Palladium-Catalyzed Multicomponent Reaction of Alkynes, Carboxylic Acids, and Isocyanides: A Direct Approach to Captodative Olefins

Mingchun Gao,[†] Minfen Zou,[†] Jue Wang,[†] Qitao Tan,[†] Bingxin Liu,[†] and Bin Xu^{*,†,‡}

[†]Department of Chemistry, Innovative Drug Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Tel: (+86) 21-66132830; Fax: (+86) 21-66132830; E-mail: xubin@shu.edu.cn

Supporting Information

CONTENTS:

1. General Information	S2
2. Synthesis and Characterization of Compounds 4 and 5	S3
3. Further Transformation of Compounds 4a and 4n -	S23
4. X-Ray Crystallographic Analysis for Compound 4a	S25
5. Mechanistic Studies	S25
6. Reference	S26
7. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for All Compou	ındsS27

1. General Information

All reagents and metal catalysts were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded with a Bruker AV-500 spectrometer operating at 500 MHz, 125 MHz and 470 MHz, respectively, with chemical shift values being reported in ppm relative to chloroform (δ = 7.26 ppm), acetone (δ = 2.05 ppm) or TMS (δ = 0.00 ppm) for ¹H NMR; chloroform (δ = 77.16 ppm) or acetone (δ = 29.84, 206.26 ppm) for ¹³C NMR; and C₆F₆ (δ = -164.9 ppm) for ¹⁹F NMR. Mass spectra and high resolution mass spectra were recorded with an Agilent 5975N using an Electron impact (EI) or Electrospray ionization (ESI) techniques. Silica gel plate GF254 was used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh was used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated. Isocyanides are purchased commercially or prepared according to the literature reported procedures, for example, 1-isocyanoadamantane.¹

2. Synthesis and Characterization of Compounds 4 and 5

$$R^{1} = + R^{2}COOH + R^{3}-NC \xrightarrow{Pd(OAc)_{2} (5 \text{ mol}\%)}{Ag_{2}O (1.5 \text{ equiv})} \xrightarrow{R^{1}}{V} \xrightarrow{O} R^{2}$$

General Method A: To a test tube were added $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), isocyanide (0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL). The mixture was stirred at 30 °C under N₂ atmosphere. Alkyne (0.3 mmol) in PhCl (0.5 mL) was then added *via* syringe pump for 3 h. The reaction was kept stirring at 30 °C for another 2 h. Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with H₂O and brine. The aqueous phase was then extracted with ethyl acetate (3 × 10 mL) and the combined organic phase was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the pure product.

General Method B: To a test tube were added $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), carboxylic acid (0.9 mmol) and PhCl (1.0 mL). The mixture was stirred at 70 °C under N₂ atmosphere for 30 min. Then isocyanide (0.6 mmol) was added in one portion and alkyne (0.3mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h. Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with H₂O and brine. The aqueous phase was then extracted with ethyl acetate (3 × 10 mL) and the combined organic phase was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the pure product.

(*Z*)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl acetate (4a): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ¹BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1a** (33 µL, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **4a** was afforded as a white solid (65.4 mg, 83%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 130-131 °C. IR (KBr, cm⁻¹): 3351, 3060, 2970, 2927, 1766, 1636, 1546, 1449, 1363, 1294, 1200, 1113, 1041, 1008, 935, 876, 766, 687, 614; ¹H NMR (CDCl₃, 500 MHz): δ 7.48 (d, *J* = 7.0 Hz, 2H), 7.39-7.28 (m, 3H), 7.11 (s, 1H), 5.83 (br, 1H), 2.29 (s, 3H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 161.9, 140.7, 132.6, 129.4, 129.0, 128.7, 122.4, 51.6, 28.7, 20.9; LC-MS (ESI) m/z: 262 [M⁺H]; HRMS (DART Positive) m/z: calcd for C₁₅H₂₀NO₃ [M⁺H] 262.1438, found 262.1432.

1.0 mmol scale reaction for preparation of 4a: To a test tube were added Pd(OAc)₂ (11.2 mg, 0.05 mmol), tri(2-methylphenyl)phosphine (30.4 mg, 0.1 mmol), Ag₂O (347.6 mg, 1.5 mmol), ^{*i*}BuNC (227 μ L, 2.0 mmol), AcOH (172 μ L, 3.0 mmol) and PhCl (3.0 mL). The mixture was stirred at 30 °C under N₂ atmosphere. Phenylacetylene (110 μ L, 1.0 mmol) in PhCl (2.0 mL) was then added *via* syringe pump for 12 h. The reaction was kept stirring at 30 °C for another 2.5 h. Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with saturated NaHCO₃ aqueous and brine. The aqueous phase was then extracted with ethyl acetate (3 × 20 mL) and the combined organic phase was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give the pure product **4a** (180.4 mg, 69%).

(*Z*)-3-(*tert*-Butylamino)-3-oxo-1-(*p*-tolyl)prop-1-en-2-yl acetate (4b): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ⁷BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1b** (38 µL, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **4b** was afforded as a white solid (63.6 mg, 77%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 153-154 °C. IR (KBr, cm⁻¹): 3324, 2966, 2924, 1769, 1633, 1540, 1447, 1366, 1310, 1193, 1009, 937, 812; ¹H NMR (CDCl₃, 500 MHz): δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 3H), 7.09 (s, 1H), 5.82 (br, 1H), 2.34 (s, 3H), 2.29 (s, 3H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0, 162.1, 140.1, 139.4, 129.8, 129.6, 129.5, 122.6, 51.7, 28.8, 21.5, 21.0; LC-MS (ESI) m/z: 276 [M⁺H]; HRMS (DART Positive) m/z: calcd for C₁₆H₂₂NO₃

(*Z*)-3-(*tert*-Butylamino)-1-(4-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (4c): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^{*t*}BuNC (68 μ L, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), 1c (39 μ L, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product 4c was afforded as a white solid (64.6 mg, 74%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 99-100 °C. IR (KBr, cm⁻¹): 3397, 2972, 2931, 1752, 1675, 1643, 1603, 1518, 1453, 1367, 1296, 1252, 1183, 1105, 1024, 831, 537; ¹H NMR (CDCl₃, 500 MHz): δ 7.43 (d, *J* = 9.0 Hz, 2H), 7.07 (s, 1H), 6.87 (d, *J* = 9.0 Hz, 2H), 5.80 (br, 1H), 3.81 (s, 3H), 2.29 (s, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 162.2, 160.3, 139.2, 131.1, 125.3, 122.3, 114.3, 55.4, 51.6, 28.8, 21.0; LC-MS (ESI) m/z: 292 [M⁺H]; HRMS (DART Positive) m/z: calcd for C₁₆H₂₂NO₄ [M⁺H] 292.1543, found 292.1537.

(Z)-3-(*tert*-Butylamino)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl acetate (4d): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), 1d (42 mg, 0.3 mmol) in PhCl (0.5 mL) was added via syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product 4d was afforded as a white solid (58.3 mg, 74%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 155-156 °C. IR (KBr, cm⁻¹): 3352, 3060, 2981, 1767, 1629, 1538, 1456, 1364, 1360, 1196, 1105, 1010, 939, 830, 753, 668, 584, 491; ¹H NMR (CDCl₃, 500 MHz): δ 7.41 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.06 (s, 1H), 5.81 (br, 1H), 2.34 (s, 3H), 2.29 (s, 3H), 1.41 (s, 9H);¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 161.7, 141.2, 135.0, 131.2, 130.7, 129.1, 121.3, 51.8, 28.8, 21.0; LC-MS (ESI) m/z: 318 [M⁺Na]; HRMS (DART Positive) m/z: calcd for C₁₅H₁₉NO₃Cl [M⁺H] 296.1048, found 296.1046.

(Z)-1-(4-Bromophenyl)-3-(*tert*-butylamino)-3-oxoprop-1-en-2-yl acetate (4e): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol),

¹BuNC (68 μL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1e** (56 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product **4e** was afforded as a white solid (60.2 mg, 59%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 166-168 °C. IR (KBr, cm⁻¹): 3361, 2969, 1764, 1632, 1534, 1455, 1364, 1305, 1198, 1110, 1008, 939, 827, 580, 492; ¹H NMR (CDCl₃, 500 MHz): δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.04 (s, 1H), 5.80 (br, 1H), 2.29 (s, 3H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.6, 161.6, 141.2, 132.0, 131.5, 130.8, 123.2, 121.3, 51.7, 28.6, 20.9; LC-MS (ESI) m/z: 340 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₅H₁₉NO₃Br [M⁺H] 340.0543, found 340.0542.

(Z)-1-(4-Acetylphenyl)-3-(*tert*-butylamino)-3-oxoprop-1-en-2-yl acetate (4f): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1f** (43 mg, 0.3 mmol) in PhCl (0.5 mL) was added via syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product 4f was afforded as a yellow solid (44.7 mg, 50%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 130-131 °C. IR (KBr, cm⁻¹): 3394, 2974, 2931, 1769, 1677, 1637, 1514, 1459, 1408, 1365, 1269, 1177, 1106, 1010,913, 829, 579; ¹H NMR (CDCl₃, 500 MHz): δ 7.94 (d, J = 8.5 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.14 (s, 1H), 5.85 (br, 1H), 2.60 (s, 3H), 2.30 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 197.5, 167.6, 161.4, 142.2, 137.3, 136.9, 129.4, 128.6, 121.2, 51.8, 28.6, 26.6 20.9; LC-MS (ESI) m/z: 304 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₂NO₄ [M⁺H] 304.1543, found 304.1542.

(Z)-3-(*tert*-Butylamino)-1-(3-fluorophenyl)-3-oxoprop-1-en-2-yl acetate (4g): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1g** (38 µL, 0.3 mmol) in PhCl (0.5 mL) was added via syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product 4g was afforded as a white solid (50.3 mg, 60%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 123-125 °C. IR (KBr, cm⁻¹): 3329, 3073, 2988, 1772, 1630, 1544, 1456, 1420, 1365, 1314, 1228, 1194, 1109, 938, 839; ¹H NMR (CDCl₃, 500 MHz): δ 7.37-7.29 (m, 1H), 7.25-7.17 (m, 2H), 7.06 (s, 1H), 7.04-6.99 (m, 1H), 5.82 (br, 1 H), 2.30 (s, 3H), 1.41 (s, 9H); ¹⁹F (CDCl₃, 470 MHz): δ -112.5 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 162.9 (d, ¹J_{C-F} = 244.5 Hz), 161.7, 141.7, 134.8 (d, ${}^{3}J_{C-F} = 8.1$ Hz), 130.3 (d, ${}^{3}J_{C-F} = 8.4$ Hz), 125.5 (d, ${}^{4}J_{\text{C-F}} = 2.7 \text{ Hz}$, 121.3 (d, ${}^{4}J_{\text{C-F}} = 2.5 \text{ Hz}$), 116.1 (d, ${}^{2}J_{\text{C-F}} = 21.1 \text{ Hz}$), 115.8 (d, {}^{2}J_{\text{C-F}} = 21.1 \text{ Hz}), 115.8 (d, {}^{2}J_{\text{C-F}} = 21.1 \text{ Hz}), 115.8 (d, {}^{2}J_{\text{C-F}} = 21.1 \text{ Hz}), 115.8 (d, {}^{2}J_{\text{C-F}} = 21.1 \text{ 22.2 Hz), 51.9, 28.8, 21.0; LC-MS (ESI) m/z: 280 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₅H₁₉NO₃F [M⁺H] 280.1343, found 280.1346.

(Z)-3-(*tert*-Butylamino)-1-(3-nitrophenyl)-3-oxoprop-1-en-2-yl acetate (4h): Following the *General Method A*, to the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1h** (44 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product **4h** was afforded as a white solid (55.2 mg, 60%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 84-85 °C. IR (KBr, cm⁻¹): 3739, 3412, 3281, 3064, 2972, 2928, 1768, 1632, 1533, 1447, 1355, 1206, 1118, 1007, 911, 675; ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.16 (s, 1H), 5.90 (br, 1H), 2.35 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.5, 161.1, 148.4, 142.7, 135.5, 134.3, 129.8, 123.5, 123.3, 119.8, 51.9, 28.6, 20.9; LC-MS (ESI) m/z: 307 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₅H₁₉N₂O₅ [M⁺H] 307.1288, found 307.1290.

(*Z*)-1-(3-Acetamidophenyl)-3-(*tert*-butylamino)-3-oxoprop-1-en-2-yl acetate (4i): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), 'BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1i** (48 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **4i** was afforded as a white solid (45.7 mg, 48%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 103-104 °C. IR (KBr, cm⁻¹): 3306, 2973, 1768, 1678, 1533, 1439, 1368, 1309, 1194, 1109, 1011, 904, 789, 689, 533; ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (s, 1H), 7.80-7.65 (m, 1H), 7.31-7.20 (m, 2H), 7.18-7.11 (d, *J* = 7.0 Hz, 1H), 7.07 (s, 1H), 5.91 (br, 1H), 2.35 (s, 3H), 2.16 (s, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.7, 168.3, 162.0, 140.7, 138.6, 133.2, 129.2, 125.5, 122.4, 120.2, 120.1 51.7, 28.7, 24.6, 20.9; LC-MS (ESI) m/z: 319 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₃N₂O₄ [M⁺H] 319.1652, found 319.1651.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-(m-tolyl)prop-1-en-2-yl acetate (4j): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ¹BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1j** (36 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **4j** was afforded as a white solid (69.1 mg, 84%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 116-117 °C. IR (KBr, cm⁻¹): 3316, 3059, 2967, 2920, 1766, 1634, 1541, 1479, 1442, 1364, 1312, 1193, 1113, 1008, 907, 784, 689; ¹H NMR (CDCl₃, 500 MHz): δ 7.29 (d, *J* = 7.5 Hz, 1H), 7.27 (s, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1 H), 7.09 (s, 1H), 5.82 (br, 1H), 2.34 (s, 3H), 2.28 (s, 3H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 161.9, 140.5, 138.3, 132.5, 130.2, 129.9, 128.6, 126.3, 122.6, 51.6, 28.7, 21.4, 20.9; LC-MS (ESI) m/z: 276 [M⁺H]; HRMS (DART Positive) m/z: calcd for C₁₆H₂₂NO₃ [M⁺H] 276.1594, found 276.1589.

(Z)-3-(*tert*-Butylamino)-1-(2-chlorophenyl)-3-oxoprop-1-en-2-yl acetate (4k): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^{*i*}BuNC (68 μ L, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1k** (43 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product **4k** was afforded as a white solid (49.8 mg, 56%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 123-124 °C. IR (KBr, cm⁻¹): 3851, 3740, 3352, 3061, 2982, 1767, 1630, 1538, 1456, 1364, 1307, 1197, 1105, 939, 830, 585; ¹H NMR (CDCl₃, 500 MHz): δ 7.56-7.50 (m, 1H), 7.43-7.38 (m, 1H), 7.32 (s, 1H), 7.26-7.21 (m, 2H), 5.86 (br, 1H), 2.21 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 161.6, 142.2, 134.3, 131.1, 129.9, 129.8, 129.7, 126.7, 118.7, 51.8, 28.6, 20.8; LC-MS (ESI) m/z: 296 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₅H₁₉NO₃Cl [M⁺H] 296.1048, found 296.1048.

(*Z*)-3-(*tert*-Butylamino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (41): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), 'BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **11** (41 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **41** was afforded as a white solid (79.0 mg, 90%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 109-111 °C. IR (KBr, cm⁻¹): 3326, 2967, 2929, 1774, 1664, 1631, 1524, 1491, 1452, 1399, 1365, 1295, 1254, 1180, 1106, 1018, 926, 751, 668; ¹H NMR (CDCl₃, 500 MHz): δ 7.52 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.39 (s, 1H), 7.32-7.26 (m, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 5.84 (br, 1H), 3.84 (s, 3H), 2.24 (s, 3H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 162.1, 157.5, 140.8, 130.4, 129.2, 121.5, 120.4, 117.0, 110.8, 55.5, 51.6, 28.7, 20.9; LC-MS (ESI) m/z: 314 [M⁺Na]; HRMS (DART Positive) m/z: calcd for C₁₆H₂₂NO₄ [M⁺H] 292.1543, found 292.1537.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl acetate (4m): Following the *General Method A*, to the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1m** (34

mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product **4m** was afforded as a yellow solid (35.3 mg, 44%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 156-157 °C. IR (KBr, cm⁻¹): 3320, 2972, 2925, 1769, 1624, 1533, 1446, 1365, 1301, 1177, 1099, 1042, 1007, 934, 858, 703; ¹H NMR (CDCl₃, 500 MHz): δ 7.43-7.40 (m, 2H), 7.23 (d, *J* = 3.5 Hz, 1H), 7.05 (dd, *J* = 5.0, 4.0 Hz, 1H), 5.73 (br, 1H), 2.41 (s, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 161.4, 138.4, 134.8, 131.5, 129.2, 127.2, 117.0, 51.7, 28.7, 21.3; LC-MS (ESI) m/z: 268 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₃H₁₈NO₃S [M⁺H] 268.1002, found 268.1002.

(2Z,4E)-1-(*tert*-Butylamino)-1-oxo-5-phenylpenta-2,4-dien-2-yl acetate (4n): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^tBuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1n** (38.4 mg, 0.3 mmol) in PhCl (0.5 mL) was added via syringe pump at 50 °C for 3 h. The reaction was kept stirring at 50 °C for another 2 h, and the desired product 4n was afforded as a white solid (48.8 mg, 57%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 114-115 °C. IR (KBr, cm⁻¹): 3276, 3058, 2968, 2926, 2766, 1767, 1645, 1543, 1454, 1363, 1327, 1300, 1201, 1103, 975, 746, 686; ¹H NMR (CDCl₃, 500 MHz): δ 7.43 (d, J = 7.5 Hz, 2H), 7.37-7.31 (m, 2H), 7.31-7.27 (m, 1H), 6.96 (d, J = 11.0 Hz, 1 H), 6.85 (d, J = 15.5 Hz, 1H), 6.70 (dd, J = 16.0, 11.5 Hz, 1H), 5.73 (br, 1H), 2.35 (s, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.2, 161.4, 140.2, 138.9, 136.3, 128.9, 128.7, 127.1, 123.5, 120.2, 51.6, 28.7, 20.6; LC-MS (ESI) m/z: 288 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₂NO₃ [M⁺H] 288.1594, found 288.1591.

(Z)-1-(*tert*-Butylamino)-1-oxohept-2-en-2-yl acetate (40): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), ^{*t*}BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **10** (35 µL, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **40** was afforded as a white solid (50.8 mg, 70%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 10:1). M.p. 78-80 °C. IR (KBr, cm⁻¹): 3063, 2962, 2870, 1764, 1534, 1540, 1458, 1368, 1315, 1211, 1150, 1089, 942; ¹H NMR (CDCl₃, 500 MHz): δ 6.31 (t, *J* = 7.5 Hz, 1H), 5.67 (br, 1H), 2.25 (s, 3H), 2.01 (q, *J* = 7.0 Hz, 2H), 1.43-1.30 (m, 13H), 0.89 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0, 161.3, 141.1, 126.2, 51.4, 30.3, 28.7, 25.8, 22.3, 20.5, 13.8; LC-MS (ESI) m/z: 242 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₃H₂₄NO₃ [M⁺H] 242.1751, found 242.1750.

(Z)-3-(*tert*-Butylamino)-1-cyclopropyl-3-oxoprop-1-en-2-yl acetate (4p): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), 'BuNC (68 μ L, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), **1p** (26 μ L, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **4p** was afforded as a white solid (45.6 mg, 67%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 131-132 °C. IR (KBr, cm⁻¹): 3298, 3065, 2981, 1765, 1629, 1543, 1449, 1370, 1317, 1217, 1099, 967, 879; ¹H NMR (CDCl₃, 500 MHz): δ 5.82 (d, *J* = 11.0 Hz, 1H), 5.63 (br, 1H), 2.28 (s, 3H), 1.43-1.30 (m, 10H), 0.92-0.87 (m, 2H), 0.63-0.57 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 161.3, 140.5, 131.5, 51.4, 28.8, 20.7, 9.5, 8.0; LC-MS (ESI) m/z: 226 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₂H₂₀NO₃ [M⁺H] 226.1438, found 226.1436.

(*Z*)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (5a): Following the *General Method B*, the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), benzoic acid (110 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then 'BuNC (68 µL, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product **5a** as a white solid (80.0 mg, 82%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 145-146 °C. IR (KBr, cm⁻¹): 3324, 3067, 2970, 1743, 1637, 1546, 1452, 1314, 1251, 1119, 1056, 1022, 910, 756, 700; ¹H NMR (Acetone, 500 MHz): δ 8.18 (d, *J* = 7.5 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.66-7.57 (m, 4H), 7.36-7.26 (m, 3H), 7.17 (s, 1H), 7.08 (br, 1H), 1.38 (s, 9H); ¹³C NMR (Acetone, 125 MHz): δ 164.6, 162.6, 142.8, 134.9, 133.9, 131.0, 130.3, 130.0, 129.8, 129.7, 129.6, 122.1, 52.1, 28.9; LC-MS (ESI) m/z: 324 [M⁺H]; HRMS (DART Positive) m/z: calcd for C₂₀H₂₂NO₃ [M⁺H] 324.1594, found 324.1587.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 4-fluorobenzoate (5b): Following the *General Method B*, the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), 4-fluorobenzoic acid (126 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then 'BuNC (68 µL, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product **5b** as a white solid (87.9 mg, 86%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 128-130 °C. IR (KBr, cm⁻¹): 3326, 3063, 2971, 1744, 1633, 1604, 1537, 1511, 1453, 1393, 1363, 1300, 1251, 1117, 1059, 761; ¹H NMR (CDCl₃, 500 MHz): δ 8.24-8.19 (m, 2H), 7.53-7.45 (m, 2H), 7.32-7.26 (m, 3H), 7.25-7.17 (m, 3H), 5.85 (br, 1H), 1.40 (s, 9H); ¹⁹F (CDCl₃, 470 MHz): δ -103.0 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 167.5, 165.5, 162.7 (d, ¹*J*_{C-F} = 119.0 Hz), 140.6, 133.0 (d, ³*J*_{C-F} = 9.0 Hz), 132.4, 129.5, 129.1, 128.7, 124.7 (d, ⁴*J*_{C-F} = 3.0 Hz), 122.8, 116.3 (d, ²*J*_{C-F} = 22.0 Hz), 51.7, 28.7; LC-MS (ESI) m/z: 342 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₀H₂₁NO₃F [M⁺H] 342.1500, found 342.1500.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 4-methoxybenzoate (5c): Following the *General Method B*, the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), 4-methoxybenzoic acid (137 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then ^{*t*}BuNC (68 µL, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product **5c** as a white solid (72.8 mg, 68%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 145-146 °C. IR (KBr, cm⁻¹): 3740, 3422, 3059, 2972, 2923, 2835, 1740, 1673, 1637, 1602, 1510, 1452, 1363, 1249, 1169, 1104, 1042, 1006, 844, 760, 688, 558, 452; ¹H NMR (CDCl₃, 500 MHz): δ 8.15 (d, *J* = 9.0 Hz, 2H), 7.53-7.48 (m, 2H), 7.29-7.25 (m, 3H), 7.01 (d, *J* = 9.0 Hz, 2H), 5.89 (br, 1H), 3.91 (s, 3H), 1.39 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.4, 163.3, 162.0, 140.5, 132.6, 132.5, 129.5, 129.0, 128.7, 122.9, 120.6, 114.3, 55.6, 51.6, 28.7; LC-MS (ESI) m/z: 354 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₁H₂₄NO₄ [M⁺H] 354.1700, found 354.1700.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl (*E*)-but-2-enoate (5d): Following the General Method B, the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), (E)-but-2-enoic acid (77.5 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then ^tBuNC (68 µL, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added via syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product 5d as a white solid (62.6 mg, 73%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 120-121 °C. IR (KBr, cm⁻¹): 3472, 3314, 3065, 2966, 2872, 2771, 1747, 1640, 1546, 1448, 1389, 1365, 1316, 1225, 1151, 980, 930, 755, 685; ¹H NMR (CDCl₃, 500 MHz): δ 7.47 (d, J = 7.0 Hz, 2H), 7.35-7.26 (m, 3H), 7.25-7.17 (m, 2H), 6.07 (dd, J = 15.5, 1.5 Hz, 1H), 5.83 (br, 1H), 1.99 (dd, J = 7.0, 1.5 Hz, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.1, 161.9, 149.0, 140.3, 132.6, 129.5, 129.0, 128.6, 122.7, 120.9, 51.5, 28.7, 18.5; LC-MS (ESI) m/z: 288 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₂NO₃ [M⁺H] 288.1594, found 288.1593.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl 2-phenylacetate (5e): Following the General Method B, the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), 2-phenylacetic acid (122 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then ^{*t*}BuNC (68 μ L, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added via syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product 5e as a white solid (48.1 mg, 47%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 132-134 °C. IR (KBr, cm⁻¹): 3853, 3742, 3412, 3298, 3064, 2972, 1762, 1700, 1624, 1535, 1448, 1358, 1307, 1216, 1104, 933, 763, 690, 517; ¹H NMR (CDCl₃, 500 MHz): δ 7.43-7.32 (m, 7H), 7.31-7.27 (m, 3H), 7.21 (s, 1H), 5.44 (br, 1H), 3.82 (s, 2H), 1.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 161.4, 140.1, 132.7, 132.5, 129.4, 129.3, 129.2, 129.0, 128.7, 127.9, 123.1, 51.4, 41.7, 28.4; LC-MS (ESI) m/z: 338 $[M^+H]$; HRMS (ESI) m/z: calcd for C₂₁H₂₃NO₃ $[M^+H]$ 338.1751, found 338.1738.

(Z)-3-(*tert*-Butylamino)-3-oxo-1-phenylprop-1-en-2-yl cyclohexanecarboxylate (5f): Following the *General Method B*, the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), cyclohexanecarboxylic acid (115 mg, 0.9 mmol) and PhCl (1.0 mL) was

stirred at 70 °C under N₂ atmosphere for 30 min. Then ¹BuNC (68 µL, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product **5f** as a white solid (64.7 mg, 65%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 79-80 °C. IR (KBr, cm⁻¹): 3317, 3063, 2935, 2859, 1751, 1631, 1541, 1450, 1360, 1311, 1224, 1164, 1116, 1018, 929, 754, 692; ¹H NMR (CDCl₃, 500 MHz): δ 7.46 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7.17 (s, 1H), 5.80 (br, 1H), 2.64-2.55 (m, 1H), 2.07-1.97 (m, 2H), 1.87-1.77 (m, 2H), 1.74-1.65 (m, 1H), 1.60-1.50 (m, 2H), 1.49-1.19 (m, 13H); ¹³C NMR (CDCl₃, 125 MHz): δ 172.6, 161.9, 140.5, 132.7 129.4, 128.9, 128.6, 122.6, 51.5, 43.2, 28.9, 28.7, 25.6, 25.3; LC-MS (ESI) m/z 330 [M⁺H]; HRMS (ESI) m/z calcd for C₂₀H₂₈NO₃ [M⁺H] 330.2064, found 330.2065.

(*Z*)-3-(((*3r*)-Adamantan-1-yl)amino)-3-oxo-1-phenylprop-1-en-2-ylmacetate (5g): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), AdNC (96.7 mg, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), phenylacetylene (33 μ L, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **5g** was afforded as a yellow solid (79.4 mg, 79%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 169-171 °C. IR (KBr, cm⁻¹): 3333, 3064, 2907, 2850, 2658, 1773, 1627, 1535, 1447, 1364, 1305, 1250, 1186, 1130, 1101, 1003, 918, 768, 691, 596, 475; ¹H NMR (CDCl₃, 500 MHz): δ 7.47 (d, *J* = 7.5 Hz, 2H), 7.35(t, *J* = 7.0 Hz, 2H), 7.31 (t, *J* = 7.0 Hz, 1H), 7.09 (s, 1H), 5.69 (br, 1H), 2.29 (s, 3H), 2.11 (s, 3H), 2.06 (s, 6H), 1.70 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 161.5, 140.8, 132.6, 129.4, 129.0, 128.7, 122.3, 52.3, 41.5, 36.3, 29.4, 20.9; LC-MS (ESI) m/z: 362 [M⁺Na]; HRMS (ESI) m/z: calcd for C₂₁H₂₆NO₃ [M⁺H] 340.1907, found 340.1909.

(Z)-3-(((3r)-Adamantan-1-yl)amino)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl

acetate (5h): Following the *General Method A*, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), AdNC (96.7 mg, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), 1-chloro-4-ethynylbenzene (42 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **5h** was afforded as a white solid (67.1 mg, 60%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 159-160 °C. IR (KBr, cm⁻¹): 3395, 2910, 2854, 1764, 1640, 1448, 1363, 1302, 1246, 1196, 1134, 1091, 1008, 824, 620; ¹H NMR (CDCl₃, 500 MHz): δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.06 (s, 1H), 5.70 (br, 1H), 2.31 (s, 3H), 2.13 (s, 3H), 2.07 (s, 6H), 1.72 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.7, 161.2, 141.1, 134.8, 131.1, 130.5, 129.0, 121.1, 52.4, 41.4, 36.3, 29.4, 20.9; LC-MS (ESI) m/z: 374 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₁H₂₅NO₃Cl [M⁺H] 374.1517, found 374.1507.

(Z)-3-(((3r)-Adamantan-1-yl)amino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (5i): Following the *General Method A*, to the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), AdNC (96.7 mg, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), 1-ethynyl-2-methoxybenzene (41.0 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product **5i** was afforded as a white solid (68.0 mg, 61%) after flash column chromatography purification (eluent: petroleum ether/ether acetate =

5:1). M.p. 165-167 °C. IR (KBr, cm⁻¹): 3439, 3327, 3064, 2909, 2852, 1774, 1668, 1634, 1531, 1485, 1443, 1368, 1300, 1249, 1167, 1085, 1016, 758; ¹H NMR (CDCl₃, 500 MHz): δ 7.52 (d, J = 7.5 Hz, 2H), 7.38 (s, 1H), 7.28 (t, J = 7.5 Hz, 1H), 6.92 (t, J = 7.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 5.70 (br, 1H), 3.83 (s, 3H), 2.24 (s, 3H), 2.10 (s, 3H), 2.07 (s, 6H), 1.70 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 161.7, 157.5, 140.8, 130.3, 129.2, 121.6, 120.4, 116.8, 110.8, 55.6, 52.2, 41.5, 36.3, 29.5, 20.9; LC-MS (ESI) m/z: 370 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₂H₂₈NO₄ [M⁺H] 370.2013, found 370.1997.

(Z)-3-(Cyclohexylamino)-3-oxo-1-phenylprop-1-en-2-yl acetate (5j): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), isocyanocyclohexane (65 mg, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), phenylacetylene (33 µL, 0.3 mmol) in PhCl (0.5 mL) was added via syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product 5j was afforded as a yellow solid (38.3 mg, 44%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 146-147 °C. IR (KBr, cm⁻¹): 3908, 3328, 3092, 3032, 2935, 2854, 2665, 1765, 1667, 1633, 1530, 1445, 1371, 1325, 1289, 1255, 1190, 1121, 1076, 1011, 894, 759, 685; ¹H NMR (CDCl₃, 500 MHz): δ 7.49 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.0 Hz, 2H), 7.34-7.30 (m, 1H), 7.16 (s, 1H), 5.84 (d, J = 8.0 Hz, 1H), 3.92-3.82 (m, 1H), 2.30 (s, 3H), 2.01-1.94 (m, 2H), 1.76-1.69 (m, 2H), 1.67-1.60 (m, 1H), 1.46-1.35 (m, 2H), 1.25-1.14 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 161.7, 140.2, 132.5, 129.4, 129.1, 128.7, 123.1, 48.6, 33.0, 25.5, 24.8, 20.9; LC-MS (ESI) m/z: 288 [M⁺H]; HRMS (ESI) m/z: calcd for $C_{17}H_{22}NO_3$ [M⁺H] 288.1594, found 288.1595.

(Z)-3-(Cyclohexylamino)-1-(2-methoxyphenyl)-3-oxoprop-1-en-2-yl acetate (5k): Following the General Method A, to the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), Ag₂O (104.3 mg, 0.45 mmol), isocyanocyclohexane (68.0 mg, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol) and PhCl (1.0 mL), 1-ethynyl-4-methoxybenzene (40.0 mg, 0.3 mmol) in PhCl (0.5 mL) was added *via* syringe pump at 30 °C for 3 h. The reaction was kept stirring at 30 °C for another 2 h, and the desired product 5k was afforded as a white solid (50.4 mg, 53%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 185-186 °C. IR (KBr, cm⁻¹): 3305, 3041, 2931, 2850, 1754, 1619, 1524, 1452, 1377, 1337, 1252, 1213, 1175, 1126, 1082, 1025, 951, 879, 832, 679, 531; ¹H NMR (CDCl₃, 500 MHz): δ 7.45 (d, J = 8.8 Hz, 2H), 7.12 (s, 1H), 6.88 (d, J = 8.8 Hz, 2H), 5.83 (d, J = 7.7 Hz, 1H), 3.90-3.83 (m, 1H), 3.81 (s, 3H), 2.30 (s, 3H), 1.97-1.94 (m, 2H), 1.73-1.68 (m, 4H), 1.41-1.38 (m, 2H), 1.19-1.17 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.1, 162.0, 160.3, 138.7, 131.2, 125.2, 123.0, 114.3, 55.4, 48.6, 33.2, 25.6, 24.9, 21.0; LC-MS (ESI) m/z: 318 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₈H₂₄NO₄ [M⁺H] 318.1700, found 318.1689

(Z)-3-(((3r)-Adamantan-1-yl)amino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (5l): Following the *General Method B*, the mixture of $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), benzoic acid (110.0 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then AdNC (96.7 mg, 0.6 mmol) was added in one portion and phenylacetylene (33 µL, 0.3mmol) in PhCl (0.5 mL) was added *via* syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product **51** as a white solid (88.1 mg, 73%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 164-166 °C. IR (KBr, cm⁻¹): 3268, 3057, 2907, 2852, 1732, 1630, 1538, 1448, 1354, 1308, 1248, 1099, 1055, 700; ¹H NMR (CDCl₃, 500 MHz): δ 8.19 (d, *J* = 7.5 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.52-7.49 (m, 2H), 7.29-7.25 (m, 4H), 5.75 (br, 1H), 2.08 (s, 3H), 2.04 (s, 6H), 1.68 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.6, 161.4, 140.5, 134.2, 132.5, 130.3, 129.5, 129.0, 128.9, 128.7, 128.4, 122.9, 52.3, 41.4, 36.3, 29.4; LC-MS (ESI) m/z: 402 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₆H₂₈NO₃ [M⁺H] 402.2064, found 402.2046.

(Z)-3-(Cyclohexylamino)-3-oxo-1-phenylprop-1-en-2-yl benzoate (5m): Following the General Method B, the mixture of Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), benzoic acid (110.0 mg, 0.9 mmol) and PhCl (1.0 mL) was stirred at 70 °C under N₂ atmosphere for 30 min. Then isocyanocyclohexane (65.0 mg, 0.6 mmol) was added in one portion and phenylacetylene (33.0 µL, 0.3mmol) in PhCl (0.5 mL) was added via syringe pump for 3 h. The mixture was kept stirring at 70 °C for another 12 h and afforded the desired product 5m as a white solid (77.0 mg, 74%) after flash column chromatography purification (eluent: petroleum ether/ether acetate = 5:1). M.p. 158-159 °C. IR (KBr, cm⁻¹): 3739, 3306, 3062, 2927, 2853, 1743, 1631, 1533, 1449, 1329, 1248, 1133, 1084, 1050, 923, 754, 695; ¹H NMR (CDCl₃, 500 MHz): δ 8.20 (d, J = 7.5 Hz, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.60-7.48 (m, 4H), 7.34 (s, 1H), 7.31-7.25 (m, 3H), 5.89 (d, J = 7.0 Hz, 1H), 3.96-3.83 (m, 1H), 1.99-1.92(m, 2H), 1.73-1.64 (m, 2H), 1.64-1.55 (m, 2H), 1.44-1.31 (m, 2H), 1.20-1.08 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.6, 161.7, 140.0, 134.3, 132.4, 130.3, 129.6, 129.1, 129.0, 128.7, 128.4, 123.7, 48.6, 32.9, 25.5, 24.7; LC-MS (ESI) m/z: 350 [M⁺H]; HRMS (ESI) m/z: calcd for C₂₂H₂₄NO₃ [M⁺H] 350.1751, found 350.1742.

3. Further Transformation of Compounds 4a and 4n

*N-(tert-***Butyl)-2-oxo-3-phenylpropanamide (6):**² To a test tube were added **4a** (26.1 mg, 0.1 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH/H₂O (10:1, 1.10 mL). The mixture was stirred at room temperature for 1 h. Upon the completion of the reaction, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed with brine. The organic phase was then dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give the pure compound **6** as a white solid (21.7 mg, 90%). M.p. 47-48 °C. IR (KBr, cm⁻¹): 3387, 2925, 2859, 1685, 1604, 1520, 1459, 1402, 1364, 1224, 1084, 825, 705, 603. ¹H NMR (CDCl₃, 500 MHz): δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.29-7.22 (m, 3H), 6.82 (br, 1H), 4.20 (s, 2H), 1.38 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 197.1, 159.2, 133.0, 129.8, 128.6, 127.1, 51.4, 42.5, 28.3; LC-MS (ESI) m/z: 220 [M⁺H].

(E)-1-(tert-Butyl)-3,5-dihydroxy-5-methyl-4-styryl-1,5-dihydro-2H-pyrrol-2-one

(7): To a test tube were added 4n (86.0 mg, 0.3 mmol), NaH (60% dispersion in mineral oil, 18 mg, 0.45 mmol) and THF (3.0 mL). The mixture was stirred at room temperature for 1 h under N₂ atmosphere. Upon the completion of the reaction, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and washed with 5% NH₄Cl aqueous and brine. The organic phase was then dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was

purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) to give the pure compound **7** as a white solid (49.0 mg, 57%). M.p. 69-70 °C. IR (KBr, cm⁻¹): 3661, 3620, 3172, 2923, 2858, 1665, 1525, 1365, 1079, 976, 926, 784, 688; ¹H NMR (Acetone-d₆, 500 MHz): δ 8.68 (br, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 16.5 Hz, 1H), 6.88 (d, *J* = 16.5 Hz, 1H), 5.03 (br, 1H), 1.80 (s, 3H), 1.62 (s, 9H); ¹³C NMR (Acetone-d₆, 125 MHz): δ 166.2, 143.3, 138.8, 133.0, 129.6, 128.4, 127.0, 123.7, 117.7, 91.0, 56.6, 29.3, 27.3; LC-MS (ESI) *m/z*: 288 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₂NO₃ [M⁺H] 288.1594, found 288.1593.

(*Z*)-3-(*tert*-Butylamino)-3-oxo-1-(3-phenyloxiran-2-yl)prop-1-en-2-yl acetate (8): To a test tube were added **4n** (57.4 mg, 0.2 mmol), *m*-CPBA (70% purity, 98.6 mg, 0.4 mmol) and DCM (2.0 ml). The mixture was stirred at room temperature for 16 h. Upon the completion of the reaction, the mixture was filtered. The filtrate was concentrated and purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give the pure compound **8** as a white solid (38.9 mg, 64%). M.p. 149-151 °C. IR (KBr, cm⁻¹): 3291, 3068, 2970, 2924, 2859, 1766, 1637, 1547, 1458, 1366, 1320, 1213, 1165, 1088, 1012, 947, 895, 853, 756, 696; ¹H NMR (CDCl₃, 500 MHz): δ 7.39-7.32 (m, 3H), 7.27 (d, *J* = 6.5 Hz, 2H), 6.08 (d, *J* = 7.5 Hz, 1H), 5.75 (br, 1H), 3.89 (d, *J* = 1.5 Hz, 1H), 3.45 (dd, *J* = 8.0, 2.0 Hz, 1H), 2.23 (s, 3H), 1.38 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 160.4, 145.2, 136.1, 128.6, 128.5, 125.5, 121.1, 59.6, 57.2, 51.7, 28.6, 20.5; LC-MS (ESI) *m/z*: 304 [M⁺H]; HRMS (ESI) m/z: calcd for C₁₇H₂₂NO₄ [M⁺H] 304.1543, found 304.1539.

4. X-Ray Crystallographic Analysis for Compound 4a

Crystallographic data for compound **4a**: $C_{15}H_{19}NO_3$, M = 261.31, Orthorhombic F 2dd (No. 43), a = 32.25 (3) Å, b = 17.433 (18) Å, c = 10.608 (11) Å, V = 5963 (11) Å³, Z = 16, Crystal size: $0.29 \times 0.21 \times 0.14$ mm, T = 295 K, ρ_{calcd} = 1.164 g·cm⁻³, R₁ = 0.0374 (I>4 σ (I)), wR₂ = 0.1118 (all data), GOF = 1.044, reflections collected/unique: 9066 / 3273 (Rint = 0.0175), Data: 2623, restraints: 0, parameters: 177. CCDC 1836502 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

5. Mechanistic Studies

To a test tube were added Pd(OAc)₂ (3.4 mg, 0.015 mmol), Ag₂O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), *t*BuNC (68 μ L, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol), *N*-(*tert*-butyl)-3-phenylpropiolamide **9** (38.7 mg, 0.3 mmol) and PhCl (1.5 mL). The reaction was degassed and refilled with N₂ atmosphere for three times. After the mixture was stirred at 30 °C overnight, no desired product could be observed from the reaction.

To a test tube were added $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), Ag_2O (104.3 mg, 0.45 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), *t*BuNC (68 µL, 0.6 mmol), AcOH (54.0 mg, 0.9 mmol), *N*-(*tert*-butyl)cinnamamide **10** (61 mg, 0.3 mmol) and PhCl (1.5 mL). The reaction was degassed and refilled with N₂ atmosphere for three times. After the mixture was stirred at 30 °C overnight, no desired product could be observed from the reaction.

To a test tube were added $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), AgOAc (150.2 mg, 0.9 mmol), tri(2-methylphenyl)phosphine (9.1 mg, 0.03 mmol), *t*BuNC (68 µL, 0.6 mmol) and PhCl (1.0 mL). The mixture was stirred at 30 °C under N₂ atmosphere. Phenylacetylene **1a** (33 µL, 0.3 mmol) in PhCl (0.5 mL) was then added *via* syringe pump for 3 h. The reaction was kept stirring at 30 °C for another 2 h. Upon completion monitored by TLC, the reaction was cooled down to room temperature and filtered. The filtrate was washed with H₂O and brine. The aqueous phase was then extracted with ethyl acetate (3 × 10 mL) and the combined organic phase was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product **4a** (52.4 mg, 68%).

6. Reference

- 1. Peng, J.; Zhao, J.; Hu, Z.; Liang, D.; Huang, J.; Zhu, Q. Org. Lett. 2012, 14, 4966.
- Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K. H.; Bartenschlager, R.; Klein, C. D. Bioorg. Med. Chem. 2011, 19, 4067.

7. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra for All Compounds

S32

XB20180830

S54

