
Performant Data Management

https://github.com/glotzerlab/signac-benchmarks

Performance comparison of signac and datreant, a similar data management tool.
Benchmark code is available at https://github.com/glotzerlab/signac-benchmarks

At its core, signac is a database built directly on top of the file system,
leveraging the advantages of direct file system access while also pro-
viding functions to efficiently index and search the data space. The
user provides “state point” parameters and associated data, while
signac is responsible for managing the storage of both parameters
and data. A JSON document stores metadata, while HDF5 files store
numerical arrays. Data files are stored directly in the workspace.

The high performance of signac on network file systems is integral to
its usability on HPC architectures. The core signac application scales
well for data spaces exceeding 104 jobs [1].

More Information
For more information, including the
full documentation, please visit:
https://signac.io

Install signac with pip
or conda:
pip install signac
conda install signac -c conda-forge

Efficient HPC Workflows
The signac-flow package streamlines
the execution of user-defined
operations on the data space. It
automates HPC job submission on
PBS, Torque, SLURM, and LSF
managed clusters, and provides
progress reports to the user.

There are three elements of
signac-flow: jobs, each of which
represents the data associated with a
single parameter combination;
operations, which are procedures
acting on jobs; and FlowProjects, which
are collections of operations
encapsulating a complete workflow
associated with a signac data space.
The code below shows a sample of job
initialization:

signac

�ow

RMSD

RMSDRMSDRMSDRMSD

�nd(...)
Initialize

Generate Process Analyze

Aggregated Results:

a

b

c

A typical workflow: jobs are initialized
using signac, and then operations to gen-
erate, process, and analyze data are sub-
mitted to an HPC cluster by signac-flow.

1 import signac
2 project = signac.init_project('IdealGasProject')
3
4 # Iterate over the variable of interest:
5 for p in 0.1, 1.0, 10.0:
6 # Obtain a handle for the full state point:
7 job = project.open_job({'p': p, 'kT': 1.0, 'N': 1000})
8 # Store the volume in the job's document data:
9 job.doc.volume = job.sp.N * job.sp.kT / job.sp.p

10 # Or write it to a file within the job's workspace:
11 with open(job.fn('volume.txt'), 'w') as file:
12 file.write(str(job.sp.N * job.sp.kT / job.sp.p))

Summary
Large-scale computational studies in physics, chemistry, and
materials science are not only scientifically challenging, but also
require the management of complex data spaces.

The signac framework [1]:
• provides the infrastructure for the
 rapid development and execution of
 computational investigations
• integrates well with high-performance
 computing cluster environments
• simplifies collaboration on shared
 data spaces
• is available for Python 2.7 and 3.4+
 through pip and conda
• is free and open-source (BSD
 3-Clause License)

The signac framework (composed of the core signac package,
signac-flow, and signac-dashboard) provides tools to develop
complex workflows operating on research data spaces and rapidly
visualize the results, enabling the simple, efficient, and reproducible
execution of computational studies.

The pointillistic painting style,
pioneered by G. Seurat and P. Signac
serves as a metaphor for signac’s
data model. Illustration based on
Cassis, Cap Lombard 1889,
Gemeentemuseum Den Haag.

Reproducible Computational Scientific Workflows with signac
Bradley D. Dice1, Carl S. Adorf2, Vyas Ramasubramani2, Paul M. Dodd2, Sharon C. Glotzer234

1. Department of Physics 2. Department of Chemical Engineering 3. Department of Materials Science and Engineering
4. Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109

Acknowledgements
Development and deployment supported by MICCoM, as part of the
Computational Materials Sciences Program funded by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division, under Subcontract No.
6F-30844. Project conceptualization and implementation supported
by the National Science Foundation, Award # DMR 1409620. Bradley
Dice acknowledges support from the National Science Foundation
Graduate Research Fellowship under Grant No. 1256260 DGE.

[1] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, Sharon C.
Glotzer, Simple data and workflow management with the signac
framework, Computational Materials Science, Volume 146, 2018,
220-229. https://doi.org/10.1016/j.commatsci.2018.01.035
[2] https://zenodo.org
[3] https://figshare.com

Cluster Job Submission

Identify Eligible Operations Generate Execution Scripts Submit to Cluster

Job fb4
D

A
B

C active
inactive

next
completed

incomplete
Job 3d5

D
A

B

C

Job c82
D

A
B

C

Next
 B(fb4)
 C(fb4)
 A(3d5)

Eligible
 C(fb4)
 A(3d5)

Current Project Status

Execution of Operations

separate

bundled

$ run C(fb4)

$ run A(3d5)

$ run C(fb4)
$ run A(3d5)

or

Job submission is managed by the signac-flow FlowProject, which
uses a series of pre-conditions and post-conditions to determine and
submit eligible operations to the HPC for processing. Operations are
Python functions or shell commands; signac-flow is generally
agnostic to the applications or scripting languages used to generate
and process data. Operations may be bundled and run in parallel.

Reproducibility & Collaboration
Within the signac framework, several tools assist users with creating
reproducible workflows. By supporting a wide range of systems and
keeping workspace definitions and workflow logic alongside
operations’ source code, signac ensures the portability needed to
reproduce results and the simplicity needed for collaboration.

(a) Data
Import/Export

Data Selection and Aggregation
Searching,
grouping, and
filtering jobs can
be done in Python,
bash, or the
signac-dashboard
web interface.

1 # Filter jobs by state point metadata (in Python)
2 for job in project.find_jobs({'p': 0.1}):
3 print(job)
4 # Filter jobs by document data
5 for job in project.find_jobs(doc_filter={'volume': 100.0}):
6 print(job)
7 # Group jobs by state point parameter 'p'
8 for p, group in project .groupby('p'):
9 print(p, list(group))

0.1
1 # Or use the simple filter syntax in Bash:
2 $ signac find p

(c) Containerized
Workflow Support

(a) A data space exported from signac can be uploaded to data
repositories such as Zenodo or Figshare [2, 3]. (b) Execution hooks can
trigger before/after operations are called, providing a traceable log.
(c) signac-flow supports running operations in containers.

(d) Schema
Detection

'T': int([298, 300, 302])
'P': float([0.1, 1.0])

(e) Dashboard
Visualization

write_log()

snapshot()

git commit

(b) Execution
Hooks*

(d) Heterogeneous data spaces can be quickly summarized via their
detected schema. (e) The signac-dashboard package enables rapid
data visualization. (f) Generate views of the workspace for simplified
filesystem access.

(f) Workspace
Views

* upcoming release

