Runtime Data Analysis for CSE
Applications

Alvaro L. G. A. Coutinho! Marta Mattoso? José Camata3
Vitor Silva®* Linda Gesenhues! Renan Souza?:®

“High Performance Computing Center, COPPE/Federal University of Rio de Janeiro
2Computer Science, COPPE/Federal University of Rio de Janeiro

3Computer Science, Federal University of Juiz de Fora
*Dell EMC Brazil R&D
*IBM R&D Center Brazil

SIAM CSE
Spokane, WA, Feb 25 — Mar 1, 2019

Outline

Motivation
Geophysical Flows

CSE Software

Data Analysis
Data Analysis Monitoring and Steering
Dataflow tool for online data analysis
Example: Cahn—Hilliard equation

FE Simulation of Turbidity Currents
Turbidity Current Simulation with 1ibMesh + In—situ Viz +
In—Transit Data Analysis

Conclusions and Discussion

Motivation: Simulation of sediment deposition

Re=10k Re=5k

495

485

475

465

(W) ydep Jerem

UTM easting (mx 10%)

Figure: Left: Reconstruction of the 1929 Giant turbidity current deposits; Top
insect: sediment deposit detail’; Right: Sediment deposits from a turbidity
current simulation at different Re (COPPE, 2017)

1C.J. Stevenson, et al, Nature Communications (9): 2616 (2018).

Why such simulations are complex?

Large scale simulations:

Large in size = Unstructured grids with 10° — 10'2 elements;
Large in coupling = multiphysics/multiscale problems;
Large in physical parameters = different viscosities, densities, etc.

o=

Large in control parameters = solver options, tolerances,
AMR/C, etc...

5. Large in complexity = several softwares and human intervention

Several runs are often necessary:

v

Sampling stochastic space = Uncertainty quantification

v

Parameter sweep = Many Task Computing

v

Reduced Order Modeling = Generating snapshots from high
fidelity simulations

v

Machine Learning = Generating training sets

CSE Software

» Translate complex mathematical models into predictive tools
» Usually coded in Fortran, C/C++, Python, Java or a mix

» Often invokes components of CSE frameworks and libraries
»

Components are invoked to provide for:
» support for PDE discretization methods like libMesh, FEniCS,
MOOSE, deal.ll, GRINS, OpenFOAM, PetIGA;
> mesh generation, like Gmsh;
> building blocks for solving numerical problems with parallel

computations, like PETSc, LAPACK, SLEPc;
» visualizations, like ParaView, Vislt;

> in-situ, like ParaView Catalyst, SENSEI
> |/O data management, like ADIOS.
» Modification of parameters at runtime allowed in several of these,
e.g., PETSc/SAWSs
» Log files have to be manually inspected or relevant data
registered and shown in a browser; no query and provenance
support at runtime

libMesh!: a framework for finite element analysis

» Open-source library with parallel
adaptive mesh refinement and
coarsening (AMR/C) support

» AMR/C is an optimal strategy for
large-scale simulations

> libMesh supports h, p and h—p
adaptive strategies

> Integration between libMesh and
Paraview Catalyst is provided by an
adaptor — implemented in one of the
Paraview Catalyst APls
> We map mesh, velocity, pressure,
sediment appearance, etc, from our
solver to VTK's data model
> Usage: output .png files every X
time steps - write data every kX
times steps, with k > 1.

1http://Iibmesh.github.io/index.html

LibMesh

Petsc
Metis
Laspack
STL

Mpich

@C atalyst

Data Analysis

Data-Analysis can help in:

» Data Monitoring

> Track parameters and relate huge numbers of raw data files
» Contributes to computational experiments reproducibility

» Data Steering
> Queries can help users to steer their simulations

> Changing parameters in runtime
> Extracting relevant subsets of raw data associating them to Qols

> Runtime query relating raw data from different files, provenance
data, and performance execution data is challenging

> Access to raw data files while they are generated
> Parse raw data file to find relevant data
» Current solutions are offline: our in—transit solution is a step
beyond?:?

1R. Souza et al. Data reduction in scientific workflows using provenance
monitoring and user steering. Future Generation Computer Systems (2017).

2V. Silva et al. Raw data queries during data-intensive parallel workflow execution.
Future Generation Computer Systems 75:402—-422 (2017).

Data-Analysis and Data Provenance

Enhancing In—Transit Data Analysis for answering provenance
queries involving user steering actions:

» Who adapted parameters P1, P2, P3--- in a data transformation
at time T

» What were the values for P1, P2, P3 before and after T?

» When did a runtime tuning took place?

» How are the Qols when mesh adaptation happened?

» Why did the user decide for a parameter tuning?

What is Data Provenance?

» Data provenance refers to records of the inputs, entities, systems,
and processes that influence data of interest, providing a historical
record of the data and its origins.

» Current provenance capture approaches for CSE applications present
a high overhead and no runtime query support.

DfAnalyzer: a dataflow tool for online analysis
» In highly complex simulations, data is efficiently managed in memory
and stored in thousands of isolated files (HDF5, XDMF, viz, graphs)

» These data have to be related to foster data analyses and
visualization at runtime and after the simulation.

» Relating data after the simulation is not an option.

Computer Computational
scientist scientist N iaiiow a

. Y S—— ; @ a3
» Inserting calls on source code s S fom [|
(like using in-situ viz tools) s ppaten st VI
» Monitoring, debugging,
dataflow analysis by providing: l l l
Dataflow
> Provenance management M Euractor ndexer In(eviace
> In-transit data analysis l e l'@::;
» Scientific data extraction storage
» Small time overhead in E[[;

large-scale parallel executions

Figure: DfAnalyzer scheme.

Comparison of Existing Provenance Solutions

Features Provenance Approaches

noWorkflow PROV-Template DfAnalyzer
Requires Code
Adaptation No No Yes
Deployment Bindings with mapping code | Bindings with mapping code Icr;s”esrtlon of library
Provenance System-call trace Instruction-level dynamic Compile-time static
Capture analysis instrumentation instrumentation
Provenar'lce Function and file level Function-level Function and file
Granularity
Raw Déta Not available Not available Available
Extraction
Provenance Prolog and SQL
Data Analysis | (w/o file content) SPARQL SQL+GUI
HPC Support | No No Yes

Table: Comparing Provenance Solutions'’

2,3

LhoWorkflow: J.F. Pimentel, et al. noWorkflow: a tool for collecting, analyzing, and managing
provenance from python scripts. Proceedings of the VLDB Endowment, 10(12):1841-1844, 2017
2PROV—TempIate: L. Moreau, et al. A Templating System to Generate Provenance. IEEE
Transactions on Software Engineering, 44(2): 103-121, 2018

3Di’AnaIyzer: V. Silva, et al, Capturing Provenance for Runtime Data Analysis in
Computational Science and Engineering Applications, ProvenanceWeek, 9-13 July 2018, London,

UK

dataflow_tag = "fenics-df”

t1 = Task{1, dataflow_tag, "MeshCreation")

t1.add_dataset(Dataset("iMeshCreation”, [Elemant|(96, 95])]))

Create mesh

mash = UnitSquarehtesh|(96, 96)

t1.add_dataset(DataSet("oMeshCreation”,
[Element{{mesh.num_vertices(), mesh.num_cells(}])]))

t1.end()

12 = Task{2, dataflow_tag, "FunctionSpace”, dependency=t1)

12 add_dataset(Dataset|"iFunctionspace”, [Elementi[”Lagrange”, 1])]))
Define function spaces

\ = FiniteElement{"Lagrange”, mesh.ufl_cell{}, 1}

ME = FunctionSpace(mesh, V*V]

12 add_dataset(Dataset|"oFunctionspace”, [Element{[ME.dim (}])]))
2_endf)

parts of cade were amitted
#1.)

13 = Task{3, dataflow_tag, "NewtonSolver”, dependency=12)
t3.add_dataset(DataSet("iNewtonSolver”,
[Element(]"Iu", "incremental”, 1e-6]1]})
Defina Newton salver
solver = NewtonSolver()
solverparameters|"linear_sofver”] = "gmras”
solverparameters|"convergence_criterion”] = "incremental
solverparameters|relative_tolerance™] = 1e-6
t3.add_dataset|Dataset|"oNewtonSalver,
[Element(["gmres”, "incremantal”, 1e-6])]])

t3.end()
continue in next frame

FEniCS Code for Cahn—Hilliard with DfAnalyzer calls!

Qutput file
file = File{"output.pvd”, "compressed")

#5Step in time

t=0.0;T=50% i =0

prev =3

while (1< T):
tesdiibel
current = Taskjint[t3_id)+i dataflow_tag, TimeStep", dependency=prev)
current.add_d; "iTimeStep",
Solver execution
wllvector()[:] = uvectar)
iter_count, converged_flag = sofver.solve(problem, uvector())
current.add_dataset{DataSet("oTimeStep",

[Element{[converged_flag,iter_count,solverresidual()])]))

currant.end(}

twrite = Task{int{current. _id}+1, dataflow_tag, "Visualization"siter_count,
dependency=current)

twrite.add_dataset(DataSet|” ivisualization™, [Element(["output.pud"]]]}}

#Visualization

fila << {usplit]][a], t}

Raw data extraction

extracted_data = Extractor(ExtractorCartridge PROGRAM, "output pvd”)

twrite.add_dataset{DataSet|" oVisualization”, [Element(extracted_datali-1])]}))

Twrite and)

| Labals:

| Black 2 Python native code
Red < FENICS invacation
Green > DiAnalyzer invocation
Purple < VK tion

Figure: Code adapted from FEniCS manual.

1https:

//wwu .dropbox.com/s/ibf9ud311af jqvx/prototype_multi-physics.py?dl=0 =

o)
?

https://www.dropbox.com/s/ibf9ud311afjqvx/prototype_multi-physics.py?dl=0
https://www.dropbox.com/s/ibf9ud311afjqvx/prototype_multi-physics.py?dl=0

Execution Times for FEniCS Code with Provenance

Execution of a multiphysics simulation using FEniCS

350.00
@ 300.00
Ew 250.00
5 T
o § 200.00
83 150.00
w 100.00
50.00
— e =0 2 2Eeessss 00 O seeees.
0.00
Baseline DfAnalyzer noWorkflow
ORetrospective Provenance 0.00 9.22 146.09
O Prospective Provenance 0.00 0.23 126.71
® Computational Processing 21.16 21.17 21.18

Figure: Execution in a single node in serial mode; Prospective Provenance acts
before execution; Retrospective Provenance acts during execution (at every
time step)

Turbidity Current Simulation with 1ibMesh

Input Mesh:
» Input file

#cells in (xy and z) RO
- Dat: ring
Element type, etc SHETy

User Steering

s 3 b
; T Reset !
; Smuiaton parameters | |
Flow Solver u-p
VIS FEM
Sediment Solver
VNS FEM

Refine and Coarse
elements
—
]
Compute Sediment Mesh anemsni "‘:":"I‘yfl’l" Adapt
Deposition e Timestep

t=t+dt

Non-Linear Solver: Raw Data
residual,

Linear Tolerance and
Residual.

Specific linear solver
parameters, etc

DfAnalyzer
AMR/C:
Error fractions, .
Global tolerance In-Situ: Adapt TimeStep:
Error Estimator Data Extraction CFL, control parameters,
Solution Snapshot dtmin, dtmax,

Desempenho

Figure: 1ibMesh with In=Situ Visualization and In-Transit Data Analysis

1J. J. Camata, et al, In situ visualization and data analysis for turbidity currents
simulation, Comput. Geosci., 110:23-31, 2018

Monodisperse current

Experimental - de Rooij and Dalziel (2009) —+—
DNS - M.M. Nasr-Azadani et al. (2011) ——
02+ 3D RBVMS - libMesh-Sedimentation —x—

deposition

‘]
2 4 6 8 10 12 14 16 18
distance

Figure: In-Situ data extraction - Figure: Sediment concentration
deposition plotted over line filter profiles at t = 20

» Structured mesh with a 0.1 grid spacing.

» Two uniform refinements are applied initially: 4.6M HEXS.

> Kelly's error estimator for u and ¢

» Parallel by Block-Jacobi + GMRES(35) with ILU(0); tol 10°.
» Nonlinear tolerance 1073 and At = 0.005.

» XDMF/HDF5 raw data files are written every 50 time steps.

Performance Analysis

Table: Elapsed time for different simulation stages; execution on 480 MPI

processes

Time Contribution CPU Time (s) Cost/Call %Cost
Flow Solver 16,203.71 0.87 32.67%
AMR/C 10,268.32 17.11 20.70%
Sediment Solver 2,797.36 0.15 5.64 %
XDMF /HDF5 Writer 453.96 4.93 0.92%
In Situ Viz 4+ Data Extraction 3,137.24 33.73 6.33%
Provenance (DfAnalyzer) 38.47 0.01 0.08%
Others (libMesh) 16,598.00 - 33.67%
Total 62,171.00

Query: Tracking sediment deposition

» DfAnalyzer registers deposition along time at predefined locations and
pointers to viz files.
> We can query online with a negligible time (< 500 ms).

time amount of deposit visualization visualization_12.500.png

12.500 0.000124443 visualization 12.500.png_| 2 time = 12.500
13.000 0.100216556 visualization_13.000.png

13.500 1.460732820 isualization_13.500.png

14.000 3.586770000 visualization_14.000.png
14.500 6.152664400 visualization_14.500.png

time = 13.000

(a)

time = 13.500
time amount of deposit visualization
|_12.500 __9.77670000F-44 _visualization 12.500.png
13.000 2.30743685E-39 visualization_13.000.png - time = 14.000
13.500 2.55823726E-37 visualization_13.500.png .
14.000 2.80856500E-36 visualization_14.000.png visualization_14.500.png A i

o m— —
..

(b) Y
;x x=9.0 x=13.5

Figure: Sediment deposition monitoring at five time instants at x = 9.0 (a) and
x = 13.5 (b) combining data with in-situ visual information

Experimental Channel

Time: 23.5

concentration
000400 005 01 015 02 025 03 035 4000l
| | I e ——

Figure: Top: Channel domain; Bottom Left: Sediment concentration and

physical data; Bottom Right: Measurements, EdgeCFD and libMesh results

User Steering in 1ibMesh

time
Flow Final linear residual: 1.68641e-13
Flow Final nonlinear residual: 2.032666-08
- Sediment Final linear residual: 1.49832e-13
=245 sediment Final nonlinear residual: 1.510980-08
Number of elements in the mesh: 2463183

Number of elaments inthe mesh

Parameter Before adapt _After adapt
Flow nonlinear tolerance 1.0e4 10e3
|~ Transport nonlinear tolerance. 1.00-4 10e3
Flow initial linear solver tolerance 1066 1061
Transportinitallinear solver 1066 101
tolerance
N - . . - Flow Final linear residual: 4.46403e-14
Parameters fine-tuning at ¢ = 33.52 -+ -+ <+ T Flow Final nonlinear residual: 7.10668e-09
| t=580—4 Sediment Final linear residual: 4.06513¢-14
L Sediment Final nonlinear residual: 9.09405e-09

Number of elements in the mesh: 1743485

s ze s e Flow Final linear residual: 6.09749e-14
Flow Final nonlinear residual: 9.203026-09
t=83.0~f Sediment Final linear residual: 4.75423e-14
e s et Sediment Final nonlinear residual: 7.4835¢-09
Number of elements in the mesh: 1700729

Flow Final linear residual: 5.786880-14
Flow Final nonlinear residual: 8.11125¢-09

I Sediment Final linear residual: 6.5936e-14
Sediment Final nonlinear residual: 6 40164e-09
Number of elements in the mesh: 2335832

Figure: Parameter-tuning reduced the execution time by 10 days (37%),
overhead < 1% and allowed job to finish successfully*

IR. Souza et al, Keeping Track of User Steering Actions in Dynamic Workflows,
submitted, 2018.

Concluding Remarks and Discussion

» We have shown how to incorporate online data analysis in complex
CSE simulations

» Tools work by inserting calls in the source code (like Catalyst
adaptor calls)

» We provide provenance, in—transit data analysis and data extraction
» Solution is lightweight, no harm to performance

» In-situ visualization and in—transit data analysis essential for
increasing robustness of complex simulations, enabling user-steering

» Provenance management contributes to increase reproducibility
» Annotated data can also feed training sets for ML

» User steering solution can be used in other contexts, e.g., ML, where
tools like Google's TensorFlow needs tuning of several parameters

Acknowledgements

» Data Sciences Team:
» Patrick Valduriez (INRIA), Daniel Oliveira, Jonas Dias, Luciano Leite
» Computational Mechanics Team

» Fernando Rochinha, Renato Elias, Andre Rossa, Gabriel Guerra,
Henrique Costa, Soulemaine Zio, Adriano Cortes, Gabriel Barros

» Geology: Marco Moraes and Paulo Paraizo, both from Petrobras
R&D Center

» Funding: Petrobras, EU-BR H2020, CNPq, FAPERJ

» Computational Resources: @Lobo Carneiro, COPPE/UFRJ,
O@TACC, UT Austin

» Special thanks to Bill Barth (TACC) and Andy Bauer (formerly at
Kitware)

Thanks for your attention

Figure: Monodisperse current: plot generated by Paraview Catalyst

	Motivation
	Geophysical Flows

	CSE Software
	Data Analysis
	Data Analysis Monitoring and Steering
	Dataflow tool for online data analysis
	Example: Cahn–Hilliard equation

	FE Simulation of Turbidity Currents
	Turbidity Current Simulation with libMesh + In–situ Viz + In–Transit Data Analysis

	Conclusions and Discussion

