
How to Professionally Develop Reusable Scienti�c Software—And When Not To
Vyas Ramasubramani1, Carl S. Adorf1, Joshua A. Anderson1, Sharon C. Glotzer123

1. Department of Chemical Engineering 2. Department of Materials Science and Engineering
3. Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109

Acknowledgements
We would like to thank all contributors to the group’s code base, including all members of the Glotzer group as well as the numerous
external contributors to our software listed on the respective websites. We would like to thank Michael Engel for his development of injavis,
some of which was done while in the Glotzer group. The software toolkits, packages and methodologies described in this paper have been
supported both internally (injavis and plato) and by a number of grants, principally: DOD/ASD(R&E) under Award No. N00244-09-1-0062,
“Smart, Autonomous. Adaptive Phenomena in Self-Organizing, Recon�gurable Materials,” (2009-2014) for HOOMD-blue v0.7 – v1.1, freud
and later support for injavis; National Science Foundation, Award # DMR 1409620, “CDS&E: Fast, scalable GPU-enabled software for
predictive materials design & discovery,” (2014-2018) for HOOMD-blue development, especially DEM and HPMC, and for fresnel, as well as
project conceptualization and early implementation for signac; and MICCoM, as part of the Computational Materials Sciences Program
funded by the U.S. Department of Energy, O�ce of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under
Subcontract No. 6F-30844 for development and deployment of signac.

[1] C. S. Adorf, V. Ramasubramani, J. A. Anderson and S. C. Glotzer, "How to professionally develop reusable scienti�c software — and when
not to,". Computing in Science & Engineering (2019). doi: 10.1109/MCSE.2018.2882355

Applying Lazy Refactoring

Break component
into constituents

Integrable?

Is scope
acceptable?

Problem
solved?

Any partial
solutions?

Any
complete
solution

?

Divide problem
into components

Identify largest
missing component

Adapt as needed

Collect all potential
software solutions

[Yes]

[Yes]

[No]

[No]

[No]

[No]

[Yes][No]

[Yes]

[Yes][No]

Refactor into software
package(s)

Prototype solution

>1
partial

prototype
solution

?

Any
packages?

[Yes]

[No]

[No]

[Yes]

[Yes]
Code

able to satisfy
criteria

?

Package
able to satisfy

criteria
?

Integrate into
work�ow

[Yes]

[No]

Extract relevant parts
from prototype code

- Licensed
- Modular
- Stable
- Documented
- Tested
- Validated

- Determine scope
- Draft interface
- Refactor code
- Document
- Implement tests
- Validate
- Optimize

-

-

Add license
Strive for modularity, but
keep interfaces simple
Adapt interfaces when
necessary
Minimal documentation
Validate as part of the
scienti�c process
Implement unit tests
where convenient

-

-

-

-

Lazy Refactoring Over TimeDeveloping Computational Solutions
In theory, computational projects would be perfectly scoped from the start,
allowing exact determination of what existing tools could be used and the
reuse potential of new developments. In practice, project scopes change
constantly, making it extremely di�cult to accurately assess which code will
be reused.

Community Development

872 views

Solving a computational problem (grey) involves:
 • �nding existing well-de�ned packages (blue)
 • implementing missing pieces with one-o� prototype code (red)
 • writing adapters (yellow) to interface between packages and protoypes
There are two options when existing prototypes solve part of the problem:
 • implementing new protoypes to �ll the holes (Alternative A)
 • refactoring existing prototype into a package (Alternative B)
Determining when to choose each alternative and how to proceed is the
crux of our lazy refactoring approach.

Problem Package (has clean interfaces)

Prototype (has fuzzy interfaces)Adapter

Timeline: Problem A

Timeline: Problem B
Step 1:

Alternative A

Step 2:

Step 3:
Alternative B

a

A B

cy
x

b

A B

a d c

b

a

A B

x

b

a

A B

c
x

b

Step 1: Step 2: Step 3:
a

A

x

b

a

A

b

A

By presenting our open-source software in various forums, we
 • attract a broad base of users and contributors
 • help integrate our software with the broader ecosystem
 • improve our software stack’s usability and sustainability
We also foster group involvement in development by, for instance, holding
periodic hackathons to upgrade and maintain our code bases.

signac-�ow
Simulation File formats Analysis

Data Management

Plotting

Visualization

sklearnpythia pandas

freud

Ovito

VMD

matplotlib

Format
Adapter

injavis

HOOMD
-blue

Other
Other

signac

GTAR

GSD

plato

signac-dashboard
Other

Other

Other

fresnel

generate
calc2

calc1
compare

Identify largest
missing component

No

Write new prototype

Yes

Yes

No

Can use
existing

package?

Can
refactor existing

prototypes?

Problem solved?

No

Yes

The lazy refactoring approach involves constantly reevaluating existing
software whenever a new computational problem arises.

This �owchart, a simpli�ed
version of the comprehensive
decision tree shown below,
shows that the key is to break
scienti�c problems down into
subproblems requiring separate
software solutions. These are
analyzed to determine whether existing code, preferably in package form,
can be used to solve them. New code, when needed, is always a prototype.

Lazy refactoring has led to clear interfaces between well-de�ned groups of
software tools that we developed in-house (navy blue):
 • Molecular simulation: HOOMD-blue
 • Simulation analysis: freud, pythia
 • Simulation visualization: plato, injavis, fresnel
 • Data and work�ow management: signac, signac-�ow, signac-dashboard
 • Utilities: GSD, GTAR
These tools also interoperate with well-known components of the broader
scienti�c Python ecosystem (light blue).

In addition to creating and maintaining these code bases, we also provide
various other services to facilitate the broader usage of our code, such as:
 • project websites including information on how to cite our code
 • online documentation hosted through services like Read The Docs
 • distribution through package managers like pip and conda
 • support chat rooms (like Gitter) and mailing lists (like Google Groups)
Providing such services increases our visibility, and consequently the
likelihood that others can reuse our work to accelerate scienti�c progress.

