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Abstract

How should a cleaning system measure the amount
of inconsistency in the database? Proper measures
are important for quantifying the progress made in
the cleaning process relative to the remaining ef-
fort and resources required. Similarly to effective
progress bars in interactive systems, inconsistency
should ideally diminish steadily and continuously
while aiming to avoid jitters and jumps. More-
over, measures should be computationally tractable
towards online applicability. Building on past re-
search on inconsistency measures for knowledge
bases, we embark on a systematic investigation of
the rationality postulates of inconsistency measures
in the context of database repairing systems. Such
postulates should take into consideration the inter-
play between the database tuples, the integrity con-
straints, and the space of atomic repairing opera-
tions. We shed light on classic measures by exam-
ining them against a set of rationality postulates,
and propose a measure that is both rationale and
tractable for the general class of denial constraints.

1 Introduction
Inconsistency of databases may arise in a variety of situations,
for a variety of reasons. Database records may be collected
from imprecise sources (social encyclopedias/networks, sen-
sors attached to appliances, cameras, etc.) via imprecise pro-
cedures (natural-language processing, signal processing, im-
age analysis, etc.), or be integrated from different sources
with conflicting information or formats. Common principled
approaches to handling inconsistency consider databases that
violate integrity constraints, but can nevertheless be repaired
by means of operations that revise the database and resolve
inconsistency [Arenas et al., 1999]. Instantiations of these
approaches differ in the supported types of integrity con-
straints and operations. The constraints may be Functional
Dependencies (FDs) or the more general Equality-Generating
Dependencies (EGDs) or, even more generally, Denial Con-
straints (DCs) and they may be referential (foreign-key) con-
straints or the more general inclusion dependencies [Afrati
and Kolaitis, 2009]. A repair operation can be a deletion

of a tuple, an insertion of a tuple, or an update of an at-
tribute value. Operations may be associated with different
costs, representing levels of trust in data items or extent of
impact [Lopatenko and Bertossi, 2007].

Various approaches and systems have been proposed for
data cleaning and, in particular, data repairing (e.g., [Ebaid
et al., 2013; Geerts et al., 2013; Rekatsinas et al., 2017] to
name a few). We explore the question of how to measure
database inconsistency in a manner that reflects the progress
of repairing. Such a measure is useful not just for implement-
ing progress bars, but also for recommending next steps in
interactive systems, and estimating the potential usefulness
and cost of incorporating databases for downstream analyt-
ics [Kruse et al., 2015]. Example measures include the num-
ber of violations in the database, the number of tuples in-
volved in violations, and the number of operations needed
to reach consistency. However, for a measure to effectively
communicate progress indication in repairing, it should fea-
ture certain characteristics. For example, it should minimize
jitters, jumps and sudden changes to have a good correlation
with “the expected waiting time”—an important aspect in in-
teracting with the users. It should also be computationally
tractable so as not to compromise the efficiency of the repair
and to allow for interactive systems. Luo et al. [2004] enun-
ciate the importance of these properties, referring to them as
“acceptable pacing” and “minimal overhead,” respectively, in
progress indicators for database queries.

As a guiding principle, we adopt the approach of ratio-
nality postulates of inconsistency measures over knowledge
bases that have been investigated in depth by the Knowledge
Representation (KR) and Logic communities [Konieczny et
al., 2003; Knight, 2003; Grant and Hunter, 2006; Hunter and
Konieczny, 2008; Hunter and Konieczny, 2010; Grant and
Hunter, 2017; Thimm, 2017]. Yet, the studied measures and
postulates fall short of capturing our desiderata, for various
reasons. First, inconsistency is typically measured over a
knowledge base of logical sentences (formulas without free
variables). In databases, we reason about tuples (facts) and
fixed integrity constraints, and inconsistency typically refers
to the tuples rather than the constraints (which are treated
as exogenous information). In particular, while a collection
of sentences might form a contradiction, a set of tuples can
be inconsistent only in the presence of integrity constraints.
Hence, as recently acknowledged [Bertossi, 2018], it is of



importance to seek inconsistency measures that are closer to
database applications. Perhaps more fundamentally, in order
to capture the repairing process and corresponding changes to
the database, the measure should be aware of the underlying
repairing operations (e.g., tuple insertion, deletion, revision).

For illustration, let us consider the case where all con-
straints are anti-monotonic (i.e., consistency cannot be vio-
lated by deleting tuples), and we allow only tuple deletions
as repairing operations. One simple measure is the drastic
measure Id, which is 1 if the database is inconsistent, and
0 otherwise [Thimm, 2017]. Of course, this measure hardly
communicates progress, as it does not change until the very
end. What about the measure IP that counts the number of
problematic tuples, which are the tuples that participate in
(minimal) witnesses of inconsistency [Hunter and Konieczny,
2008; Hunter and Konieczny, 2010]? This measure suffers
from a disproportional reaction to repairing operations, since
the removal of a single tuple (e.g., a misspelling of a coun-
try name) can cause a drastic reduction in inconsistency. As
another example, take the measure IMC that counts the num-
ber of maximal consistent subsets. This measure suffers from
various problems: adding constraints can cause a reduction
in inconsistency, it may fail to reflect change for any deletion
of a tuple and, again, it may react disproportionally to a tuple
deletion. Moreover, it is is hard to compute (#P-complete)
already for simple FDs [Livshits and Kimelfeld, 2017].

In a recent attention in the community of database theory,
measures have been proposed based on the concept of a min-
imal repair—the minimal number of deletions needed to ob-
tain consistency [Bertossi, 2018]. We refer to this measure as
IR. Our exploration shows that IR indeed satisfies the ra-
tionality criteria that we define later on, and so, we provide a
formal justification to its semantics. Yet, it is again intractable
(NP-hard) even for simple sets of FDs [Livshits et al., 2018].
Interestingly, we are able to show that a linear relaxation of
this measure, which we refer to as I linR , provides a combina-
tion of rationality and tractability.

We make a step towards formalizing the features and short-
comings of inconsistency measures such as the aforemen-
tioned ones. We consider four rationality postulates for
database inconsistency in the context of a repairing system
(i.e., a space of weighted repairing operations): positivity—
the measure is strictly positive if and only if the database is
inconsistent; monotonicity—inconsistency cannot be reduced
by adding constraints; progression—we can always find an
operation that reduces inconsistency; and continuity—a sin-
gle operation can have a limited relative impact on inconsis-
tency. We examine a collection of measures against these
postulates, and show that IR stands out. Nevertheless, this
measure is intractable. In particular, we show that computing
IR is hard already for the case of a single EGD. Finally, we
prove that for tuple deletions, I linR satisfies all four postulates
and is computable in polynomial time, even for the general
case of arbitrary sets of denial constraints.

Our work is complementary to that of Grant and
Hunter [2011] who also studied repairing (or resolution) op-
erators, but they focus on a different aspect of repairing—
the trade-off between inconsistency reduction and informa-
tion loss. An operation is beneficial if it causes a high re-

duction in inconsistency alongside a low loss of information.
Instead, our focus here is on measuring progress of repair-
ing, and it is an interesting future direction to understand how
the two relate to each other and/or can be combined. Another
complementary problem is that of associating individual facts
with portions of the database inconsistency (e.g., the Shapley
value of the fact) and using these portions to define prefer-
ences among repairs, as studied by Yun et al. [2018].

In the remainder of the paper, we present preliminary
concepts and terminology (Section 2), discuss inconsistency
measures (Section 3), their rationality postulates (Section 4)
and complexity aspects (Section 5), and make concluding re-
marks (Section 6).

2 Preliminaries
We first give the basic terminology and concepts.
Relational Model A relation signature is a sequence α =
(A1, . . . , Ak) of distinct attributes Ai, where k is the arity
of α. A relational schema (or just schema for short) S has a
finite set of relation symbols R, each associated with a sig-
nature that we denote by sig(R). If sig(R) has arity k, then
we say that R is k-ary. A fact f over S is an expression of
the form R(c1, . . . , ck), where R is a k-ary relation symbol
of S, and c1,. . . , ck are values. When S is irrelevant or clear
from the context, we may call a fact over S simply a fact. If
f = R(c1, . . . , ck) is a fact and sig(R) = (A1, . . . , Ak), then
we refer to the value ci as f.Ai.

A database D over S is a mapping from a finite set ids(D)
of record identifiers to facts over S. The set of all databases
over a schema S is denoted by DB(S). We denote byD[i] the
fact that D maps to the identifier i. A database D is a subset
of a database D′, denoted D ⊆ D′, if ids(D) ⊆ ids(D′) and
D[i] = D′[i] for all i ∈ ids(D).

An integrity constraint is a first-order sentence over S. A
database D satisfies a set Σ of integrity constraints, denoted
D |= Σ, ifD satisfies every constraint σ ∈ Σ. If Σ and Σ′ are
sets of integrity constraints, then we write Σ |= Σ′ to denote
that Σ entails Σ′; that is, every database that satisfies Σ also
satisfies Σ′. We also write Σ ≡ Σ′ to denote that Σ and Σ′

are equivalent, that is, Σ |= Σ′ and Σ′ |= Σ. By a constraint
system we refer to a class C of integrity constraints (e.g., the
class of all functional dependencies).

As a special case, a Functional Dependency (FD)R : X →
Y , where R is a relation symbol and X,Y ⊆ sig(R), states
that every two facts that agree on (i.e., have equal values
in) every attribute in X should also agree on every attribute
in Y . The more general Equality Generating Dependency
(EGD) has the form ∀~x [ϕ1(~x) ∧ · · · ∧ ϕk(~x)→ y1 = y2],
where each ϕj(~x) is an atomic formula over the schema and
y1 and y2 are variables in ~x. Finally, a Denial Constraint
(DC) has the form ∀~x [ϕ1(~x) ∧ · · · ∧ ϕk(~x) ∧ ψ(~x)], where
each ϕj(~x) is an atomic formula and ψ(~x) is a conjunction of
atomic comparisons over ~x.
Repair Systems Let S be a schema. A repairing operation
(or just operation) o transforms a database D over S into an-
other database o(D) over S, that is, o : DB(S) → DB(S).
An example is tuple deletion, denoted 〈−i〉(·), parameter-
ized by a tuple identifier i and applicable to a database D if
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i ∈ ids(D); the result 〈−i〉(D) is obtained from D by delet-
ing the tuple identifier i (along with the corresponding fact
D[i]). Another example is tuple insertion, denoted 〈+f〉(·),
parameterized by a fact f ; the result 〈+f〉(D) is obtained
from D by adding f with a new tuple identifier. (For conve-
nience, this is the minimal integer i such that i /∈ ids(D).) A
third example is attribute update, denoted 〈i.A← c〉(·), pa-
rameterized by a tuple identifier i, an attribute A, and a value
c, and applicable to D if i ∈ ids(D) and A is an attribute
of the fact D[i]; the result 〈i.A← c〉(D) is obtained from D
by setting the value D[i].A to c. By convention, if o is not
applicable to D, then it keeps D intact, that is, o(D) = D.

A repair system (over a schema S) is a collection of re-
pairing operations with an associated cost of applying to a
given database. For example, a smaller change of value
might be less costly than a greater one [Gardezi et al.,
2011], and some facts might be more costly than others to
delete [Lopatenko and Bertossi, 2007; Livshits et al., 2018] or
update [Kolahi and Lakshmanan, 2009; Livshits et al., 2018;
Bertossi et al., 2008]; changing a person’s zip code might be
less costly than changing the person’s country, which, in turn,
might be less costly than deleting the entire person’s record.
Formally, a repair system R is a pair (O, κ) where O is a set
of operations and κ : O×DB(S)→ [0,∞) is a cost function
that assigns the cost κ(o,D) to applying o to D. We require
that κ(o,D) = 0 if and only if D = o(D); that is, the cost is
nonzero when, and only when, an actual change occurs.

For a repair system R, we denote by R? = (O?, κ?) the
repair system of all sequences of operations from R, where
the cost of a sequence is the sum of costs of the individual
operations thereof. Formally, for R = (O, κ), the repair
systemR? is (O?, κ?), whereO? consists of all compositions
o = om ◦ · · · ◦ o1, with oj ∈ O for all j = 1, . . . ,m, defined
inductively by om ◦ · · · ◦ o1(D) = om(om−1 ◦ · · · ◦ o1(D))
and κ?(om ◦ · · · ◦ o1, D) = κ(om, om−1 ◦ · · · ◦ o1(D)) +
κ?(om−1 ◦ · · · ◦ o1, D). Let C be a constraint system and
R a repair system. We say that C is realizable by R if it
is always possible to make a database satisfy constraints of
C by repeatedly applying operations from R. Formally, C is
realizable byR if for every databaseD and a finite set Σ ⊆ C
there is a sequence o inR? such that o(D) |= Σ. An example
of C is the system CFD of all FDs R : X → Y . An example
of R is the subset system, denoted R⊆, where O is the set
of all tuple deletions (hence, the result is always a subset of
the original database), and κ is determined by a special cost
attribute, κ(〈−i〉(D)) = D[i].cost, if a cost attribute exists,
and otherwise, κ(〈−i〉(D)) = 1 (every tuple has unit cost
for deletion). Observe that R⊆ realizes C, since the latter
consists of anti-monotonic constraints.

3 Inconsistency Measures
Let S be a schema, and let C be a constraint system. An
inconsistency measure is a function I that maps a finite set
Σ ⊆ C of integrity constraints and a database D to a num-
ber I(Σ, D) ∈ [0,∞). Intuitively, a higher I(Σ, D) implies
that D is farther from satisfying Σ. We make two standard
requirements:
• I is zero on consistent databases; that is, I(Σ, D) = 0

whenever D |= Σ;
• I is invariant under logical equivalence of constraints;

that is, I(Σ, D) = I(Σ′, D) whenever Σ ≡ Σ′.
Next, we discuss several examples of inconsistency mea-

sures. Some of these measures (namely, Id, IMI, IP and IMC)
are adjusted from the survey of Thimm [2017]. The simplest
measure is the drastic inconsistency value, denoted Id, which
is the indicator function of inconsistency.

Id(Σ, D) :=

{
0 if D |= Σ;
1 otherwise.

The next measure assumes an underlying repair system R
and an underlying constraint system C such that C is realiz-
able byR. The measure IR is the minimal cost of a sequence
of operations that repairs the database. It captures the intu-
ition around various notions of repairs known as cardinality
repairs and optimal repairs [Kolahi and Lakshmanan, 2009;
Livshits et al., 2018; Afrati and Kolaitis, 2009].

IR(Σ, D) := min{κ?(o,D) | o ∈ O? and o(D) |= Σ}
Note that IR is the distance from satisfaction used in property
testing [Goldreich et al., 1998] in the special case where the
repair system consists of unit-cost insertions and deletions.
Measures for anti-monotonic constraints. The next mea-
sures apply to systems C of anti-monotonic constraints. Re-
call that an integrity constraint σ is anti-monotonic if for
all databases D and D′, if D ⊆ D′ and D′ |= σ, then
D |= σ. Examples of anti-monotonic constraints are the De-
nial Constraints (DCs) [Gaasterland et al., 1992], the clas-
sic Functional Dependencies (FDs), conditional FDs [Bo-
hannon et al., 2007], and Equality Generating Dependencies
(EDGs) [Beeri and Vardi, 1981].

For a set Σ ⊆ C of constraints and a database D, de-
note by MIΣ(D) the set of all minimal inconsistent subsets
of D; that is, the set of all E ⊆ D such that E 6|= Σ and,
moreover, E′ |= Σ for all E′ ( E. Again using our as-
sumption that constraints are anti-monotonic, it holds that
D |= Σ if and only if MIΣ(D) is empty. Drawing from
known inconsistency measures [Hunter and Konieczny, 2008;
Hunter and Konieczny, 2010], the measure IMI, also known
as MI Shapley Inconsistency, is the cardinality of this set.

IMI(Σ, D) := |MIΣ(D)|
A fact f that belongs to a minimal inconsistent subsetK (that
is, f ∈ K ∈ MIΣ(D)) is called problematic, and the measure
IP counts the problematic facts [Grant and Hunter, 2011].

IP(Σ, D) := | ∪MIΣ(D)|
For a finite set Σ ⊆ C of constraints and a database D,

we denote by MCΣ(D) the set of all maximal consistent sub-
sets of D; that is, the set of all E ⊆ D such that E |= Σ
and, moreover, E′ 6|= Σ whenever E ( E′ ⊆ D. Ob-
serve that if D |= Σ, then MCΣ(D) is simply the singleton
{D}. Moreover, under the assumption that constraints are
anti-monotonic, the set MCΣ(D) is never empty (since, e.g.,
the empty set is consistent). The measure IMC is the cardi-
nality of MCΣ(D), minus one.

IMC(Σ, D) := |MCΣ(D)| − 1
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4 Rationality for Progress Indication
We now propose and discuss several properties (postulates) of
general inconsistency measures that capture the rationale for
usability for progress estimation in database repairing. We
illustrate the satisfaction or violation of these postulates over
the different measures that we presented in the previous sec-
tion. The behavior of these measures with respect to the pos-
tulates is summarized in Table 1, which we discuss later on.
The measures are all defined in Section 3, except for I linR that
we define later in Section 5.

A basic postulate is positivity, sometimes referred to as
consistency [Grant and Hunter, 2017].

Positivity: I(Σ, D) > 0 whenever D 6|= Σ.

For illustration, each of Id, IMI, IP, and IR satisfies posi-
tivity, but not IMC. For example, let D consist of two facts,
R(a) and R(b), and Σ consist of the constraint ¬R(a); that
is, R(a) is not in the database. Then IMC(Σ, D) = 0 since
MCΣ(D) = {R(b)}. Yet, in the case of FDs (i.e., C = CFD),
every violation involves two facts, and so |MCΣ(D)| ≥ 2 and
positivity is satisfied.

The next postulate is monotonicity—inconsistency cannot
decrease if the constraints get stricter.

Monotonicity: I(Σ, D) ≤ I(Σ′, D) whenever Σ′ |= Σ.

For example, Id and IR satisfy monotonicity, since every re-
pair w.r.t. Σ′ is also a repair w.r.t. Σ. The measures IMI and IP
also satisfy monotonicity in the special case of FDs, since in
this case |MIΣ(D)| is the number of fact pairs that jointly vio-
late an FD, which can only increase when adding or strength-
ening FDs. Yet, they may violate monotonicity when going
beyond FDs to the more general class of DCs.

Proposition 1. In the case of IMI and IP, monotonicity can
be violated already for the class of DCs.

Proof. We begin with IMI. Consider a schema with a single
relation symbol, and for a natural number k > 0, let Σk con-
sist of a single DC stating that there are at most k− 1 facts in
the database. (The reader can easily verify that, indeed, Σk
can be expressed as a DC.) Then, IMI(Σk, D) =

(
n
k

)
when-

ever D has n ≥ k facts. In particular, whenever k′ > k and
D has n ≥ 2k′ facts, it holds that IMI(Σk′ , D) > IMI(Σk, D)
while Σk |= Σk′ .

We now consider IP. Let S be a schema that contains two
relation symbolsR(A,B) and S(A,B). Consider the follow-
ing two EGDs (which are, of course, special cases of DCs):

σ1 = ∀x, y, z, w[
(
R(x, y), S(x, z), S(x,w)

)
⇒ z = w]

σ2 = ∀x, z, w[
(
S(x, z), S(x,w)

)
⇒ z = w]

Let Σ1 = {σ1} and Σ2 = {σ1, σ2}. Every set in MIΣ1
(D)

is of size three, while the size of the sets in MIΣ2
(D) is two.

Hence, in a database where |MIΣ1
(D)| = |MIΣ2

(D)| (i.e., a
database where σ1 is violated by {R(a, b), S(a, c), S(a, d)}
if and only if σ2 is violated by {S(a, c), S(a, d)}), it will hold
that |PΣ1(D)| > |PΣ2(D)|, while Σ2 |= Σ1.

The measure IMC, on the other hand, can violate mono-
tonicity even for functional dependencies.

Proposition 2. In the case of IMC, monotonicity can be vio-
lated already for the class of FDs.

Proof. Let D consist of these facts over R(A,B,C,D):

f1 = R(0, 0, 0, 0) f2 = R(1, 0, 0, 0)

f3 = R(1, 1, 0, 1) f4 = R(0, 1, 0, 1)

Let Σ1 = {A → B} and Σ2 = {A → B,C → D}. Then
Σ2 |= Σ1 and the following hold.

MC(Σ1, D) = {{f1, f2}, {f1, f3}, {f2, f4}, {f3, f4}}
MC(Σ2, D) = {{f1, f2}, {f3, f4}}

Hence, we have IMC(Σ1, D) = 3 and IMC(Σ2, D) = 1,
proving that monotonicity is violated.

Positivity and monotonicity serve as sanity conditions that
the measure at hand indeed quantifies the inconsistency in the
database—it does not ignore inconsistency, and it does not re-
ward strictness of constraints. The next two postulates aim to
capture the rationale of using the inconsistency measure as
progress indication for data repairing. Such a measure should
not dictate the repairing operations to the data cleaner, but
rather accommodate the process with a number that suitably
communicates progress in inconsistency elimination. As an
example, the measure Id is useless in this sense, as it pro-
vides no indication of progress until the very end; in contrast,
a useful progress bar progresses steadily and continuously.
To the aim, we propose two postulates that are aware of the
underlying repair system R = (O, κ) as a model of opera-
tions. They are inspired by what Luo et al. [2004] state in-
formally as “continuously revised estimates” and “acceptable
pacing.” Progression states that inconsistency can always di-
minish with a single operation, and continuity limits the abil-
ity of such operation to have a relatively drastic effect.

More formally, progression states that, within the under-
lying repair system R = (O, κ), there is always a way to
progress towards consistency, as we can find an operation o
ofR such that inconsistency reduces after applying o.

Progression: whenever D 6|= Σ, there is o ∈ O such that
I(Σ, o(D)) < I(Σ, D).

For illustration, let us restrict to the system R⊆ of subset re-
pairs. Clearly, the measure Id violates progression. The mea-
sure IR satisfies progression, since we can always remove
a fact from the minimum repair. The measure IMI satisfies
progression, since we can always remove a fact f that par-
ticipates in one of the minimal inconsistent subsets and, by
doing so, eliminate all the subsets that include f . When we
remove a fact f that appears in a minimal inconsistent subset,
the measure IP decreases as well; hence, it satisfies progres-
sion. On the other hand, IMC may violate progression even
for functional dependencies.
Proposition 3. In the case of IMC, progression can be vio-
lated already for the class CFD of FDs and the systemR⊆ of
subset repairs.

Proof. Consider again the databaseD and the set Σ2 from the
proof of Proposition 2. As explained there, IMC(Σ2, D) = 1.
The reader can easily verify that for every tuple deletion o, it
is still the case that IMC(Σ2, o(D)) = 1.
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The last postulate we discuss is continuity that, as said
above, limits the relative reduction of inconsistency in re-
action to a single operation. More formally, this postulate
is parameterized by a number δ ≥ 1 and it states that, for
every two databases D1 and D2, and for each operation o1

on D1 we can find an operation o2 on D2 that is (almost)
at least as impactful as o1: it either eliminates all inconsis-
tency or reduces inconsistency by at least 1/δ of what o1

does. More formally, we denote by ∆I,Σ(o1, D1) the value
I(Σ, D1)− I(Σ, o1(D1)).
δ-continuity: For all Σ, D1, D2 and o1 ∈ O, there exists

o2 ∈ O such that either o2(D2) |= Σ or
∆I,Σ(o2, D2) ≥ ∆I,Σ(o1, D1)/δ.

Note that the possibility of o2(D2) |= Σ eliminates the case
where a measure violates continuity just because of a situa-
tion where the database is only slightly inconsistent and a last
step suffices to complete repairing.

This definition can be extended to the case where the in-
consistency measure is aware of the cost of operations in the
repair system R. There, the change is relative to the cost of
the operation. That is, we define the weighted version of δ-
continuity in the following way.
Weighted δ-continuity: For all Σ, D1, D2 and o1 ∈ O, there

exists o2 ∈ O such that either o2(D2) |= Σ or
∆I,Σ(o2,D2)
κ(o2,D2) ≥ ∆I,Σ(o1,D1)

δ·κ(o1,D1) .

We say that a measure I has bounded continuity, if there
exists δ > 0 such that I satisfies δ-continuity. Clearly, none
of the measures discussed so far, except for IR, satisfies (un-
weighted) bounded continuity.
Proposition 4. In the case of Id, IMI, IP and IMC, bounded
(unweighted) continuity can be violated already for the class
CFD of FDs and the systemR⊆ of subset repairs.

Proof. Let Σ = {A → B} and let D be a database that
contains the following facts over R(A,B,C):

f0 = R(0, 0, 0) fi = R(0, 1, i) fkj = R(j, k, 0)

where i, j ∈ {1, n} for some n and k ∈ {1, 2}. The fact f0

violates the FD with every fact fi, and for each j, the facts
f1
j and f2

j jointly violate the FD. All the facts in the database
participate in a violation of the FD; hence, IP(Σ, D) = 3n+
1. In addition, it holds that IMI(Σ, D) = 2n.

Let the operation o1 be the deletion of f0. Applying o1, we
significantly reduce inconsistency w.r.t. these two measures,
since none of the facts fi now participates in a violation;
thus, IP(Σ, o1(D)) = 2n and IMI(Σ, o1(D)) = n. How-
ever, every possible operation o2 on the database o1(D) only
slightly reduces inconsistency (by two in the case of IP and
by one in the case of IMI). Therefore, ∆IMI,Σ(o1, D) = n and
∆IMI,Σ(o2, o1(D)) = 1, and the ratio between these two val-
ues depends on |D|. Similarly, it holds that ∆IP,Σ(o1, D) =
n+1 and ∆IP,Σ(o2, o1(D)) = 2, and again the ratio between
these two values depends on |D|.

As for Id and IMC, we use Proposition 5 that we give later
on. In the case of FDs, each of the two measures satisfies
positivity but not progression (Proposition 3), and hence, they
violate bounded continuity.

Table 1: Satisfaction of rationality postulates for a system C of anti-
monotonic constraints and the repairing system R⊆, and tractability
for DCs (“PTime” column, assuming P 6= NP)

Pos. Mono. Prog. B. Cont. PTime
Id X X 7 7 X
IMI X 7 X 7 X
IP X 7 X 7 X
IMC 7 7 7 7 7
IR X X X X 7

I lin
R X X X X X

On the other hand, it is an easy observation that IR satisfies
bounded continuity, and even bounded weighted continuity.

Table 1 summarizes the satisfaction of the postulates held
by the different inconsistency measures we discussed here,
for the case of a system C of anti-monotonic constraints and
the repair system R⊆. The last column refers to computa-
tional complexity and the last row refers to another measure,
I linR , both discussed in Section 5.

Note that there are some dependencies among the postu-
lates, as shown in the following easy proposition.
Proposition 5. Suppose that the class C is realizable by the
repair systemR, and let I be an inconsistency measure.
• If I satisfies progression, then I satisfies positivity.
• If I satisfies positivity and bounded continuity, then I

satisfies progression.
The proof of Proposition 5 is in the Appendix.

5 Computational Complexity
We now discuss aspects of computational complexity, and be-
gin with the complexity of measuring inconsistency accord-
ing to the aforementioned example measures. We focus on
the class of DCs and the special case of FDs. Moreover, we
focus on data complexity, which means that the set Σ of con-
straints is fixed, and only the database D is given as input for
the computation of I(Σ, D).

The measure Id boils down to testing consistency, which
is doable in polynomial time (under data complexity). The
measures IMI and IP can be computed by enumerating all the
subsets of D of a bounded size, where this size is determined
by Σ. Hence, IMI and IP can also be computed in polynomial
time. Yet, the measures IMC and IR can be intractable to
compute, already in the case of FDs, as we explain next.

When Σ is a set of FDs, IMC(Σ, D) is the number of
maximal independent sets (minus one) of the conflict graph
wherein the tuples of D are the nodes, and there is an edge
between every two tuples that violate an FD. Counting max-
imal independent sets is generally #P-complete, with several
tractable classes of graphs such as the P4-free graphs—the
graphs that do not contain any induced subgraph that is a path
of length four. Under conventional complexity assumptions,
the finite sets Σ of FDs for which IMC(Σ, D) is computable
in polynomial time are precisely the sets Σ of FDs that entail
a P4-free conflict graph for every database D [Livshits and
Kimelfeld, 2017].

For C = CFD and R = R⊆, the measure IR(Σ, D) is
the size of the minimum vertex cover of the conflict graph.
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Again, this is a hard (NP-hard) computational problem on
general graphs. In a recent work, it has been shown that
there is an efficient procedure that takes as input a set Σ of
FDs and determines one of two outcomes: (a) IR(Σ, D) can
be computed in polynomial time, or (b) IR(Σ, D) is NP-
hard to compute (and even approximate beyond some con-
stant) [Livshits et al., 2018]. There, they have also studied
the case where the repair system allows only to update cells
(and not delete or insert tuples). In both repair systems it is
the case that, if Σ consists of a single FD per relation (which
is a commonly studied case, e.g., key constraints [Fuxman
and Miller, 2007; Koutris and Wijsen, 2017]) then IR(Σ, D)
can be computed in polynomial time. Unfortunately, this is
no longer true (under conventional complexity assumptions)
if we go beyond FDs to simple EGDs.

Example 1. Consider the following four EGDs.

σ1 : ∀x, y, z[R(x, y), R(x, z)⇒ (y = z)]

σ2 : ∀x, y, z[R(x, y), R(y, z)⇒ (x = z)]

σ3 : ∀x, y, z[R(x, y), R(y, z)⇒ (x = y)]

σ4 : ∀x, y, z[R(x, y), S(y, z)⇒ (x = z)]

Observe that σ1 is an FD whereas σ2, σ3 and σ4 are not.
The constraint σ2 states that there are no paths of length two
except for two-node cycles, and σ3 states that there are no
paths of length two except for single-node cycles. Computing
IR(Σ, D) w.r.t. Σ = {σ1} or Σ = {σ4} can be done in
polynomial time; however, the problem becomes NP-hard for
Σ = {σ2} and Σ = {σ3}.

The following theorem gives a full classification of the
complexity of computing IR(Σ, D) for Σ that consists of a
single EGD with two binary atoms.

Theorem 1. Let R = R⊆, and let Σ be a set of constraints
that contains a single EGD σ with two binary atoms. If σ is
of the following form:

∀x1, x2, x3[R(x1, x2), R(x2, x3)⇒ (xi = xj)]

then computing IR(Σ, D) is NP-hard. In any other case,
IR(Σ, D) can be computed in polynomial time.

The proof of hardness in Theorem 1 is by reduction from
the problem of finding a maximum cut in a graph, which is
known to be NP-hard. The full proof, as well as efficient
algorithms for the tractable cases, are in the Appendix.

Note that the EGDs σ2 and σ3 from Example 1 satisfy
the condition of Theorem 1; hence, computing IR(Σ, D)
w.r.t. these EGDs is indeed NP-hard. The EGDs σ1 and σ4

do not satisfy the condition of the theorem; thus, computing
IR(Σ, D) w.r.t. these EGDs can be done in polynomial time.

5.1 Rational and Tractable Measure
We now propose a new inconsistency measure that applies
to the special case where C is the class CDC of DCs (denial
constraints) and R = R⊆. Recall that a DC has the form
∀~x¬[ϕ(~x)∧ψ(~x)] where ϕ(~x) is a conjunction of atomic for-
mulas over the schema, and ψ(~x) is a conjunction of compar-
isons over ~x. Also recall that DCs generalize common classes
of constraints such as FDs, conditional FDs, and EGDs.

Minimize :
∑

i∈ids(D)

xi · κ(〈−i〉(·), D) subj. to:

∀E ∈ MIΣ(D) :
∑

i∈ids(E)

xi ≥ 1 (1)

∀i ∈ ids(D) : xi ∈ {0, 1} (2)

Figure 1: ILP for IR(Σ, D) under CDC and R⊆

Let D be a database and Σ a finite set of DCs. For
R = (O, κ), the measure IR(Σ, D) is the result of the In-
teger Linear Program (ILP) of Figure 1 wherein each xi,
for i ∈ ids(D), determines whether to delete the ith tuple
(xi = 1) or not (xi = 0). Denote by I linR (Σ, D) the solution of
the linear relaxation of this ILP, which is the Linear Program
(LP) obtained from the ILP by replacing the last constraint
(i.e., Equation (2)) with:

∀i ∈ ids(D) : 0 ≤ xi ≤ 1

It is easy to see that the relative rankings of the incon-
sistency measure values of two databases under I linR and IR
are consistent with each other if they have sufficient separa-
tion under the first one. More formally, for two databases
D1, D2 we have that I linR (Σ, D1) ≥ µ · I linR (Σ, D2) implies
that IR(Σ, D1) ≥ IR(Σ, D2), where µ is the integrality gap
of the LP relaxation. The maximum number of tuples in-
volved in a violation of a constraint in Σ gives an upper bound
on this integrality gap. In particular, for FDs (as well for the
EGDs in Example 1), this number is 2; hence, I linR (Σ, D1) ≥
2 · I linR (Σ, D2) implies that IR(Σ, D1) ≥ IR(Σ, D2).

The following theorem shows that I linR satisfies all four pos-
tulates and can be efficiently computed for the class CDC of
denial constraints and the repair systemR⊆.
Theorem 2. The following hold for C = CDC andR = R⊆.

1. I linR satisfies positivity, monotonicity, progression and
constant weighted continuity.

2. I linR can be computed in polynomial time (in data com-
plexity).

The proof of Theorem 2 is in the Appendix. It thus appears
from Theorem 2 that, for tuple deletions and DCs, I linR is a
desirable inconsistency measure, as it satisfies the postulates
we discussed in this paper and avoids the inherent hardness
of IR (e.g., Theorem 1).

6 Concluding Remarks
We presented a framework for measuring database inconsis-
tency from the viewpoint of progress estimation in database
repairing. In particular, we have discussed four rationality
postulates, where two (progression and continuity) are de-
fined in the context of the underlying repair system. We have
also used the postulates to reason about various instances of
inconsistency measures. In particular, the combination of the
postulates and the computational complexity shed a positive
light on the linear relaxation of minimal repairing. In future
work, we plan to explore other rationality postulates as well
as completeness criteria for sets of postulates to determine
sufficiency for progress indication.
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A Additional Proofs
A.1 Proof of Proposition 5

Proposition 5. Suppose that the class C is realizable by the
repair systemR, and let I be an inconsistency measure.

• If I satisfies progression, then I satisfies positivity.

• If I satisfies positivity and bounded continuity, then I
satisfies progression.

Proof. The first part of the proposition holds since if I satis-
fies progression, then for every inconsistent database D there
exists an operation o such that I(Σ, o(D)) is strictly lower
than I(Σ, D), which implies that I(Σ, D) > 0.

For the second part, let us assume, by way of contra-
diction, that I does not satisfy progression. Then, there
exists a database D and a set of constraints Σ such that
D 6|= Σ, and for every operation o ∈ O on D it holds
that I(Σ, o(D)) ≥ I(Σ, D). In addition, I satisfies posi-
tivity; thus, it holds that I(Σ, D) > 0. Since C is realiz-
able by R, there exists a sequence of operations o1, . . . , on
from R, such that on ◦ · · · ◦ o1(D) is consistent (hence,
I(Σ, on ◦ · · · ◦ o1(D)) = 0). We conclude that there exists
an operation oj such that ∆I,Σ(oj , oj−1 ◦ · · · ◦ o1(D)) > 0,
but there is no such operation on D, which is a contradiction
to the fact that I satisfies continuity, and that concludes our
proof.

A.2 Proof of Theorem 1

Theorem 1. Let R = R⊆, and let Σ be a set of constraints
that contains a single EGD σ with two binary atoms. If σ is
of the following form:

∀x1, x2, x3[R(x1, x2), R(x2, x3)⇒ (xi = xj)]

then computing IR(Σ, D) is NP-hard. In any other case,
IR(Σ, D) can be computed in polynomial time.

We start by proving the negative side of the theorem. That
is, we prove the following.
Lemma 1. LetR = R⊆ and let Σ = {σ} where σ is an EGD
of the form ∀x1, x2, x3 [R(x1, x2), R(x2, x3)⇒ (xi = xj)].
Then, computing IR(Σ, D) is NP-hard.

Proof. We build a reduction from the MaxCut problem to the
problem of computing IR(Σ, D) for Σ = {σ}. The MaxCut
problem is the problem of finding a cut in a graph (i.e., a
partition of the vertices into two disjoint subsets), such that
the number of edges crossing the cut is the highest among all
possible cuts. This problem is known to be NP-hard.

Given a graph g, with n vertices andm edges, we construct
an input to our problem (that is, a databaseD) as follows. For
each vertex vi we add the following two facts to the database:

R(1, vi), R(vi, 2)

Moreover, for each edge (vi, vj), we add the following two
facts to the database:

R(vj , vi), R(vi, vj)

Note that for each vertex vi, the factsR(1, vi) andR(vi, 2)
violate the EGD together. Moreover, two facts of the form
R(1, vi) and R(vi, vj) jointly violate the EGD, and two facts
of the form R(vi, 2) and R(vj , vi) jointly violate the EGD.
Finally, two facts of the form R(vi, vj) and R(vj , vk) violate
the FD with each other. These are the only violations of the
EGD in the database.

We set the cost κ(o,D) to be 1 when the operation o is a
deletion of a fact of the form R(vi, vj), and we set κ(o,D) to
be m + 1 when the operation o is a deletion of a fact of the
form R(1, vi) or R(vi, 2). We now prove that there is a cut of
size at least k, if and only if

IR(Σ, D) ≤ (m+ 1) · n+ 2(m− k) + k

First, assume that there exists a cut of size k in the graph,
that partitions the vertices into two groups - S1 and S2. In this
case, we can remove the following facts from D to obtain a
consistent subset D′.

• R(1, vi) if vi ∈ S2,

• R(vi, 2) if vi ∈ S1,

• R(vj , vi) if either R(1, vj) or R(vi, 2) have not been
removed.

Each vertex vi belongs to either S1 or S2; hence, we remove
exactly one of the facts R(1, vi) and R(vi, 2) for each vi,
and resolve the conflict between these two facts. The cost of
removing these n facts is (m + 1) · n. Next, for each edge
(vi, vj) such that both vi and vj belong to the same subset
Sk, we remove both R(vj , vi) and R(vi, vj), since the first
violates the EDG withR(1, vj) if vi, vj ∈ S1 or withR(vi, 2)
if vi, vj ∈ S2, and the second violates the EDG with R(1, vi)
if vi, vj ∈ S1 or with R(vj , 2) if vi, vj ∈ S2. The cost of
removing these 2(m− k) facts is 2(m− k).

Finally, for each edge (vi, vj) that crosses the cut, we re-
move one of R(vj , vi) or R(vi, vj) from the database. If
vi ∈ S1 and vj ∈ S2, then we have already removed the
facts R(1, vj) and R(vi, 2) from the database; thus, the fact
R(vj , vi) does not violate the EGD with any other fact, and
we only have to remove the fact R(vi, vj) that violates the
EGD with both R(1, vi) and R(vj , 2). Similarly, if vi ∈ S2

and vj ∈ S1, we only remove the fact R(vj , vi). The cost of
removing these k facts is k. Hence, the total cost of removing
all these facts is (m+ 1) · n+ 2(m− k) + k.

Clearly, the result is a consistent subset D′ of D. As ex-
plained above, we have resolved the conflict betweenR(1, vi)
and R(vi, 2) for each vi, and we have resolved the con-
flict between every pair {R(vi, vj), R(1, vi)} of conflicting
facts and every pair {R(vi, vj), R(vj , 2)} of conflicting facts.
Finally, there are no conflicts among facts R(vi, vj) and
R(vj , vk) in D′ since vj either belongs to S1, in which case
the fact R(1, vj) appears in D′ and R(vj , vk) has been re-
moved from D′ as a result, or it belongs to S2, in which case
the fact R(vj , 2) appears in D′ and R(vi, vj) has been re-
moved from D′ as a result. Thus, the minimal cost of ob-
taining a consistent subset of D (i.e., a repair) is at most
(m+ 1) · n+ 2(m− k) + k.

Next, we assume that IR(Σ, D) ≤ (m + 1) · n + 2(m −
k) + k, and we prove that there exists a cut of size at least
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k in the graph. First, note that if there exists a consis-
tent subset D′ of D that can be obtained with cost at most
(m+1)·n+2(m−k)+k, such that bothR(1, vi) andR(vi, 2)
have been deleted, then we can obtain another consistent sub-
set of D with a lower cost by removing only R(1, vi) and
removing all the facts of the formR(vj , vi) instead of remov-
ing R(vi, 2). There are at most m such facts (if vi appears
in every clause) and the cost of removing them is at most m,
while the cost of removing R(vi, 2) is m + 1. Hence, from
now on we assume that the subset D′ contains exactly one
fact from {R(1, vi), R(vi, 2)} for each vi.

Now, we construct a cut in the graph from D′ in the fol-
lowing way. For each vi, if the fact R(1, vi) belongs to D′,
then we put vi in S1, and if the fact R(vi, 2) belongs to D′,
then we put vi in S2. As mentioned above, exactly one of
these two cases holds for each vi. It is only left to show that
the size of the cut is at least k. Since the cost of removing
the facts of the form R(1, vi) and R(vi, 2) is (m+ 1) ·n, and
the cost of removing each fact of the form R(vi, vj) is one,
at most 2(m − k) + k facts of the form R(vi, vj) have been
removed fromD to obtainD′. There are 2m facts of the form
R(vi, vj) in D; thus, at least k of them belong to D′.

For each factR(vi, vj) inD′ it holds that bothR(1, vi) and
R(vj , 2) do not belong to D′ (otherwise, D′ is inconsistent).
Hence, it holds that vi ∈ S2 and vj ∈ S1, and the correspond-
ing edge (vi, vj) crosses the cut. We conclude that there are
at least k edges that cross the cut.

We now move on to the proof of the positive side of the
theorem. We first consider the case where the EGD contains
two different relations and show that in this case IR(Σ, D)
can always be computed in polynomial time.

Lemma 2. Let R = R⊆ and let Σ = {σ} where σ is an
EGD of the form

∀x1, x2, x3, x4

[
R(xi1 , xi2), S(xj1 , xj2)⇒ (xi = xj)

]
Then, computing IR(Σ, D) can be done in polynomial time.

Proof. First, if xi1 = xi2 , then facts of the form R(a, b) for
a 6= b will never participate in a violation; hence we can
ignore these facts when computing a minimum repair and add
them to the repair later. Similarly, if xi3 = xi4 , then we can
ignore all the facts of the form R(a, b) for a 6= b. Thus, from
now on we assume that the database only contains facts that
may participate in a violation.

If R(xi1 , xi2) and S(xj1 , xj2) share variables (e.g., xi2 =
xj1 ), then two facts will violate the EGD only if they agree
on the values of the shared variables. Hence, we first split
the database into blocks of facts that agree on the values of
the shared variables, and we solve the problem separately for
each one of these blocks, since there are no violations among
facts in different blocks. Then, a minimum repair for the en-
tire database will be the disjoint union of the minimum repairs
for each one of the blocks. For example, if the only shared
variable is xi2 = xj1 , then each block will contain facts of
the form R(·, a), S(a, ·) for some value a. Note that if the
two atoms do not share any variables, then we will have one
block that contains all the facts in the database.

We start by considering the case where xi and xj both ap-
pear in eitherR(xi1 , xi2) or in S(xj1 , xj2). We assume, with-
out the loss of generality, that they both appear in R(xi1 , xi2)
(that is, xi = xi1 and xj = xi2 ). This means, that as long as
there is at least one fact in S that belongs to the current block,
all the facts in R that belong to the block should be of the
form R(a, a) for some value a. Hence, we have two possible
ways to obtain a consistent subset of a block: (a) remove all
the facts from S, or (b) remove from R all the facts R(a, b)
such that a 6= b. We can compute the cost of each one of
these options and choose the one with the lower cost.

In the case where xi appears only in R(xi1 , xi2) and xj
appears only in S(xj1 , xj2), we have three possible ways to
obtain a consistent subset of a block: (a) remove all the facts
fromR, (b) remove all the facts from S, or (c) choose a single
value that will appear in all the attributes corresponding to
the variables xi and xj , and remove from R and S all the
facts that use different values in these attributes. We can again
compute the cost of each one of these options and choose the
one with the lowest cost.

Next, we consider EGDs that use a single relation, such
that the two atoms in the EGD do not share any variables.

Lemma 3. Let R = R⊆ and let Σ = {σ} where σ is an
EGD of the form

∀x1, x2, x3, x4

[
R(x1, x2), R(x3, x4)⇒ (xi = xj)

]
Then, computing IR(Σ, D) can be done in polynomial time.

Proof. If xi and xj are both from either {x1, x2} or {x3, x4},
then each fact of the formR(a, b) such that a 6= b violates the
EGD by itself. Thus, we have to remove from the database
all such facts, and we can compute the cost of removing these
facts in polynomial time. Otherwise, xi is one of x1, x2 and
xj is one of x3, x4, in which case we have to choose some
value a and remove from the database all the facts that do not
use this value in both the attributes corresponding to xi, xj .

If xi = x1 and xj = x3, then all the facts in the database
should agree on the value of the first attribute, and we have to
choose the value that entails the lowest cost (that is, the cost
of removing all the facts that use a different value in the first
attribute is the lowest among all possible values). The case
where xi = x2 and xj = x4 is symmetric to this case.

If xi = x2 and xj = x3, then again each fact will violate
the EGD by itself unless it is of the formR(a, a). In addition,
two facts R(a, a) and R(b, b) for a 6= b will jointly violate
the EGD. Thus, only one fact of the form R(a, a) will not
be removed from the database, and we again have to choose
the one that entails the lowest cost. The case where xi = x1

and xj = x3 is symmetric to this case. Hence, computing
IR(Σ, D) can again be done in polynomial time.

So far, we have covered the cases where the EGD either
considers two different relations or considers only one rela-
tion, but there are no shared variables among the atoms. In
both cases, computing IR(Σ, D) can always be done in poly-
nomial time. Next, we consider the cases where the EGD uses
a single relation and the two atoms do share variables, but the
EGD does not satisfy the condition of the theorem.
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Lemma 4. Let R = R⊆ and let Σ = {σ} where σ is an
EGD of one of the following forms:

1. ∀x1, x2

[
R(x1, x2), R(x1, x2)⇒ (x1 = x2)

]
2. ∀x1, x2, x3

[
R(x1, x2), R(x1, x3)⇒ (xi = xj)

]
3. ∀x1, x2

[
R(x1, x2), R(x2, x1)⇒ (x1 = x2)

]
Then, computing IR(Σ, D) can be done in polynomial time.

Proof. It is straightforward that computing IR(Σ, D)
w.r.t. an EGD of the first form can be done in polynomial
time, as each fact in R violates the EGD by itself, unless it
uses the same value in both attributes. Thus, we have to re-
move from the database all the facts of the form R(a, b) for
a 6= b, and we can compute the cost of removing these facts
in polynomial time.

For the second case, if xi = x2 and xj = x3, then an
EGD of this form is an FD, and IR(Σ, D) can be computed in
polynomial time [Livshits et al., 2018]. If xi, xj ∈ {x1, x2}
or xi, xj ∈ {x1, x3}, then we are again in the case where only
facts of the form R(a, a) are allowed, and we have to remove
the rest of the facts from the database.

Finally, for EGDs of the third form, it holds that only pairs
of facts {R(a, b), R(b, a)} violate the EGD; hence, for each
such pair we have to remove one of facts in the pair, and we
will remove the one that entails the lower cost.

A.3 Proof of Theorem 2

Theorem 2. The following hold for C = CDC andR = R⊆.

1. I linR satisfies positivity, monotonicity, progression and
constant weighted continuity.

2. I linR can be computed in polynomial time (in data com-
plexity).

Proof. The tractability of I linR is simply due to the fact
that we can enumerate MIΣ(D) in polynomial time, hence
construct the LP, and then use any polynomial-time LP
solver [Khachiyan, 1979]. So, in the remainder of the proof,
we prove that the four postulates are satisfied. By “the LP
program” we refer to the linear relaxation of the ILP pro-
gram of Figure 1, where the bottom condition is replaced with
∀i ∈ ids(D) : 0 ≤ xi ≤ 1.

Proving positivity is straightforward. In particular, if D
violates Σ, then MIΣ(D) is nonempty; hence, the zero as-
signment (i.e., assigning zero to every xi) is infeasible due
to the first constraint, and the resulting value of the objective
function is strictly positive.

For monotonicity, let D be a database, and let Σ and Σ′

be two sets of DCs such that Σ′ |= Σ. To prove that
I linR (Σ, D) ≤ I linR (Σ′, D) it suffices to prove that every fea-
sible solution w.r.t. Σ′ is also a feasible solution w.r.t. Σ.
More specifically, if an assignment to the xi’s satisfies the
set (1) of inequalities for MIΣ′(D), then it also satisfies (1)
for MIΣ(D). For that, it suffices to show that for every
E ∈ MIΣ(D) there is E′ ∈ MIΣ′(D) such that E′ ⊆ E.
This is straightforward from our assumption that Σ′ |= Σ: if
E ∈ MIΣ(D), then E 6|= Σ; hence, E 6|= Σ′, and E contains
a minimal inconsistent subset E′ ∈ MIΣ′(D).

As for progression, let D be a database, and let Σ be a
set of DCs such that D violates Σ. Let µ be an assignment
to the xi’s of the LP such that µ realizes I linR (Σ, D). Take
any j ∈ ids(D) such that xj > 0. Let D′ be the database
obtained from D by removing D[j], and let µ′ be the assign-
ment obtained by restricting µ to ids(D) \ {j}. Then, µ′ is
a feasible solution, and its objective value is smaller than that
of µ. We conclue that I linR (Σ, D′) < I linR (Σ, D).

Finally, we prove constant weighted continuity. Let Σ be a
set of DCs, let D1 and D2 be two inconsistent databases, and
let o1 = 〈−i〉(·) be an operation on D1. We need to find an
operation o2 = 〈−j〉(·) on D2 such that ∆I linR,Σ(o1, D1) ≤
δ · ∆I linR,Σ(o2, D2) for some constant δ that depends only
on Σ. Let µ1 be an assignment for the LP that realizes
I linR (Σ, D1), and let µ′1 be an assignment for the LP that re-
alizes I linR (Σ, o1(D1)). Let µ′′1 be the assignment that is ob-
tained by extending µ′1 with µ′′1(xi) = 1; that is, µ′′1(xj) =
µ′1(xj) for j ∈ ids(D1) \ {i}, and µ′′1(xj) = 1 for j = i.
Then the objective value for µ′′1 is greater than the objective
value for µ′1 by at most κ(o1, D1). Moreover, µ′′1 is a feasible
solution w.r.t. D1. We conclude that

∆I linR,Σ(o1, D1) ≤ κ(o1, D1) . (3)

Now, let µ2 be an assignment that realizes I linR (Σ, D2), and
let E be any set in MIΣ(D2). Then, from the definition of
the LP it follows that there exists a tuple identifier j such
that D2[j] ∈ E and µ2(xj) ≥ 1/|E|. Therefore, by re-
moving D2[j] we get a feasible solution w.r.t. D2 such that
the reduction in inconsistency is at least κ(o2, D2)/|E| for
o2 = 〈−j〉(·). We conclude that

∆I linR,Σ(o2, D2) ≥ κ(o2, D2)

|E|
. (4)

Combining (3) and (4), we conclude that

∆I linR,Σ(o1, D1) ≤ |E| · κ(o1, D1)

κ(o2, D2)
·∆I linR,Σ(o2, D2) .

Finally, we observe that the cardinality |E| is bounded by the
maximal number of atoms in any DC of Σ. Denoting this
maximal number by dΣ, we conclude constant weighted con-
tinuity by taking δ = dΣ.
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