalf of A

https://xsdk.info

MAGMA

Alquimia
hypre

Trilinos

PETSc

SuperLU More

contributed

libraries

PFLOTRAN

More

domain

components

MFEM

SUNDIALS
HDF5

BLAS

More
external
software

Application A

December 2017
• 7 math libraries
• 2 domain

components
• Spack xSDK

installer
• 16 mandatory

xSDK
community
policies

xSDK History: Version 0.3.0: December 2017

19 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK History: Version 0.4.0: December 2018

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper

levels of package interoperability

Each xSDK member package uses or

can be used with one or more xSDK

packages, and the connecting interface

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More

libraries

PFLOTRAN

More domain

components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components
• 16 mandatory

xSDK community
policies

• Spack xSDK
installer

MAGMA

20 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK for ECP: Project goals, description, scope

Project Description
• Develop community policies and interoperability layers among xSDK component packages

• Determine xSDK sustainability strategy for ECP

• Work with ECP applications to motivate and test xSDK

Project Scope
• Enable the seamless combined use of diverse, independently developed software packages as needed by

ECP applications

– coordinated use of on-node resources

– integrated execution

– coordinated & sustainable documentation, testing, packaging, and deployment

Goals: Create a value-added aggregation of ECP mathematics libraries, to
increase the combined usability, standardization and interoperability of these
libraries, as needed to support large-scale multiphysics and multiscale problems.

21 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Using math libraries in combination for next-generation apps

Notation:

A B:

A can use B to provide

functionality on behalf of A

hypre
Preconditioner

Trilinos
Nonlinear Solver

F(y) = 0

PETSc
Linear

Solver

SuperLU
Preconditioner

Multiphysics Application C

Application A Application B

SUNDIALS
dy/dt = f(y)

MAGMA
Linear

Solver

fA(y)

dfA (y)/dy

FB(y)

JB (y) or JB (y)v

xSDK4ECP: Focus on inter-package functionality, denoted by

 Coordinating use of on-node resources

 Integrated execution (control inversion, adaptive execution strategies)

One example of
xSDK package
interoperability;
many more
xSDK package
interconnections
exist

22 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK is key delivery mechanism for ECP math libraries
continual advancements toward predictive science

Math Libraries

Approach:

As motivated & validated
by the needs of ECP
applications:

• Establish performance
baselines

• Refactor, revise
algorithms and data
structures for new
architectures

• Research into new
numerical algorithms
for next-generation
predictive science

ECP
Math

libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithmic
capabilities

Advances in data
structures for

new node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK
release 1

xSDK
release 2

xSDK
release n…..Timeline:

23 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Tutorial outline:
xSDK Approach and Experiences

• Introduction

– Math libraries and scientific software ecosystems

– Building community and sustainability

– xSDK history and goals to fulfill ECP needs

• About the xSDK

– xSDK community policies

– Short introduction to Spack

– xSDK release process

– Installing the xSDK

– Using the xSDK in ECP applications

• Lessons learned

• xSDK package overviews

24 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK: https://xsdk.info
Building the foundation of an extreme-scale scientific software ecosystem

xSDK community policies: Help address challenges in interoperability and sustainability of
software developed by diverse groups at different institutions

xSDK compatible package: must satisfy the mandatory

xSDK policies (M1, ..., M16)
Topics include: configuring, installing, testing, MPI usage, portability, contact and version

information, open source licensing, namespacing, and repository access

Also specify recommended policies, which currently are

encouraged but not required (R1, ..., R6)

Topics include: public repository access, error handling, freeing system resources, and

library dependencies

xSDK member package:
(1) Must be an xSDK-compatible package, and

(2) it uses or can be used by another package in the xSDK, and the

connecting interface is regularly tested for regressions.

xSDK policies 0.4.0: Dec 2018

• Facilitate combined use of

independently developed packages

Impact:

• Improved code quality, usability,

access, sustainability

• Foundation for work on deeper

levels of interoperability and

performance portability

We encourage feedback
and contributions!

https://xsdk.info/

25 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called
packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the
software.

M9. Use a limited and well-defined symbol, macro, library, and include file
name space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external
software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible
with the xSDK install tool and xSDK metapackage.

Also recommended policies,
which currently are encouraged but
not required:
R1. Have a public repository.

R2. Possible to run test suite under valgrind in order
to test for memory corruption issues.

R3. Adopt and document consistent system for error
conditions/exceptions.

R4. Free all system resources it has acquired as
soon as they are no longer needed.

R5. Provide a mechanism to export ordered list of
library dependencies.

R6. Provide versions of dependencies.

xSDK member package: Must be an
xSDK-compatible package, and it uses
or can be used by another package in
the xSDK, and the connecting interface
is regularly tested for regressions.

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

https://xsdk.info/policies

26 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Compatibility with xSDK community policies

To help developers of packages
who are considering compatibility
with xSDK community policies, we
provide:

• Template with instructions to
record compatibility progress

• Examples of compatibility status
for xSDK packages

– Explain approaches used by other
packages to achieve compatibility
with xSDK policies

• Available at

https://github.com/xsdk-project/xsdk-policy-compatibility

https://github.com/xsdk-project/xsdk-policy-compatibility

27 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Introduction to Spack for xSDK Users

• For people who missed yesterday’s full day Spack Tutorial (or need a refresh).
• More documentation available in Spack repo

• $ ls lib/spack/docs/tutorial

28 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Basic Usage

• The basic usage of Spack that installs latest xSDK

– $ git clone https://github.com/spack/spack.git

– $ cd spack

– $ bin/spack install xsdk

• xSDK and all its dependencies will be installed into git repo (may be changed)

– spack/opt/spack/OS-ARCH/compiler-X.Y.Z/

• Customization

– You can track xSDK development by switching to a different branch:

• $ git checkout develop

• See the following slides for more detailed instructions

– Documentation is also available in lib/spack/docs

Download the latest Spack and
the package files.
One of them is xSDK package.

Install the latest xSDK release

https://github.com/spack/spack.git

29 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Package Information: spack info xsdk

• Description, homepage

• Versions

– Preferred version is installed by default: 0.4.0

• Variants with default value and description

– In 0.4.0: cuda, dealii, debug, omega-h

• Dependencies

– Build

– Link

– Run

30 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Customized Builds
(Required on Some DOE Systems)

• To request a specific version of xSDK, use @version notation

– $ spack install xsdk@0.4.0

• To request a specific dependency of xSDK, use ^dep@version

– $ spack install xsdk^perl@5.16.3

• To select one of the compilers, use %compiler

– $ spack install xsdk%gcc@7.2.0

• To enable/disable variants, use + (plus) and ~ (tilde); might require shell escape

– $ spack install xsdk+cuda~dealii

• The full details on how xSDK was installed may be listed with

– $ spack find –very-long xsdk

31 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Displaying Dependency Tree
(Try before Install)

• A full install of xSDK could take a long time

– Even with multicore builds, some DOE system have few slow cores

• It is possible to show full dependence tree with Spack’s “spec” command

– $ spack spec xsdk

• The syntax is similar almost identical to “install”

– $ spack spec xsdk@0.4.0

– $ spack spec xsdk^perl@5.16.3

– $ spack spec xsdk^python@2.7.15

– $ spack spec xsdk%gcc@7.2.0

– $ spack spec xsdk arch=cray-cnl5-interlagos

32 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Processes for xSDK release and delivery

• 2-level release process

– xSDK member packages

• Achieve compatibility with xSDK community policies prior to release

– https://github.com/xsdk-project/xsdk-policy-compatibility

• Have a Spack package

• Port to target platforms

• Provide user support

– xSDK

• Ensure and test compatibility of mostly independent package releases

• Obtaining the latest release: https://xsdk.info/releases

• Draft xSDK package release process checklist:
– https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

xSDK delivery process

• Regular releases of
software and
documentation,
primarily through
member package
release processes

• Anytime open access
to production software
from GitHub, BitBucket
and related community
platforms

https://github.com/xsdk-project/xsdk-policy-compatibility
https://xsdk.info/releases
https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

33 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK release process - Spack/git workflow

• Packages

– Follow the standard workflow for a Spack
package

– Submit pull requests with the “xSDK” label

– Provide package candidate and final
releases for xSDK releases

• xSDK meta-package

– Depends on xSDK member packages: “spack install xsdk”

– Maintain xsdk branch in spack for release coordination

• Coordinate development:

– Via ‘development’ version of xsdk – using development versions of
some of the individual packages

https://spack.readthedocs.io/en/latest/contribution_guide.html

34 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

https://xsdk.info/downloadDownloading

xSDK

Installing xSDK https://xsdk.info/installing-the-software

https://xsdk.info/download
https://xsdk.info/installing-the-software

35 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Installing xSDK

[See website for example]

https://xsdk.info/installing-the-software

https://xsdk.info/installing-the-software

36 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Installing xSDK (cont.)

See website for platform-specific details,
including compilers.yaml and packages.yaml
files for:

• ALCF:Theta: Cray XC40 with Intel compilers

• NERSC: Cori: Cray with Intel compilers

• OLCF: Titan: Cray with Gnu compilers

https://xsdk.info/installing-the-software

[See website for example]

http://www.alcf.anl.gov/
https://www.alcf.anl.gov/theta
http://www.nersc.gov/
https://www.nersc.gov/users/computational-systems/cori/
https://www.olcf.ornl.gov/
https://www.olcf.ornl.gov/titan/
https://xsdk.info/installing-the-software

37 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Upcoming xSDK releases for ECP

FY19-FY20: Regular releases of xSDK for ECP

Theme throughout ECP timeframe: Expanding ECP math
library capabilities for predictive science: Sustainable
coordination and delivery of math libraries across independent
development efforts, with enhanced capabilities as needed by
ECP applications

• Additional math packages compatible with xSDK community policies

• Deeper multilevel interoperability, including control inversion and
adaptive execution

• Coordination with broader ECP software ecosystem

38 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Applications using xSDK

• PFLOTRAN and Alquimia
– Multiscale & multiphysics modeling of watershed dynamics

– Provided as part of xSDK

– Spack script for individual application packages

• Nalu in ExaWind
– Call hypre from Trilinos (xSDK Trilinos)

• Laghos in CEED
– MFEM and hypre

– Planning to use SuperLU, SUNDIALS and PUMI

• AMPE and Truchas in ExaAM
– SUNDIALS and hypre

– Wrote Spack script for AMPE and Truchas

39 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Tutorial outline:
xSDK Approach and Experiences

• Introduction

– Math libraries and scientific software ecosystems

– Building community and sustainability

– xSDK history and goals to fulfill ECP needs

• About the xSDK

– xSDK community policies

– Short introduction to Spack

– xSDK release process

– Installing the xSDK

– Using the xSDK in ECP applications

• Lessons learned

• xSDK package overviews

40 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned:
General Observation

• Working toward shared understanding of issues and perspectives is
essential and takes time

– Need regular opportunities for exchanging ideas, persistence, patience, informal interaction

– Must establish common vocabulary

• Lots of fun, too … xSDK: Life is good ☺

The pursuit is the reward.Face the bumps with a smile.Think outside the box.It takes all kinds.

41 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned:
Users’ Perspective

• Building the whole xSDK takes time and produces a very large executable.

– Future releases should allow building of a subsection.

• Need better document for Spack and xSDK

• Application developers might use their own versions of xSDK libraries.

– Some capabilities might no longer be supported, but necessary for their applications.

– It will be important to provide flexibility through the xSDK to allow users to use their own
versions of some xSDK libraries.

• xSDK member libraries should also pursue improved compatibilities where
possible to avoid for users to have building their own versions.

– New version typically provides improvement performance and interoperability (compilers, and
other libraries)

42 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned:
Developers’ Perspective

• Requires some code modifications to eliminate naming conflicts

– Namespaces

– Unique prefix for function names and preprocessor macros

• Maintaining interoperability needs close communication with the developers of
other packages

– Coordination for release scheduling is challenging

• Work toward better, faster, more people-efficient workflow for development and
testing is important!

– Continuous and integrated testing

– Multiple compilers

– Multiple parallel runtime setting (OpenMP, CUDA, etc.)

43 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

– deal.II was already compliant with almost all of xSDK’s Community Policy Compatibilities.

– In particular, it has a very large testsuite (10,000+ tests) that covers all of the interfaces we
have with other libraries; in some cases, we seem to have better coverage of these external
libraries through the interfaces than the package’s test suite itself.

Lessons learned:

– Avoid unprefixed macros or provide a way to disable them. Avoid unprefixed preprocessor
variables.

– Don’t use MPI_COMM_WORLD, but user provided MPI communicators.

44 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• HYPRE had various issues that needed to be addressed.

• Name space conflicts (some functions with simple names)

• Overlooked prints of error messages

• No exhaustive test suite that could be run on arbitrary computers

Lessons learned:

• Giving all functions the prefix ‘hypre_’ avoids namespace conflicts.

• Allowing for error messages to only be printed for a higher print level avoids undesired printouts.

• A test suite that allows users to test hypre solvers on any platform and check for errors is now
available.

45 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• MAGMA’s solvers rely unconditionally on hardware accelerators (AMD, Intel, NVIDIA).

• Accelerators are optional for xSDK packages.

Lessons learned:

• Having established software practices helps with xSDK integration.

• Continual maintenance is a must.

• This is enforced for MAGMA with vibrant accelerator hardware market and frequent product releases.

• Code documentation is required.

• Large MAGMA user base made good documentation a must to ease the burden of answering user questions.

• User contributions might not meet xSDK requirements.

• Adjustments were needed for user-contributed Spack package for MAGMA.

• New variant added to support xSDK builds with CUDA present on the installation system.

46 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned MFEM

Background:

– MFEM interfaces with numerous libraries in the XSDK including HYPRE,
SUNDIALS, SuperLU, PETSc, and STRUMPACK.

Lessons learned:

– Maintaining connections to all existing libraries requires significant effort and
communication.

– Synchronizing releases with interoperating libraries that have API changes is
difficult.

– Library version interoperability needs to be added to our testing suite.

47 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• PLASMA relies on BLAS and LAPACK for low-level HPC optimizations.

• Varied implementations and interfaces across hardware platforms

• Test suites for BLAS and LAPACK are usually not available in most implementations

• Additional set of basic routines (Core BLAS) did not gain community acceptance

Lessons learned:

• Must use name space for all interface entry points even if it might be an older project.

• Ease of installation is a necessity. Using established software configuration frameworks
(autoconf, CMake, etc.) enforce portable code and adaptation to a variety of software
environments.

_ \ | \ __| \ | \
__/ | _ \ __ \ |\/ | _ \
_| ____|_/ _____/_| _|_/ _\

48 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• PETSc development was being slowed down by backlog of branches waiting to be fully tested
and moved into master.

• Through work on xSDK, we refactored PETSc tests to improve overall test functionality and better
support continuous integration testing.

Lessons learned:

• Result: Work toward better, faster, more people-efficient workflow for testing has enabled moving
developer branches into master branch without breaking master branch or requiring hand holding.

• Introduced parallelism (and other techniques) to decrease time for running complete test suite while still
providing high coverage

• Simplified the addition of new tests into suite

• Introduced finer grain control over what is tested

• Making testing process more robust to random system, hardware, or software failures

• Working toward making it easier for anyone to automatically run full PETSc test suite, including dashboard

PETSc/TAO

49 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• PHIST already adhered to most of the xSDK policies, but still required a few
changes.

Lessons learned:

• Had to duplicate some CMake flags although Spack is the high-level build system
now

• Had to switch off performance optimizations (e.g. no OpenMP, no –march flag) to
get it to compile on all platforms

• No easy way to uninstall all xSDK packages via Spack

PHIST

50 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• PUMI was not compatible with the requirement for runtime control of output - there
were over 700 calls to functions from the printf ‘family’.

Lessons learned:

• Design your library from the beginning with a print statement wrapper so it can run
in silent mode, or with various levels of output for performance information,
developer level debugging, etc..

– Use grep/sed to automate replacement of the printf family functions with the wrapper API.

– The handful of C++ cout/cerr uses were manually replaced with the wrapper functions. In some
cases stringstream was used to compose the strings and then those strings were passed into
the API.

51 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• SUNDIALS has interfaces to several external libraries e.g., PETSc, hypre, KLU, LAPACK, …

• Existing CMake options did not align with xSDK policies.

• Added redundant options that overwrite existing variables to maintain options for current users.

• MFEM has interfaces to SUNDIALS time integrators and nonlinear solvers.

• Updates to SUNDIALS for xSDK compatibility were introduced along side a new linear solver API.

• The new API broke compatibility with MFEM and required updating the MFEM interface to SUNDIALS.

Lesson learned:

• Packages working toward xSDK compatibility should adopt xSDK conventions early to ease user

transition to new options.

• Maintaining interfaces between xSDK packages requires regular communication and testing with

in-development versions.

52 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• SuperLU initially faced challenges with build system, revision control, namespacing.

Lessons learned:

• Migration from manual editing make.inc to CMake/Ctest increases build-test productivity and robustness.

– Easier to manage dependencies (ParMetis, machine-dependent files), and platform-specific versions (_MT, _DIST, GPU) and correctness

– Better accommodate special build requirements (e.g., disable third-party software like ParMetis)

• Migration from svn to git improves distributed contributions and bug fixes. E.g., users have contributed:

– Working with Windows environment, building as both static and shared libraries simultaneously

• Proper namespacing allows 3 versions of the library (serial, multithreaded and distributed) to be used
simultaneously and to be used by other packages in xSDK.

• Improved productivity of new code development:

– Wrote comprehensive regression unit test code

– UseTravis CI for continuous integration on each git commit

SuperLU

53 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Lessons Learned

Background:

• Trilinos had interfaces to both PETSc and hypre, but those interfaces were

• Poorly documented (e.g. – no hypre interface document)

• Not tested regularly (e.g. – the PETSc-Trilinos interface was broken in recent releases)

Lessons learned:

• Interfaces supported for the xSDK require regular testing and clear documentation

• Continual maintenance of code and documentation will be required; occasional fixes are
insufficient

54 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

xSDK Package Overviews

55 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

AMReX Block-structured adaptive mesh refinement framework. Support for

hierarchical mesh and particle data with embedded boundary capability.

https://www.github.com/AMReX-Codes/amrex

▪ Capabilities
— Support for solution of PDEs on hierarchical adaptive mesh with particles and embedded

boundary representation of complex geometry

— Support for multiple modes of time integration

— Support for explicit and implicit single-level and multilevel mesh operations, multilevel
synchronization, particle, particle-mesh and particle-particle operations

— Hierarchical parallelism –

• hybrid MPI + OpenMP with logical tiling on multicore architectures

• MPI + CUDA/OpenACC for CPU/GPU systems with support for launching kernels on GPUs based on
use of C++ lambda functions

— Native multilevel geometric multigrid solvers for cell-centered and nodal data

— Highly efficient parallel I/O for checkpoint/restart and for visualization – native format
supported by Visit, Paraview, yt

— Tutorial examples available in download

▪ Open source software
— Used for a wide range of applications including accelerator modeling, astrophysics,

combustion, cosmology, multiphase flow, phase field modeling…

— Freely available on github

Examples of AMReX applications

https://www.github.com/AMReX-Codes/amrex

56 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

DataTransferKit Open source library for parallel solution transfer.

Support for grid-based and mesh-free applications.

https://github.com/ORNL-CEES/DataTransferKit

▪ Overview

— Transfers application solutions between grids with differing layouts on

parallel accelerated architectures

— Coupled applications frequently have different grids with different parallel

distributions; DTK is able to transfer solution values between these grids

efficiently and accurately

— Used for a variety of applications including conjugate heat transfer, fluid

structure interaction, computational mechanics, and reactor analysis

▪ Capabilities

— Support for DOE leadership class machines through MPI+Kokkos

programming model

— Algorithms demonstrated scalable to billions of degrees of freedom

— General geometric search algorithms

• Comparable serial performance to Boost r-Tree and NanoFlann

• Also thread scalable on many core CPU and GPUs and distributed via MPI

— Grid interpolation operators and mesh-free transfer operators

Clad Heat Flux

Clad Surface Temperature

Fuel

Performance

Neutron

transport

Thermal-

hydraulics

Volumetric
transfer/interpolation
for coupling multiple
physics applications

Surface mesh interpolation

57 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

▪ Meshes and elements:

― Supports h- and p-adaptive meshes in 1d, 2d, and 3d

― Easy ways to adapt meshes: Standard refinement indicators already built in

― Many standard finite element types (continuous, discontinuous, mixed, Raviart-Thomas, Nedelec,

ABF, BDM,...)

― Full support for coupled, multi-component, multi-physics problems

▪ Linear algebra:

― Has its own sub-library for dense and sparse linear algebra

― Interfaces to PETSc, Trilinos, UMFPACK, ScaLAPACK, ARPACK

▪ Pre- and postprocessing:

― Can read most mesh formats

― Can write almost any visualization file format

▪ Parallelization:

― Uses threads and tasks on shared-memory machines.

― Uses up to 100,000s of MPI processes for distributed-memory machines.

― Can use CUDA

▪ Open-source software:

― Used for a wide range of applications including heart muscle fibers, microfluidics, oil reservoir flow,

fuel cells, aerodynamics, quantum mechanics, neutron transport, numerical methods research,

fracture mechanics, damage models, sedimentation, biomechanics, root growth of plants,

solidification of alloys, glacier mechanics, and many others.

― Freely available on GitHub

deal.II
deal.II — an open source finite element library. Modern interface to the complex

data structures and algorithms required for solving partial differential equations

computationally using state-of-the-art programming techniques.

https://www.dealii.org/

58 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

hypre Highly scalable multilevel solvers and preconditioners. Unique user-friendly

interfaces. Flexible software design. Used in a variety of applications. Freely available.

http://www.llnl.gov/CASC/hypre

Magneto-

hydrodynamics

Electro-

magnetics

Elasticity / Plasticity

Facial surgery

Lawrence Livermore National Laboratory

▪ Conceptual interfaces
— Structured, semi-structured, finite elements, linear algebraic interfaces

— Provide natural “views” of the linear system

— Provide for more efficient (scalable) linear solvers through more effective data

storage schemes and more efficient computational kernels

▪ Scalable preconditioners and solvers
— Structured and unstructured algebraic multigrid solvers

— Maxwell solvers, H-div solvers

— Multigrid solvers for nonsymmetric systems: pAIR, MGR

— Matrix-free Krylov solvers

▪ Open source software
— Used worldwide in a vast range of applications

— Can be used through PETSc and Trilinos

— Available on github: https://www.github.com/hypre-space/hypre

http://www.llnl.gov/CASC/hypre
https://www.github.com/hypre-space/hypre

59 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

MAGMA Linear algebra solvers and spectral decompositions for hardware accelerators.

Portable dense direct and sparse iterative solvers for GPUs and coprocessors.

http://icl.utk.edu/magma/

▪ Dense Linear Algebra Solvers

— Linear systems of equations

— Linear least squares

— Singular value decomposition

▪ Matrix spectrum methods

— Symmetric and non-symmetric eigenvalues

— Generalized eigenvalue problems

— Singular Value Decomposition

▪ Sparse Solvers & Tensor Computations

http://icl.utk.edu/magma/

60 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

MFEM Free, lightweight, scalable C++ library for finite element methods. Supports

arbitrary high order discretizations and meshes for wide variety of applications.

http://mfem.org

▪ Flexible discretizations on unstructured grids

— Triangular, quadrilateral, tetrahedral and hexahedral meshes.

— Local conforming and non-conforming refinement.

— Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, …

▪ High-order and scalable

— Arbitrary-order H1, H(curl), H(div)- and L2 elements. Arbitrary order curvilinear meshes.

— MPI scalable to millions of cores. Enables application development on wide variety of

platforms: from laptops to exascale machines.

▪ Built-in solvers and visualization

— Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU, …

— Accurate and flexible visualization with VisIt and GLVis

▪ Open source software

— LGPL-2.1 with thousands of downloads/year worldwide.

— Available on GitHub, also via OpenHPC, Spack. Part of ECP’s CEED co-design center.

High order

curved elements Parallel non-conforming AMR

Surface

meshes

Compressible flow

ALE simulations

Heart

modelling

Lawrence Livermore National Laboratory

http://mfem.org/

61 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

PETSc/TAO
Portable, Extensible Toolkit for Scientific Computation /
Toolkit for Advanced Optimization

Scalable algebraic solvers for PDEs. Encapsulate parallelism in high-
level objects. Active & suppported user community. Full API from Fortran,
C/C++, Python.

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of

diverse scientific applications.

clockwise from upper left: hydrology,

cardiology, fusion, multiphase steel,

relativistic matter, ice

sheet modeling

▪ Easy customization and
composability of solvers at
runtime

— Enables optimality via flexible
combinations of physics,
algorithmics, architectures

— Try new algorithms by composing
new/existing algorithms
(multilevel, domain
decomposition, splitting, etc.)

▪ Portability & performance

— Largest DOE machines, also
clusters, laptops

— Thousands of
users worldwide

Preconditioners

Krylov Subspace Solvers

Nonlinear Algebraic Solvers

Time Integrators

Computation &
Communication Kernels

Optimization

Domain-

Specific

Interfaces
Structured Mesh

Unstructured Mesh

Quadtree / Octree

Networks

Vectors Matrices
Index
Sets

https://www.mcs.anl.gov/petsc

62 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

PHIST Hybrid-parallel Iterative Sparse Eigenvalue and linear solvers

Integration with different linear algebra backends and preconditioners

https://bitbucket.org/essex/phist/

▪ Sparse Eigenvalue Solver: Block Jacobi-Davidson QR

— Hermitian or non-Hermitian matrices

— Generalized problems 𝑨𝑥 = 𝜆𝑩𝑥 (for Hermitian pos. def.matrix 𝐁)

— Blocked iterative linear solvers like GMRES, BiCGStab and CGMN

— Can be accelerated by preconditioning

— Matrix-free interface

— Supported data types: D, Z, S, C

▪ Algorithmic Building Blocks
— block orthogonalization

— Eigenvalue counting (kernel polynomial method/KPM)

— Fused basic operations for better performance

▪ Various interfaces
— C, C++, Fortran 2003, Python

Funded by the DFG
project ESSEX

Can choose from several
backends at compile time
(Trilinos/Tpetra in xSDK 0.4.0)

h
a

rd
w

a
re

 a
w

a
re

n
e
s
s

re
q
u
ire

d
 fle

x
ib

ility

full interoperability

PHIST (builtin)

optimized (Fortran, MPI, OpenMP)
row-major block vectors
CRS format

C, MPI, OpenMP, SIMD, CUDA
SELL-C-sigma format

Pipelined, Hybrid-parallel
Iterative Solver Toolkit

https://bitbucket.org/essex/phist/

63 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

PLASMA Linear algebra solvers and spectral decompositions for multicore processors.

Portable and scalable dense solvers for large core counts.

http://icl.utk.edu/plasma/

▪ Dense Linear Algebra Solvers

— Linear systems of equations

— Linear least squares

— Positive/Hermitian definitive solvers

▪ Matrix spectrum methods

— Symmetric and non-symmetric eigenvalues

— Generalized eigenvalue problems

— Singular Value Decomposition

▪ Data conversion and thread control

http://icl.utk.edu/plasma/

64 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

PUMi: Parallel Unstructured
Mesh Infrastructure

Parallel management and adaptation of unstructured meshes.

Interoperable components to support the

development of unstructured mesh simulation workflows

Source Code: www.github.com/SCOREC/core
Paper: www.scorec.rpi.edu/REPORTS/2014-9.pdf

▪ In-memory integrations

developed
— MFEM: High order FE framework

— PHASTA: FE for turbulent flows

— FUN3D: FV CFD

— Proteus: Multiphase FE

— ACE3P: High order FE for EM

— M3D-C1: FE based MHD

— Nektar++: High order FE for flow

— Albany/Trilinos: Multi-physics FE

▪ Core functionality
— Distributed, conformant mesh with

entity migration, remote read only

copies, fields and their operations

— Link to the geometry and attributes

— Mesh adaptation (straight and curved),

mesh motion

— Multi-criteria partition improvement

— Distributed mesh support for Particle

In Cell methods

▪ Designed for integration into

existing codes
— Conformant with XSDK

— Permissive license enables integration

with open and closed-source codes

Mesh adaptation for

evolving features

Anisotropic adaptation

for curved meshes

RF antenna and

plasma surface

in vessel.

Applications with billions of elements: flip-chip

(L), flow control (R)

http://www.github.com/SCOREC/core
http://www.scorec.rpi.edu/REPORTS/2014-9.pdf

65 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

▪ Linear eigenvalue problems and SVD
— Standard and generalized eigenproblem, Ax=lx, Ax=lBx; singular values Au=sv
— Easy selection of target eigenvalues, shift-and-invert available for interior ones
— Many solvers: Krylov, Davidson, LOBPCG, contour integral, …

▪ Nonlinear eigenvalue problems
— Polynomial eigenproblem P(l)x=0, for quadratic or higher-degree polynomials
— Solvers: Krylov with compact basis representation; Jacobi-Davidson
— General nonlinear eigenproblem T(l)x=0, for any nonlinear function incl. rational

▪ Matrix functions
— Parallel Krylov solver to evaluate y=f(A)v
— Support for matrix exponential, square root, etc. and combinations thereof

▪ Extension of PETSc
— Runtime customization, portability and performance, C/C++/Fortran/python
— Can use any PETSc linear solvers and preconditioners

SLEPc Scalable Library for Eigenvalue Problem Computations. Parallel solvers for linear

and nonlinear eigenproblems. Also functionality for matrix functions.

http://slepc.upv.es

http://slepc.upv.es/

66 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

▪ Dense Matrix Solvers, Hierarchical Approximations
— Hierarchical partitioning, low-rank approximations

— Formats: Hierarchically Semi-Separable (HSS), Hierarchically Off-Diagonal Block Low-Rank (HODLR), Block

Low-Rank (BLR)

— Applicable to integral equations discretized with boundary element methods, structured matrices such as Cauchy

or Toeplitz, kernel matrices, covariance matrices, …

— Algorithms with much lower asymptotic complexity than corresponding ScaLAPACK routines

▪ Sparse Direct Solver
— Multifrontal algorithm, Fill-reducing orderings: Par-METIS, PT-Scotch, RCM, spectral

— Good scalability, fully distributed, parallel symbolic phase

▪ Sparse Preconditioners
— Sparse direct solver with dense hierarchical (low-rank) approximations

— Scalable and robust, aimed at PDE discretizations, indefinite systems, …

— Iterative solvers: GMRES, BiCGStab, iterative refinement

▪ Software
— BSD License, MPI+OpenMP, scalable to 10K+ cores

— Interfaces from PETSc, MFEM (Trilinos coming), available in Spack

— Under very active development

STRUMPACK STRUctured Matrix PACKage. Hierarchical solvers for dense rank-structured

matrices; fast sparse solver and robust and scalable preconditioners.

github.com/pghysels/STRUMPACK

https://github.com/pghysels/STRUMPACK

67 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SUNDIALS Adaptive time integrators for ODEs and DAEs and efficient nonlinear solvers

Used in a variety of applications. Freely available. Encapsulated parallelism

http://www.llnl.gov/CASC/sundials

▪ ODE integrators:

— CVODE(S): variable order and step BDF (stiff) and Adams (non-stiff)

— ARKode: variable step implicit, explicit, additive IMEX, and multirate Runge-Kutta

▪ DAE integrators: IDA(S) - variable order and step BDF integrators

▪ Sensitivity Analysis (SA): CVODES and IDAS provide forward and adjoint SA

▪ Nonlinear Solvers: KINSOL - Newton-Krylov, Picard, and accelerated fixed point

▪ Modular Design

— Written in C with interfaces to Fortran

— Users can supply their own data structures and solvers

— Optional use structures: serial, MPI, threaded, MPI+CUDA, MPI+RAJA, OpenMP
Device, hypre, and PETSc

▪ Open Source Software

— Freely available (BSD License) from LLNL site, github, and Spack

— Can be used from MFEM and PETSc

Magnetic reconnection

Dislocation dynamics Subsurface flow

SUNDIALS is supported by extensive

documentation, a sundials-users email list, and

an active user community

SUite of Nonlinear DIfferential /ALgebraic
equation Solvers

Core collapse

super-nova

SUNDIALS is used by thousands worldwide in

applications from research and industry

http://www.llnl.gov/CASC/sundials

68 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

SuperLU Supernodal Sparse LU Direct Solver. Unique user-friendly interfaces. Flexible

software design. Used in a variety of applications. Freely available.

http://crd-legacy.lbl.gov/~xiaoye/SuperLU

▪ Capabilities
— Serial (thread-safe), shared-memory (SuperLU_MT, OpenMP or Pthreads), distributed-

memory (SuperLU_DIST, hybrid MPI+ OpenM + CUDA).

• Implemented in C, with Fortran interface

— Sparse LU decomposition, triangular solution with multiple right-hand sides

— Incomplete LU (ILU) preconditioner in serial SuperLU

— Sparsity-preserving ordering:

• Minimum degree ordering applied to ATA or AT+A

• Nested dissection ordering applied to ATA or AT+A [(Par)METIS, (PT)-Scotch]

— User-controllable pivoting: partial pivoting, threshold pivoting, static pivoting

— Condition number estimation, iterative refinement.

— Componentwise error bounds

▪ Performance
— Factorization strong scales to 24,000 cores (IPDPS’18)

— Triangular solve strong scales to 4000 cores (CSC’18)

▪ Open source software
— Used worldwide in a vast range of applications, can be used through PETSc and Trilinos,

available on github

Widely used in commercial software, including

AMD (circuit simulation), Boeing (aircraft design),

Chevron, ExxonMobile (geology), Cray's LibSci,

FEMLAB, HP's MathLib, IMSL, NAG, SciPy,

OptimaNumerics, Walt Disney Animation.

ITER tokamak quantum mechanics

1

2

3

4

6

7

5L

U
1

6

9

3

7 8

4 52

http://crd-legacy.lbl.gov/~xiaoye/SuperLU

69 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

Trilinos

https://trilinos.org

[Science image(s) and caption goes here.]

▪ Optimal kernels to optimal solutions

— Geometry, meshing

— Discretization, load balancing

— Scalable linear, nonlinear, eigen, transient,
optimization, UQ solvers

— Scalable I/O, GPU, manycore

— Performance Portability Across Multiple Platforms
provided by Kokkos

▪ 60+ packages

— Other distributions: Cray LIBSCI, Github repo

— Thousands of users, worldwide distribution

— Laptops to leadership systems

Optimal kernels to optimal solutions. Over 60 packages. Laptops to leadership
systems. Next-gen systems, multiscale/multiphysics, large-scale graph analysis.

https://trilinos.org/

70 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

More info

• xSDK Foundations: Toward an Extreme-scale Scientific Software
Development Kit, R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond,
M. Heroux, J. Johnson, A. Klinvex, X. Li, L.C. McInnes, D. Osei-Kuffuor,
J. Sarich, B. Smith, J. Willenbring, U.M. Yang,
https://arxiv.org/abs/1702.08425, Supercomputing Frontiers and
Innovations, vol 4 No 1 (2017), pp.69-82.

• https://xsdk.info

https://arxiv.org/abs/1702.08425
http://superfri.org/superfri
https://xsdk.info/

71 xSDK Tutorial @ 3rd Annual ECP Meeting 2019-01-15

License, citation and acknowledgements

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0).

• Requested citation: xSDK Developers, An introduction to the xSDK, a community of diverse
numerical HPC software packages , ECP 3rd Annual Meeting, Houston, TX, January 15, 2019

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced

Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

exascaleproject.org xsdk.info

Thank you!

