
libEnsemble + PETSc/TAO: Sustaining a Library for Dynamic Ensemble-Based Computations
David Bindel1,2 Stephen Hudson1 Jeffrey Larson1 Stefan M. Wild1

1Argonne National Laboratory 2Cornell University

Overview
libEnsemble is a Python library to coordinate
the concurrent evaluation of ensembles of com-
putations. Designed with flexibility in mind,
libEnsemble can utilize massively parallel resources
to accelerate the solution of design, decision, and
inference problems.

libEnsemble aims for:

• Extreme scaling;

• Fault tolerance;

• Monitoring/killing jobs (recovers resources);

• Portability and flexibility; and

• Exploitation of persistent data/control flow.

Flexible Run Mechanisms
Workers can run in various configurations.

Distributed: Workers can run on compute nodes
and launch jobs directly in-place.

Centralized: Workers run on dedicated nodes and
launch jobs to another set of nodes.

Balsam: Used as a proxy job launcher; Balsam runs
on front end and maintains a database of jobs.

Manager and Workers
libEnsemble employs a manager-worker scheme
that can run on various communication mediums
(including MPI, multiprocessing, and TCP).
Workers can run simulation functions or generator
functions (which create new parameters/inputs for
simulations).

• Ex.- Random Sample→ Simulations→ Optimiza-
tion→ Simulations

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

si
m
ul
at
io
n

ou
tp
ut

simulation
work

Composable Software
libEnsemble encapsulates the job control and worker
communication layers making it highly adaptable to
future systems and easy to experiment.

Job Controller
A job controller interface is provided and allows users to write portable simulation/generator functions in
Python. These are agnostic of both the job launch/management system and worker concurrency. The main
job controller functions are launch, poll, and kill.

Using libEnsemble
User selects or supplies a generation function that
produces simulation input as well as a simulation
function that performs and monitors the simula-
tions. Examples and templates of these functions are
included in the library.

There are many potential use cases including:

Example gen. funcs

• Bayesian parameter
estimation

• Surrogate models
• Sensitivity analysis
• Design optimization
• Supervised learning

Example sim. funcs

• Particle accelerator
simulation

• Subsurface flow
• PETSc simulations
• DFT calculations
• Quantum chemistry

Project Workflow
Project management centered around GitHub

• Developers and users create GitHub issues.

• Project administrators add these to GitHub kanban.

• Pull requests can reference GitHub issues.

• Web tools run on pushes for testing, coverage, and building documentation.

• Documentation uses Sphinx (with autodoc) to extract docstrings and automatically update.

• Release on GitHub/PyPI/Spack.

Testing
There are four components to libEnsemble testing as listed below.

Unit tests: Using pytest test framework (includes mocking of objects). Runs on Travis CI.

Regression tests: Full tests that can be run at varying scales. Runs on Travis CI (up to four processes).

Scaling tests: Highly configurable tests with minimal or no dependencies.

• Testing features at scale including job scheduling/launching/killing, resource partitioning, on-
node/hierarchical storage, and hardware fault tolerance.

• Useful for testing functionality and for profiling.

• Potential for system vendors to use at pre-production stage.

Standalone tests: Isolated tests that can be run on platforms to check what libEnsemble components/options
of work on a given platform: e.g., job launches and node partitioning, communications, killing jobs, and
recovering resources.

Small scale testing is automated and runs in Travis CI with multiple Python versions and MPI libraries.
Larger tests performed manually on HPC platforms as some options currently cannot be tested on Travis.

Code Coverage:

• Coverage for unit/regression tests is approximately 90% (Branch coverage included).
• Coveralls (web tool) is linked with Travis CI.
• Coverage is worked out for unit and regression tests and merged to provide a combined score.

Running at Scale
Ex.- libEnsemble scaling: 1,030 node ensemble on ALCF/Theta (Cray XC40) with Balsam
• 511 workers (2,044 2-node simulations) using MPI.

• OPAL (Object Oriented Parallel Accelerator Library) simulation functions.

Histogram of completed and killed simulations (binned
by run time). Killing jobs once they are identified as
redundant improves efficiency of ensembles.

Total number of Balsam-launched applications running
over time. The startup delay is due to parallel imports of
Python libraries.

Collaborations
We are interested in collaborations with applications
and math/CS libraries:

• Efficient application level scheduling and resource
partitioning.

• Minimizing Python overheads at scale.

• Fault tolerance approaches.

• Workflows.

Future
Experimental and aspirational features:

• TCP communicator could allow workers to be dy-
namically added from cloud resources.

• Job controllers can capitalize on novel features
such as containerized launches to optimize re-
source partitioning and startup costs.

• Persistent gen./sim. functions and distributed
workers can make use of on-node resources (e.g.,
SSDs, GPUs).

Applications & Users Wanted!

libEnsemble is an open-source PETSc project:

https://github.com/libensemble/libensemble
https://libensemble.readthedocs.io


