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Lazy Refactoring Over TimeDeveloping Computational Solutions
In theory, computational projects would be perfectly scoped from the start, 
allowing exact determination of what existing tools could be used and the 
reuse potential of new developments. In practice, project scopes change 
constantly, making it extremely di�cult to accurately assess which code will 
be reused.
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Solving a computational problem (grey) involves:
      • �nding existing well-de�ned packages (blue)
      • implementing missing pieces with one-o� prototype code (red)
      • writing adapters (yellow) to interface between packages and protoypes
There are two options when existing prototypes solve part of the problem:
      • implementing new protoypes to �ll the holes (Alternative A)
      • refactoring existing prototype into a package (Alternative B)
Determining when to choose each alternative and how to proceed is the 
crux of our lazy refactoring approach.
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By presenting our open-source software in various forums, we
      • attract a broad base of users and contributors
      • help integrate our software with the broader ecosystem
      • improve our software stack’s usability and sustainability
We also foster group involvement in development by, for instance, holding 
periodic hackathons to upgrade and maintain our code bases.
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The lazy refactoring approach involves constantly reevaluating existing 
software whenever a new computational problem arises.

This �owchart, a simpli�ed 
version of the comprehensive 
decision tree shown below, 
shows that the key is to break 
scienti�c problems down into 
subproblems requiring separate 
software solutions. These are
analyzed to determine whether existing code, preferably in package form, 
can be used to solve them. New code, when needed, is always a prototype.

Lazy refactoring has led to clear interfaces between well-de�ned groups of 
software tools that we developed in-house (navy blue):
      • Molecular simulation: HOOMD-blue
      • Simulation analysis: freud, pythia
      • Simulation visualization: plato, injavis, fresnel
      • Data and work�ow management: signac, signac-�ow, signac-dashboard
      • Utilities: GSD, GTAR
These tools also interoperate with well-known components of the broader 
scienti�c Python ecosystem (light blue).

In addition to creating and maintaining these code bases, we also provide 
various other services to facilitate the broader usage of our code, such as:
      • project websites including information on how to cite our code
      • online documentation hosted through services like Read The Docs
      • distribution through package managers like pip and conda
      • support chat rooms (like Gitter) and mailing lists (like Google Groups)
Providing such services increases our visibility, and consequently the 
likelihood that others can reuse our work to accelerate scienti�c progress.


