# Palladium-Catalyzed Multicomponent Reaction of Alkynes, Carboxylic Acids, and Isocyanides: A Direct Approach to Captodative Olefins 

Mingchun Gao, ${ }^{\dagger}$ Minfen Zou, ${ }^{\dagger}$ Jue Wang, ${ }^{\dagger}$ Qitao Tan, ${ }^{\dagger}$ Bingxin Liu, ${ }^{\dagger}$ and $\operatorname{Bin} \mathrm{Xu}{ }^{*}, \overrightarrow{,}$,<br>$\dagger$ Department of Chemistry, Innovative Drug Research Center, School of Materials<br>Science and Engineering, Shanghai University, Shanghai 200444, China<br>$\ddagger$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Tel: (+86) 21-66132830; Fax: (+86) 21-66132830; E-mail: xubin@shu.edu.cn

## Supporting Information

## CONTENTS:

1. General Information ..... S2
2. Synthesis and Characterization of Compounds 4 and 5 ..... S3
3. Further Transformation of Compounds $\mathbf{4 a}$ and $\mathbf{4 n}$ ..... S23
4. X-Ray Crystallographic Analysis for Compound 4a ..... S25
5. Mechanistic Studies ..... S25
6. Reference ..... S26
7. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All Compounds ..... S27

## 1. General Information

All reagents and metal catalysts were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AV-500 spectrometer operating at $500 \mathrm{MHz}, 125$ MHz and 470 MHz , respectively, with chemical shift values being reported in ppm relative to chloroform ( $\delta=7.26 \mathrm{ppm}$ ), acetone ( $\delta=2.05 \mathrm{ppm}$ ) or TMS ( $\delta=0.00 \mathrm{ppm}$ ) for ${ }^{1} \mathrm{H}$ NMR; chloroform ( $\delta=77.16 \mathrm{ppm}$ ) or acetone ( $\delta=29.84,206.26 \mathrm{ppm}$ ) for ${ }^{13} \mathrm{C}$ NMR; and $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta=-164.9 \mathrm{ppm})$ for ${ }^{19} \mathrm{~F}$ NMR. Mass spectra and high resolution mass spectra were recorded with an Agilent 5975N using an Electron impact (EI) or Electrospray ionization (ESI) techniques. Silica gel plate GF254 was used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh was used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated. Isocyanides are purchased commercially or prepared according to the literature reported procedures, for example, 1-isocyanoadamantane. ${ }^{1}$

## 2. Synthesis and Characterization of Compounds 4 and 5



General Method A: To a test tube were added $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), isocyanide ( 0.6 mmol ), $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$. The mixture was stirred at $30{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere. Alkyne ( 0.3 mmol ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was then added via syringe pump for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h . Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was then extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the pure product.

General Method B: To a test tube were added $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), carboxylic acid ( 0.9 mmol ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then isocyanide ( 0.6 mmol ) was added in one portion and alkyne ( 0.3 mmol ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h . Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was then extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the pure product.

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl acetate (4a): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 1 \mathrm{a}(33 \mu \mathrm{~L}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 a}$ was afforded as a white solid ( $65.4 \mathrm{mg}, 83 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $130-131{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3351,3060,2970,2927,1766,1636,1546,1449,1363,1294,1200,1113,1041$, $1008,935,876,766,687,614 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.48$ (d, $J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,161.9,140.7,132.6,129.4,129.0,128.7,122.4$, 51.6, 28.7, 20.9; LC-MS (ESI) m/z: 262 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 262.1438$, found 262.1432.
$\mathbf{1 . 0} \mathbf{~ m m o l}$ scale reaction for preparation of 4a: To a test tube were added $\operatorname{Pd}(\mathrm{OAc})_{2}(11.2$ $\mathrm{mg}, 0.05 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine ( $30.4 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(347.6 \mathrm{mg}$, $1.5 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(227 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$, $\mathrm{AcOH}(172 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$ and $\mathrm{PhCl}(3.0 \mathrm{~mL})$. The mixture was stirred at $30^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere. Phenylacetylene ( $110 \mu \mathrm{~L}, 1.0$ $\mathrm{mmol})$ in $\mathrm{PhCl}(2.0 \mathrm{~mL})$ was then added via syringe pump for 12 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2.5 h . Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with saturated $\mathrm{NaHCO}_{3}$ aqueous and brine. The aqueous phase was then extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5: 1$ ) to give the pure product $\mathbf{4 a}(180.4 \mathrm{mg}, 69 \%)$.

(Z)-3-(tert-Butylamino)-3-oxo-1-(p-tolyl)prop-1-en-2-yl acetate (4b): Following the General Method $A$, to the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l)$ phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 b}(38 \mu \mathrm{~L}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 b}$ was afforded as a white solid ( $63.6 \mathrm{mg}, 77 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $153-154{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3324,2966,2924,1769,1633,1540,1447,1366,1310,1193,1009,937,812$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.09$ $(\mathrm{s}, 1 \mathrm{H}), 5.82(\mathrm{br}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 168.0,162.1,140.1,139.4,129.8,129.6,129.5,122.6,51.7,28.8,21.5,21.0$; LC-MS (ESI) m/z: $276\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART Positive) $\mathrm{m} / \mathrm{z}$ : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}$ $\left[\mathrm{M}^{+} \mathrm{H}\right] 276.1594$, found 276.1588 .

(Z)-3-(tert-Butylamino)-1-(4-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (4c): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l) p h o s p h i n e ~(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 1 \mathrm{c}(39 \mu \mathrm{~L}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product 4 c was afforded as a white solid ( $64.6 \mathrm{mg}, 74 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. 99-100 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3397,2972,2931,1752,1675,1643,1603,1518,1453,1367,1296,1252,1183$,
$1105,1024,831,537 ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): $\delta 7.43$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.07 (s, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.1,162.2,160.3,139.2,131.1,125.3,122.3,114.3$, 55.4, 51.6, 28.8, 21.0; LC-MS (ESI) m/z: 292 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 292.1543, found 292.1537.

(Z)-3-(tert-Butylamino)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl acetate (4d): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l) p h o s p h i n e ~(~ 9.1 ~ m g, ~ 0.03 ~ m m o l), ~ \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 d}(42 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 d}$ was afforded as a white solid ( $58.3 \mathrm{mg}, 74 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $155-156{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3352, 3060, 2981, 1767, 1629, 1538, 1456, 1364, 1360, 1196, 1105, 1010, 939, 830, 753, 668, 584, 491; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): $\delta 7.41$ (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.06(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{br}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.8,161.7,141.2,135.0,131.2,130.7,129.1,121.3$, 51.8, 28.8, 21.0; LC-MS (ESI) m/z: 318 [ ${ }^{+} \mathrm{Na}$ ]; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Cl}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 296.1048, found 296.1046.

(Z)-1-(4-Bromophenyl)-3-(tert-butylamino)-3-oxoprop-1-en-2-yl acetate (4e): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}\left(2-\mathrm{methyl}\right.$ phenyl)phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$,
${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 e}(56 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 e}$ was afforded as a white solid ( $60.2 \mathrm{mg}, 59 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $166-168{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): $3361,2969,1764,1632,1534,1455,1364,1305,1198,1110,1008,939,827$, 580,$492 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 167.6,161.6,141.2,132.0,131.5,130.8,123.2,121.3,51.7,28.6,20.9 ;$ LC-MS (ESI) m/z: $340\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Br}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 340.0543 , found 340.0542 .

(Z)-1-(4-Acetylphenyl)-3-(tert-butylamino)-3-oxoprop-1-en-2-yl acetate (4f): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 1 \mathrm{f}(43 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 f}$ was afforded as a yellow solid ( $44.7 \mathrm{mg}, 50 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $130-131{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3394, 2974, 2931, 1769, 1677, 1637, 1514, 1459, 1408, 1365, 1269, 1177, 1106, 1010,913, 829, 579; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.94$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.56 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{br}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 197.5,167.6,161.4,142.2,137.3,136.9,129.4,128.6$, 121.2, 51.8, 28.6, 26.6 20.9; LC-MS (ESI) m/z: 304 [ $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 304.1543, found 304.1542.

(Z)-3-(tert-Butylamino)-1-(3-fluorophenyl)-3-oxoprop-1-en-2-yl acetate (4g):

Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}\left(2\right.$-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), ${ }^{t}$ BuNC ( $68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$ ), AcOH ( $54.0 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 g}(38 \mu \mathrm{~L}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 g}$ was afforded as a white solid ( $50.3 \mathrm{mg}, 60 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $123-125^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3329,3073,2988,1772,1630,1544,1456,1420,1365,1314,1228,1194,1109$, 938, 839; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.06$ (s, 1H), 7.04-6.99 (m, 1H), $5.82(\mathrm{br}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{19} \mathrm{~F}\left(\mathrm{CDCl}_{3}, 470\right.$ $\mathrm{MHz}): \delta-112.5(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.8,162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $244.5 \mathrm{~Hz}), 161.7,141.7,134.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 125.5(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 121.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 116.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.1 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ 22.2 Hz ), 51.9, 28.8, 21.0; LC-MS (ESI) m/z: $280\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~F}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 280.1343, found 280.1346.


## (Z)-3-(tert-Butylamino)-1-(3-nitrophenyl)-3-oxoprop-1-en-2-yl

acetate
(4h):
Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-\mathrm{methylphenyl}) \mathrm{phosphine}(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 h}(44 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 h}$ was afforded as a white solid ( $55.2 \mathrm{mg}, 60 \%$ ) after flash column chromatography
purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $84-85^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3739, 3412, 3281, 3064, 2972, 2928, 1768, 1632, 1533, 1447, 1355, 1206, 1118, $1007,911,675 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.5,161.1,148.4,142.7,135.5$, 134.3, 129.8, 123.5, 123.3, 119.8, 51.9, 28.6, 20.9; LC-MS (ESI) m/z: $307\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 307.1288, found 307.1290.

(Z)-1-(3-Acetamidophenyl)-3-(tert-butylamino)-3-oxoprop-1-en-2-yl acetate (4i): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 1 \mathbf{1 i}(48 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product $4 \mathbf{i}$ was afforded as a white solid ( $45.7 \mathrm{mg}, 48 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. 103-104 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3306,2973,1768,1678,1533,1439,1368,1309,1194,1109,1011,904,789$, 689,$533 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.20$ (m, 2H), 7.18-7.11 (d, J=7.0 Hz, 1H), 7.07 (s, 1H), 5.91 (br, 1H), 2.35 ( $\mathrm{s}, 3 \mathrm{H}), 2.16$ (s, 3H), $1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.7,168.3,162.0,140.7$, 138.6, 133.2, 129.2, 125.5, 122.4, 120.2, 120.1 51.7, 28.7, 24.6, 20.9; LC-MS (ESI) $\mathrm{m} / \mathrm{z}: 319\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 319.1652$, found 319.1651 .

(Z)-3-(tert-Butylamino)-3-oxo-1-(m-tolyl)prop-1-en-2-yl acetate (4j): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$, $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 j}(36 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 j}$ was afforded as a white solid ( $69.1 \mathrm{mg}, 84 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $116-117^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3316,3059,2967,2920,1766,1634,1541,1479,1442,1364,1312,1193,1113$, $1008,907,784,689 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (s, $1 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{br}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,161.9$, 140.5, 138.3, 132.5, 130.2, 129.9, 128.6, 126.3, 122.6, 51.6, 28.7, 21.4, 20.9; LC-MS (ESI) m/z: $276\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 276.1594, found 276.1589 .

(Z)-3-(tert-Butylamino)-1-(2-chlorophenyl)-3-oxoprop-1-en-2-yl acetate (4k): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l) p h o s p h i n e ~(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 k}(43 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 k}$ was afforded as a white solid ( $49.8 \mathrm{mg}, 56 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $123-124{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3851,3740,3352,3061,2982,1767,1630,1538,1456,1364,1307,1197,1105$, 939, 830, $585 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{br}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.8,161.6,142.2,134.3,131.1,129.9,129.8,129.7,126.7$, 118.7, 51.8, 28.6, 20.8; LC-MS (ESI) m/z: 296 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Cl}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 296.1048, found 296.1048.

(Z)-3-(tert-Butylamino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (4l): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}\left(2\right.$-methylphenyl)phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$, $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 11(41 \mathrm{mg}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 l}$ was afforded as a white solid ( $79.0 \mathrm{mg}, 90 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $109-111{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3326,2967,2929,1774,1664,1631,1524,1491,1452,1399,1365,1295$, 1254, 1180, 1106, 1018, 926, 751, 668; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): $\delta 7.52$ (dd, $J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{br}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 168.1,162.1,157.5,140.8,130.4,129.2,121.5,120.4,117.0,110.8,55.5$, 51.6, 28.7, 20.9; LC-MS (ESI) m/z: 314 [ $\left.{ }^{+}{ }^{+} \mathrm{Na}\right]$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 292.1543, found 292.1537.

(Z)-3-(tert-Butylamino)-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl acetate (4m): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l) p h o s p h i n e ~(9.1 ~ m g, ~ 0.03 ~ m m o l), ~ \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 m}(34$
$\mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 m}$ was afforded as a yellow solid ( $35.3 \mathrm{mg}, 44 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $156-157{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3320,2972,2925,1769,1624,1533,1446,1365,1301,1177,1099,1042,1007$, 934, 858, 703 ; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): $\delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{dd}, J=5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{br}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.1,161.4,138.4,134.8,131.5,129.2,127.2,117.0,51.7$, 28.7, 21.3; LC-MS (ESI) m/z: 268 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ $\left[\mathrm{M}^{+} \mathrm{H}\right]$ 268.1002, found 268.1002 .

(2Z,4E)-1-(tert-Butylamino)-1-oxo-5-phenylpenta-2,4-dien-2-yl acetate (4n): Following the General Method $A$, to the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}\left(2\right.$-methylphenyl)phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$, $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 1 \mathrm{n}(38.4$ $\mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $50^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $50{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product 4 n was afforded as a white solid ( $48.8 \mathrm{mg}, 57 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $114-115^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3276,3058,2968,2926,2766,1767,1645,1543,1454,1363,1327,1300$, $1201,1103,975,746,686 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37-7.31 (m, 2H), 7.31-7.27 (m, 1H), 6.96 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{dd}, J=16.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.2,161.4,140.2,138.9,136.3,128.9,128.7,127.1$, 123.5, 120.2, 51.6, 28.7, 20.6; LC-MS (ESI) m/z: 288 [M ${ }^{+}$H]; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 288.1594, found 288.1591.

(Z)-1-(tert-Butylamino)-1-oxohept-2-en-2-yl acetate (40): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol}),{ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6$ $\mathrm{mmol})$, $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), 10(35 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in PhCl $(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 0}$ was afforded as a white solid $(50.8 \mathrm{mg}, 70 \%)$ after flash column chromatography purification (eluent: petroleum ether/ether acetate $=10: 1)$. M.p. $78-80^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3063$, 2962, 2870, 1764, $1534,1540,1458,1368,1315,1211,1150,1089,942 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $6.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{br}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.43-1.30 (m, 13H), $0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.0$, 161.3, 141.1, 126.2, 51.4, 30.3, 28.7, 25.8, 22.3, 20.5, 13.8; LC-MS (ESI) m/z: 242 [ $\left.\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 242.1751, found 242.1750.

(Z)-3-(tert-Butylamino)-1-cyclopropyl-3-oxoprop-1-en-2-yl acetate
(4p): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}), \mathbf{1 p}(26 \mu \mathrm{~L}$, $0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{4 p}$ was afforded as a white solid ( $45.6 \mathrm{mg}, 67 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. 131-132 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3298, 3065, 2981, 1765, 1629, 1543, 1449, 1370, 1317, 1217, 1099, 967, 879; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{br}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$,
1.43-1.30(m, 10H), 0.92-0.87 (m, 2H), 0.63-0.57 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 168.1,161.3,140.5,131.5,51.4,28.8,20.7,9.5,8.0 ;$ LC-MS (ESI) m/z: 226 $\left[M^{+} H\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 226.1438, found 226.1436.

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (5a): Following the General Method B, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3$ $\mathrm{mg}, 0.45 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine $(9.1 \mathrm{mg}, 0.03 \mathrm{mmol})$, benzoic acid $(110 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product 5 a as a white solid ( $80.0 \mathrm{mg}, 82 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $145-146{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3324, 3067, 2970, 1743, 1637, 1546, 1452, 1314, 1251, 1119, 1056, 1022, 910 , 756,$700 ;{ }^{1} \mathrm{H}$ NMR (Acetone, 500 MHz$): \delta 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{br}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, 9 H ); ${ }^{13} \mathrm{C}$ NMR (Acetone, 125 MHz ): $\delta 164.6,162.6,142.8,134.9,133.9,131.0,130.3$, 130.0, 129.8, 129.7, 129.6, 122.1, 52.1, 28.9; LC-MS (ESI) m/z: $324\left[\mathrm{M}^{+} \mathrm{H}\right] ;$ HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 324.1594, found 324.1587.

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 4-fluorobenzoate (5b): Following the General Method $B$, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$,
$\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), 4-fluorobenzoic acid ( $126 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product $\mathbf{5 b}$ as a white solid ( $87.9 \mathrm{mg}, 86 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $128-130{ }^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3326,3063,2971,1744,1633,1604,1537,1511,1453$, 1393, 1363, 1300, 1251, 1117, 1059, 761; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.24-8.19$ (m, 2H), 7.53-7.45 (m, 2H), 7.32-7.26 (m, 3H), 7.25-7.17 (m, 3H), 5.85 (br, 1H), 1.40 (s, 9H); ${ }^{19} \mathrm{~F}\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-103.0(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $167.5,165.5,162.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=119.0 \mathrm{~Hz}\right), 140.6,133.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 132.4$, $129.5,129.1,128.7,124.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 122.8,116.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 51.7$, 28.7; LC-MS (ESI) m/z: $342\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~F}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 342.1500 , found 342.1500 .

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 4-methoxybenzoate (5c): Following the General Method B, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{O}$ ( $\left.104.3 \mathrm{mg}, 0.45 \mathrm{mmol}\right)$, tri( 2 -methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), 4-methoxybenzoic acid ( $137 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product $5 \mathbf{c}$ as a white solid ( $72.8 \mathrm{mg}, 68 \%$ ) after flash column
chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $145-146{ }^{\circ} \mathrm{C}$. IR (KBr, $\mathrm{cm}^{-1}$ ): 3740, 3422, 3059, 2972, 2923, 2835, 1740, 1673, 1637, $1602,1510,1452,1363,1249,1169,1104,1042,1006,844,760,688,558,452 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{br}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 164.4,163.3,162.0,140.5,132.6,132.5,129.5,129.0,128.7$, 122.9, 120.6, 114.3, 55.6, 51.6, 28.7; LC-MS (ESI) m/z: 354 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ : calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 354.1700$, found 354.1700.

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl (E)-but-2-enoate (5d): Following the General Method $B$, the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{O}$ ( $\left.104.3 \mathrm{mg}, 0.45 \mathrm{mmol}\right)$, tri( 2 -methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), (E)-but-2-enoic acid ( $77.5 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL}$ ) was added via syringe pump for 3 h . The mixture was kept stirring at $70{ }^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product $5 \mathbf{d}$ as a white solid ( $62.6 \mathrm{mg}, 73 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $120-121^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3472, 3314, 3065, 2966, 2872, 2771, 1747, 1640, 1546, $1448,1389,1365,1316,1225,1151,980,930,755,685 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $\delta 7.47$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17$ (m, 2H), $6.07(\mathrm{dd}, J=15.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{br}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 163.1,161.9,149.0,140.3,132.6,129.5,129.0,128.6,122.7$, 120.9, 51.5, 28.7, 18.5; LC-MS (ESI) m/z: 288 [ $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 288.1594$, found 288.1593.

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 2-phenylacetate (5e): Following the General Method B, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, tri( 2 -methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), 2-phenylacetic acid ( $122 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{t} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70{ }^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product $5 \mathbf{e}$ as a white solid ( $48.1 \mathrm{mg}, 47 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $132-134{ }^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3853, 3742, 3412, 3298, 3064, 2972, 1762, 1700, 1624, $1535,1448,1358,1307,1216,1104,933,763,690,517 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ : $\delta 7.43-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.21$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,161.4,140.1,132.7,132.5,129.4$, 129.3, 129.2, 129.0, 128.7, 127.9, 123.1, 51.4, 41.7, 28.4; LC-MS (ESI) m/z: 338 $\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 338.1751$, found 338.1738 .

(Z)-3-(tert-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl
(5f): Following the General Method $B$, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015$ $\mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, tri(2-methylphenyl)phosphine $(9.1 \mathrm{mg}, 0.03$ mmol ), cyclohexanecarboxylic acid ( $115 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was
stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then ${ }^{l} \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product 5 f as a white solid ( $64.7 \mathrm{mg}, 65 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $79-80^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3317, 3063, 2935, 2859, 1751, 1631, 1541, 1450, 1360, 1311, 1224, 1164, 1116, 1018, 929, 754, 692; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.46$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.80$ (br, 1H), 2.64-2.55 (m, 1H), 2.07-1.97 (m, 2H), 1.87-1.77 (m, 2H), 1.74-1.65 (m, 1H), 1.60-1.50 (m, 2H), 1.49-1.19 (m, 13H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 172.6,161.9$, 140.5, 132.7 129.4, 128.9, 128.6, 122.6, 51.5, 43.2, 28.9, 28.7, 25.6, 25.3; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 330\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 330.2064$, found 330.2065

(Z)-3-(((3r)-Adamantan-1-yl)amino)-3-oxo-1-phenylprop-1-en-2-ylmacetate (5g): Following the General Method $A$, to the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), AdNC ( $96.7 \mathrm{mg}, 0.6 \mathrm{mmol}$ ), AcOH ( $54.0 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$, phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product 5 g was afforded as a yellow solid ( $79.4 \mathrm{mg}, 79 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $169-171{ }^{\circ} \mathrm{C}$. IR (KBr, $\mathrm{cm}^{-1}$ ): 3333, 3064, 2907, 2850, 2658, 1773, 1627, 1535, 1447, $1364,1305,1250,1186,1130,1101,1003,918,768,691,596,475 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,161.5,140.8,132.6,129.4,129.0,128.7,122.3$, 52.3, 41.5, 36.3, 29.4, 20.9; LC-MS (ESI) m/z: 362 [M ${ }^{+}$Na]; HRMS (ESI) m/z: calcd
for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 340.1907, found 340.1909.

(Z)-3-(((3r)-Adamantan-1-yl)amino)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl acetate (5h): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}$, $0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( 104.3 mg , 0.45 mmol ), AdNC ( $96.7 \mathrm{mg}, 0.6 \mathrm{mmol}$ ), AcOH ( $54.0 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0$ mL ), 1-chloro-4-ethynylbenzene ( $42 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product $\mathbf{5 h}$ was afforded as a white solid ( $67.1 \mathrm{mg}, 60 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $159-160^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3395, 2910, 2854, 1764, 1640, 1448, 1363, 1302, 1246, 1196, 1134, 1091, 1008, 824, 620; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{br}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (s, $3 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.7,161.2,141.1$, 134.8, 131.1, 130.5, 129.0, 121.1, 52.4, 41.4, 36.3, 29.4, 20.9; LC-MS (ESI) m/z: 374 $\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Cl}\left[\mathrm{M}^{+} \mathrm{H}\right] 374.1517$, found 374.1507.

(Z)-3-(((3r)-Adamantan-1-yl)amino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (5i): Following the General Method $A$, to the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}$, $0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( 104.3 mg , 0.45 mmol ), $\mathrm{AdNC}(96.7 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0$ mL ), 1-ethynyl-2-methoxybenzene ( $41.0 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product $5 \mathbf{i}$ was afforded as a white solid ( $68.0 \mathrm{mg}, 61 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=$

5:1). M.p. $165-167^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3439,3327,3064,2909,2852,1774,1668$, 1634, 1531, 1485, 1443, 1368, 1300, 1249, 1167, 1085, 1016, 758; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{br}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.10$ $(\mathrm{s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 168.1,161.7,157.5$, $140.8,130.3,129.2,121.6,120.4,116.8,110.8,55.6,52.2,41.5,36.3,29.5,20.9$; LC-MS (ESI) m/z: $370\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 370.2013, found 370.1997 .

(Z)-3-(Cyclohexylamino)-3-oxo-1-phenylprop-1-en-2-yl acetate (5j): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{tri}(2-m e t h y l p h e n y l) p h o s p h i n e ~(~ 9.1 ~ m g, ~ 0.03 ~ m m o l), ~ \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45 \mathrm{mmol})$, isocyanocyclohexane ( $65 \mathrm{mg}, 0.6 \mathrm{mmol}$ ), $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0$ mL ), phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30^{\circ} \mathrm{C}$ for another 2 h , and the desired product $5 \mathbf{j}$ was afforded as a yellow solid ( $38.3 \mathrm{mg}, 44 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $146-147^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3908, 3328, 3092, 3032, 2935, 2854, 2665, 1765, 1667, 1633, 1530, 1445, 1371, 1325, 1289, 1255, 1190, 1121, 1076, 1011, 894, 759, 685; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}$, $3 H), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H})$, $1.25-1.14(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,161.7,140.2,132.5,129.4$, 129.1, 128.7, 123.1, 48.6, 33.0, 25.5, 24.8, 20.9; LC-MS (ESI) m/z: $288\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 288.1594, found 288.1595 .

(Z)-3-(Cyclohexylamino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (5k): Following the General Method $A$, to the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), isocyanocyclohexane ( $68.0 \mathrm{mg}, 0.6 \mathrm{mmol}$ ), $\mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0$ mL ), 1-ethynyl-4-methoxybenzene ( $40.0 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump at $30{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h , and the desired product $5 \mathbf{k}$ was afforded as a white solid ( $50.4 \mathrm{mg}, 53 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=$ 5:1). M.p. $185-186{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3305,3041,2931,2850,1754,1619,1524$, $1452,1377,1337,1252,1213,1175,1126,1082,1025,951,879,832,679,531 ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.90-3.83 (m, 1H), 3.81 (s, 3H), 2.30 (s, 3H), 1.97-1.94 $(\mathrm{m}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.17(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 168.1,162.0,160.3,138.7,131.2,125.2,123.0,114.3,55.4,48.6,33.2$, 25.6, 24.9, 21.0; LC-MS (ESI) m/z: 318 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 318.1700$, found 318.1689

(Z)-3-(((3r)-Adamantan-1-yl)amino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (51): Following the General Method $B$, the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{O}$ ( $104.3 \mathrm{mg}, 0.45 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), benzoic acid ( $110.0 \mathrm{mg}, 0.9 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then AdNC $(96.7 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added in one portion and phenylacetylene ( $33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$ ) in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70{ }^{\circ} \mathrm{C}$ for another 12 h and afforded the
desired product $5 \mathbf{I}$ as a white solid ( $88.1 \mathrm{mg}, 73 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $164-166^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}$, $\mathrm{cm}^{-1}$ ): 3268, 3057, 2907, 2852, 1732, 1630, 1538, 1448, 1354, 1308, 1248, 1099, 1055,$700 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.75(\mathrm{br}, 1 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 163.6,161.4$, $140.5,134.2,132.5,130.3,129.5,129.0,128.9,128.7,128.4,122.9,52.3,41.4,36.3$, 29.4; LC-MS (ESI) m/z: $402\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 402.2064, found 402.2046.

(Z)-3-(Cyclohexylamino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (5m): Following the General Method B, the mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3$ $\mathrm{mg}, 0.45 \mathrm{mmol}$ ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), benzoic acid $(110.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ was stirred at $70{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere for 30 min . Then isocyanocyclohexane ( $65.0 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) was added in one portion and phenylacetylene $(33.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was added via syringe pump for 3 h . The mixture was kept stirring at $70^{\circ} \mathrm{C}$ for another 12 h and afforded the desired product 5 m as a white solid ( $77.0 \mathrm{mg}, 74 \%$ ) after flash column chromatography purification (eluent: petroleum ether/ether acetate $=5: 1$ ). M.p. $158-159{ }^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3739, 3306, 3062, 2927, 2853, 1743, 1631, 1533, 1449, $1329,1248,1133,1084,1050,923,754,695 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.20(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 5.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}$, $2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 163.6,161.7,140.0,134.3,132.4,130.3,129.6,129.1,129.0,128.7,128.4$, 123.7, 48.6, 32.9, 25.5, 24.7; LC-MS (ESI) m/z: $350\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 350.1751$, found 350.1742 .

## 3. Further Transformation of Compounds 4 a and 4 n


$N$-(tert-Butyl)-2-oxo-3-phenylpropanamide (6): ${ }^{2}$ To a test tube were added 4a (26.1 $\mathrm{mg}, 0.1 \mathrm{mmol}$ ), $\mathrm{NaOH}(6.0 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(10: 1,1.10 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 h . Upon the completion of the reaction, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed with brine. The organic phase was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5: 1$ ) to give the pure compound 6 as a white solid ( $21.7 \mathrm{mg}, 90 \%$ ). M.p. $47-48{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ : 3387, 2925, 2859, 1685, 1604, 1520, 1459, 1402, 1364, 1224, 1084, 825, 705, 603. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{br}, 1 \mathrm{H})$, $4.20(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 197.1,159.2,133.0,129.8$, 128.6, 127.1, 51.4, 42.5, 28.3; LC-MS (ESI) m/z: $220\left[\mathrm{M}^{+} \mathrm{H}\right]$.

(E)-1-(tert-Butyl)-3,5-dihydroxy-5-methyl-4-styryl-1,5-dihydro-2H-pyrrol-2-one (7): To a test tube were added $4 \mathbf{n}(86.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, NaH ( $60 \%$ dispersion in mineral oil, $18 \mathrm{mg}, 0.45 \mathrm{mmol})$ and THF ( 3.0 mL ). The mixture was stirred at room temperature for 1 h under $\mathrm{N}_{2}$ atmosphere. Upon the completion of the reaction, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed with $5 \% \mathrm{NH}_{4} \mathrm{Cl}$ aqueous and brine. The organic phase was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the crude product was
purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=2: 1$ ) to give the pure compound 7 as a white solid ( $49.0 \mathrm{mg}, 57 \%$ ). M.p. $69-70{ }^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3661, 3620, 3172, 2923, 2858, 1665, 1525, 1365, 1079, 976, 926, 784, 688; ${ }^{1} \mathrm{H}$ NMR (Acetone-d ${ }_{6}, 500 \mathrm{MHz}$ ): $\delta 8.68$ (br, 1 H ), 7.54 (d, $J=7.5 \mathrm{~Hz}$, 2H), 7.35 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{br}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (Acetone- $\mathrm{d}_{6}$, $125 \mathrm{MHz}): \delta 166.2,143.3,138.8,133.0,129.6,128.4,127.0,123.7,117.7,91.0,56.6$, 29.3, 27.3; LC-MS (ESI) $m / z: 288\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}$ [ $\left.\mathrm{M}^{+} \mathrm{H}\right]$ 288.1594, found 288.1593.

(Z)-3-(tert-Butylamino)-3-oxo-1-(3-phenyloxiran-2-yl)prop-1-en-2-yl acetate (8):

To a test tube were added 4 n ( $57.4 \mathrm{mg}, 0.2 \mathrm{mmol}$ ), $m$-CPBA ( $70 \%$ purity, 98.6 mg , $0.4 \mathrm{mmol})$ and $\mathrm{DCM}(2.0 \mathrm{ml})$. The mixture was stirred at room temperature for 16 h . Upon the completion of the reaction, the mixture was filtered. The filtrate was concentrated and purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5: 1$ ) to give the pure compound $\mathbf{8}$ as a white solid ( $38.9 \mathrm{mg}, 64 \%$ ). M.p. $149-151^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3291,3068,2970,2924,2859$, 1766, 1637, 1547, 1458, 1366, 1320, 1213, 1165, 1088, 1012, 947, 895, 853, 756, 696; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{br}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,160.4,145.2,136.1$, 128.6, 128.5, 125.5, 121.1, 59.6, 57.2, 51.7, 28.6, 20.5; LC-MS (ESI) $m / z: 304\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 304.1543$, found 304.1539.

## 4. X-Ray Crystallographic Analysis for Compound 4a



Crystallographic data for compound 4a: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}, \mathrm{M}=261.31$, Orthorhombic F $2 \mathrm{dd}(\mathrm{No.43}), \mathrm{a}=32.25$ (3) $\AA, \mathrm{b}=17.433$ (18) $\AA, \mathrm{c}=10.608(11) \AA, \mathrm{V}=5963(11) \AA^{3}$, $Z=16$, Crystal size: $0.29 \times 0.21 \times 0.14 \mathrm{~mm}, \mathrm{~T}=295 \mathrm{~K}, \rho_{\text {calcd }}=1.164 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mathrm{R}_{1}=$ $0.0374\left(\mathrm{I}>4 \sigma(\mathrm{I})\right.$ ), $\mathrm{wR}_{2}=0.1118$ (all data), $\mathrm{GOF}=1.044$, reflections collected/unique: $9066 / 3273$ (Rint $=0.0175$ ), Data: 2623, restraints: 0, parameters: 177. CCDC 1836502 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

## 5. Mechanistic Studies



To a test tube were added $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45$ mmol ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $t$ BuNC ( $68 \mu \mathrm{~L}, 0.6$ mmol ), AcOH ( $54.0 \mathrm{mg}, 0.9 \mathrm{mmol}$ ), $N$-(tert-butyl)-3-phenylpropiolamide 9 ( 38.7 mg , $0.3 \mathrm{mmol})$ and $\mathrm{PhCl}(1.5 \mathrm{~mL})$. The reaction was degassed and refilled with $\mathrm{N}_{2}$ atmosphere for three times. After the mixture was stirred at $30{ }^{\circ} \mathrm{C}$ overnight, no desired product could be observed from the reaction.


To a test tube were added $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(104.3 \mathrm{mg}, 0.45$ mmol ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $t \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6$ $\mathrm{mmol}), \mathrm{AcOH}(54.0 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{N}$-(tert-butyl)cinnamamide 10 ( $61 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) and $\mathrm{PhCl}(1.5 \mathrm{~mL})$. The reaction was degassed and refilled with $\mathrm{N}_{2}$ atmosphere for three times. After the mixture was stirred at $30^{\circ} \mathrm{C}$ overnight, no desired product could be observed from the reaction.


To a test tube were added $\operatorname{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{AgOAc}(150.2 \mathrm{mg}, 0.9$ mmol ), tri(2-methylphenyl)phosphine ( $9.1 \mathrm{mg}, 0.03 \mathrm{mmol}$ ), $t \mathrm{BuNC}(68 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$. The mixture was stirred at $30{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ atmosphere. Phenylacetylene 1a $(33 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in $\mathrm{PhCl}(0.5 \mathrm{~mL})$ was then added via syringe pump for 3 h . The reaction was kept stirring at $30{ }^{\circ} \mathrm{C}$ for another 2 h . Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was then extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ) and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel to give the pure product $\mathbf{4 a}$ ( $52.4 \mathrm{mg}, 68 \%$ ).

## 6. Reference

1. Peng, J.; Zhao, J.; Hu, Z.; Liang, D.; Huang, J.; Zhu, Q. Org. Lett. 2012, 14, 4966.
2. Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K. H.; Bartenschlager, R.; Klein, C. D. Bioorg. Med. Chem. 2011, 19, 4067.

## 7. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All Compounds




4b

WJ-3-77-1
PROTON CDC1

$\begin{array}{lllllllllllllllll}8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & & \mathrm{ppm}\end{array}$ 웅웅

$—^{51.57}$
$\chi^{28.69}$
$<_{20.92}^{21.39}$



$\bullet$
$\circ$
$\dot{\infty}$
$\dot{10}$
$\mid$



$$
\begin{aligned}
& \begin{array}{l}
\text { WJ-3-102-1 } \\
\text { PROTON CDC13 }
\end{array}
\end{aligned}
$$



[^0]


PROTON CDCl3

(
(







$\begin{array}{lccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 10 & 10 & 10 \\ 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \mathrm{ppm}\end{array}$








$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$




$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

「ウ「ら゙
$\stackrel{5}{0}$
$\dot{0}$
1
1


5n




WJ－4－95
PROTON CDC13 D：$\backslash \backslash$ deng 59


$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$








7
ZMF-7
PROTON Acetone


[^1]

8
PROTON CDC13





[^0]:    WJ-3-102-1
    C13CPD CDC1
    

[^1]:    ZMF-2-61
    C13CPD Acetone
    

