
Runtime Data Analysis for CSE
Applications

Alvaro L. G. A. Coutinho1 Marta Mattoso2 José Camata3

Vitor Silva4 Linda Gesenhues1 Renan Souza2,5

1High Performance Computing Center, COPPE/Federal University of Rio de Janeiro
2Computer Science, COPPE/Federal University of Rio de Janeiro

3Computer Science, Federal University of Juiz de Fora
4Dell EMC Brazil R&D

5IBM R&D Center Brazil

SIAM CSE
Spokane, WA, Feb 25 – Mar 1, 2019



Outline

Motivation
Geophysical Flows

CSE Software

Data Analysis
Data Analysis Monitoring and Steering
Dataflow tool for online data analysis
Example: Cahn–Hilliard equation

FE Simulation of Turbidity Currents
Turbidity Current Simulation with libMesh + In–situ Viz +
In–Transit Data Analysis

Conclusions and Discussion



Motivation: Simulation of sediment deposition

Figure: Left: Reconstruction of the 1929 Giant turbidity current deposits; Top
insect: sediment deposit detail1; Right: Sediment deposits from a turbidity
current simulation at different Re (COPPE, 2017)

1C.J. Stevenson, et al, Nature Communications (9): 2616 (2018).



Why such simulations are complex?

Large scale simulations:
1. Large in size ⇒ Unstructured grids with 109 − 1012 elements;
2. Large in coupling ⇒ multiphysics/multiscale problems;
3. Large in physical parameters ⇒ different viscosities, densities, etc.
4. Large in control parameters ⇒ solver options, tolerances,

AMR/C, etc...
5. Large in complexity ⇒ several softwares and human intervention

Several runs are often necessary:
I Sampling stochastic space ⇒ Uncertainty quantification
I Parameter sweep ⇒ Many Task Computing
I Reduced Order Modeling ⇒ Generating snapshots from high

fidelity simulations
I Machine Learning ⇒ Generating training sets



CSE Software

I Translate complex mathematical models into predictive tools
I Usually coded in Fortran, C/C++, Python, Java or a mix
I Often invokes components of CSE frameworks and libraries
I Components are invoked to provide for:

I support for PDE discretization methods like libMesh, FEniCS,
MOOSE, deal.II, GRINS, OpenFOAM, PetIGA;

I mesh generation, like Gmsh;
I building blocks for solving numerical problems with parallel

computations, like PETSc, LAPACK, SLEPc;
I visualizations, like ParaView, VisIt;

I in-situ, like ParaView Catalyst, SENSEI
I I/O data management, like ADIOS.

I Modification of parameters at runtime allowed in several of these,
e.g., PETSc/SAWs

I Log files have to be manually inspected or relevant data
registered and shown in a browser; no query and provenance
support at runtime



libMesh1: a framework for finite element analysis

I Open-source library with parallel
adaptive mesh refinement and
coarsening (AMR/C) support

I AMR/C is an optimal strategy for
large-scale simulations

I libMesh supports h, p and h − p
adaptive strategies

I Integration between libMesh and
Paraview Catalyst is provided by an
adaptor – implemented in one of the
Paraview Catalyst APIs

I We map mesh, velocity, pressure,
sediment appearance, etc, from our
solver to VTK’s data model

I Usage: output .png files every X
time steps - write data every kX
times steps, with k � 1.

1http://libmesh.github.io/index.html



Data Analysis

Data-Analysis can help in:
I Data Monitoring

I Track parameters and relate huge numbers of raw data files
I Contributes to computational experiments reproducibility

I Data Steering
I Queries can help users to steer their simulations

I Changing parameters in runtime
I Extracting relevant subsets of raw data associating them to QoIs

I Runtime query relating raw data from different files, provenance
data, and performance execution data is challenging

I Access to raw data files while they are generated
I Parse raw data file to find relevant data

I Current solutions are offline: our in–transit solution is a step
beyond1,2

1R. Souza et al. Data reduction in scientific workflows using provenance
monitoring and user steering. Future Generation Computer Systems (2017).

2V. Silva et al. Raw data queries during data-intensive parallel workflow execution.
Future Generation Computer Systems 75:402–422 (2017).



Data-Analysis and Data Provenance

Enhancing In–Transit Data Analysis for answering provenance
queries involving user steering actions:

I Who adapted parameters P1, P2, P3 · · · in a data transformation
at time T

I What were the values for P1, P2, P3 before and after T ?
I When did a runtime tuning took place?
I How are the QoIs when mesh adaptation happened?
I Why did the user decide for a parameter tuning?

What is Data Provenance?
I Data provenance refers to records of the inputs, entities, systems,

and processes that influence data of interest, providing a historical
record of the data and its origins.

I Current provenance capture approaches for CSE applications present
a high overhead and no runtime query support.



DfAnalyzer: a dataflow tool for online analysis
I In highly complex simulations, data is efficiently managed in memory

and stored in thousands of isolated files (HDF5, XDMF, viz, graphs)
I These data have to be related to foster data analyses and

visualization at runtime and after the simulation.
I Relating data after the simulation is not an option.

I Inserting calls on source code
(like using in-situ viz tools)

I Monitoring, debugging,
dataflow analysis by providing:

I Provenance management
I In-transit data analysis
I Scientific data extraction

I Small time overhead in
large-scale parallel executions

Figure: DfAnalyzer scheme.



Comparison of Existing Provenance Solutions

Features Provenance Approaches
noWorkflow PROV-Template DfAnalyzer

Requires Code
Adaptation No No Yes

Deployment Bindings with mapping code Bindings with mapping code Insertion of library
calls

Provenance
Capture

System-call trace
analysis

Instruction-level dynamic
instrumentation

Compile-time static
instrumentation

Provenance
Granularity Function and file level Function-level Function and file

Raw Data
Extraction Not available Not available Available

Provenance
Data Analysis

Prolog and SQL
(w/o file content) SPARQL SQL+GUI

HPC Support No No Yes

Table: Comparing Provenance Solutions1,2,3

1noWorkflow: J.F. Pimentel, et al. noWorkflow: a tool for collecting, analyzing, and managing
provenance from python scripts. Proceedings of the VLDB Endowment, 10(12):1841–1844, 2017

2PROV-Template: L. Moreau, et al. A Templating System to Generate Provenance. IEEE
Transactions on Software Engineering, 44(2): 103–121, 2018

3DfAnalyzer: V. Silva, et al, Capturing Provenance for Runtime Data Analysis in
Computational Science and Engineering Applications, ProvenanceWeek, 9–13 July 2018, London,
UK



FEniCS Code for Cahn–Hilliard with DfAnalyzer calls1

Figure: Code adapted from FEniCS manual.

1https:
//www.dropbox.com/s/ibf9ud311afjqvx/prototype_multi-physics.py?dl=0

https://www.dropbox.com/s/ibf9ud311afjqvx/prototype_multi-physics.py?dl=0
https://www.dropbox.com/s/ibf9ud311afjqvx/prototype_multi-physics.py?dl=0


Execution Times for FEniCS Code with Provenance

Figure: Execution in a single node in serial mode; Prospective Provenance acts
before execution; Retrospective Provenance acts during execution (at every
time step)



Turbidity Current Simulation with libMesh

Figure: libMesh with In–Situ Visualization and In-Transit Data Analysis

1J. J. Camata, et al, In situ visualization and data analysis for turbidity currents
simulation, Comput. Geosci., 110:23–31, 2018



Monodisperse current

Figure: In-Situ data extraction -
deposition plotted over line filter

Figure: Sediment concentration
profiles at t = 20

I Structured mesh with a 0.1 grid spacing.
I Two uniform refinements are applied initially: 4.6M HEX8.
I Kelly’s error estimator for u and c
I Parallel by Block-Jacobi + GMRES(35) with ILU(0); tol 10−6.
I Nonlinear tolerance 10−3 and ∆t = 0.005.
I XDMF/HDF5 raw data files are written every 50 time steps.



Performance Analysis

Table: Elapsed time for different simulation stages; execution on 480 MPI
processes

Time Contribution CPU Time (s) Cost/Call %Cost
Flow Solver 16,203.71 0.87 32.67%
AMR/C 10,268.32 17.11 20.70%
Sediment Solver 2,797.36 0.15 5.64 %
XDMF/HDF5 Writer 453.96 4.93 0.92%
In Situ Viz + Data Extraction 3,137.24 33.73 6.33%
Provenance (DfAnalyzer) 38.47 0.01 0.08%
Others (libMesh) 16,598.00 – 33.67%
Total 62,171.00



Query: Tracking sediment deposition
I DfAnalyzer registers deposition along time at predefined locations and

pointers to viz files.
I We can query online with a negligible time (< 500 ms).

Figure: Sediment deposition monitoring at five time instants at x = 9.0 (a) and
x = 13.5 (b) combining data with in-situ visual information



Experimental Channel

Figure: Top: Channel domain; Bottom Left: Sediment concentration and
physical data; Bottom Right: Measurements, EdgeCFD and libMesh results



User Steering in libMesh

Figure: Parameter-tuning reduced the execution time by 10 days (37%),
overhead < 1% and allowed job to finish successfully1

1R. Souza et al, Keeping Track of User Steering Actions in Dynamic Workflows,
submitted, 2018.



Concluding Remarks and Discussion

I We have shown how to incorporate online data analysis in complex
CSE simulations

I Tools work by inserting calls in the source code (like Catalyst
adaptor calls)

I We provide provenance, in–transit data analysis and data extraction
I Solution is lightweight, no harm to performance
I In-situ visualization and in–transit data analysis essential for

increasing robustness of complex simulations, enabling user-steering
I Provenance management contributes to increase reproducibility
I Annotated data can also feed training sets for ML
I User steering solution can be used in other contexts, e.g., ML, where

tools like Google’s TensorFlow needs tuning of several parameters



Acknowledgements

I Data Sciences Team:
I Patrick Valduriez (INRIA), Daniel Oliveira, Jonas Dias, Luciano Leite

I Computational Mechanics Team
I Fernando Rochinha, Renato Elias, Andre Rossa, Gabriel Guerra,

Henrique Costa, Soulemaine Zio, Adriano Cortes, Gabriel Barros
I Geology: Marco Moraes and Paulo Paraizo, both from Petrobras

R&D Center
I Funding: Petrobras, EU-BR H2020, CNPq, FAPERJ
I Computational Resources: @Lobo Carneiro, COPPE/UFRJ,

@TACC, UT Austin
I Special thanks to Bill Barth (TACC) and Andy Bauer (formerly at

Kitware)



Thanks for your attention

Figure: Monodisperse current: plot generated by Paraview Catalyst


	Motivation
	Geophysical Flows

	CSE Software
	Data Analysis
	Data Analysis Monitoring and Steering
	Dataflow tool for online data analysis
	Example: Cahn–Hilliard equation

	FE Simulation of Turbidity Currents
	Turbidity Current Simulation with libMesh + In–situ Viz + In–Transit Data Analysis

	Conclusions and Discussion

