Copper-Catalyzed Intermolecular Carboamination of Alkenes Induced by Visible Light

SUPPORTING INFORMATION

Yang Xiong, Xiaodong Ma, Guozhu Zhang State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

CONTENTS

(email: guozhuzhang@sioc.ac.cn)

1. General Experimental Information	2
2. Experimental Details	3
3. Synthesis and Characterization of Products	3
4. Copies of NMR spectra	25

1. General Experimental Information

NMR spectra were recorded at room temperature on the following spectrometers: Agilent (400 MHz), VARIAN (400 MHz) and Bruker (400 MHz). Chemical shifts are given in ppm and coupling constants in Hz. ¹H spectra were calibrated in relation to the reference measurement of TMS (0.00 ppm). ¹³C spectra were calibrated in relation to deuterated solvents, namely CDCl₃ (77.16 ppm). The following abbreviations were used for ¹H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. When combinations of multiplicities are given the first character noted refers to the largest coupling constant. High performance liquid chromatography (HPLC) was carried out with Agilent 1260 Infinity on a UV spectrophotometric detector (Agilent). For ESI⁺-spectra an EI⁻HR (GC-TOF) spectrometer was applied. Infrared Spectroscopy (IR) was processed on an FT-IR spectrometer named Nicolet 380. The method is denoted in brackets. For the most significant bands the wave number \tilde{v} (cm⁻¹) is given. Analytical Thin Layer Chromatography (TLC) was purchased from Jiangyou, Yantai, China. Blue LED lamps (40 W; Kessill A160WE Tuna Blue) were used to irradiate the reaction mixtures.

Chemicals were purchased from commercial suppliers. Unless stated otherwise, all the substrates and solvents were purified and dried according to standard methods prior to use. Reactions requiring inert conditions were carried out in glove box.

2. Experimental Details

Scheme 1. Copper-catalyzed carboamination of alkenes induced by visible light

(1). General Procedure A

In a nitrogen-filled glovebox, an oven-dried 4 mL vial, CuCl (2.0 mg, 0.02 mmol, 10 mol %), LiO'Bu (24.0 mg, 0.3 mmol, 1.5 equiv), the amine (0.3 mmol, 1.5 equiv) were dissolved in CH₃CN (1.5 mL). The mixture was stirred for 5-10 min. Then, alkene substrate (0.20 mmol, 1.0 equiv) was added, followed by the alkyl iodide (0.4 mmol, 2.0 equiv). The reaction mixture was irradiated with 40 W Kessil blue LED lamps (two or three reactions with one lamps), placed ~3.5 cm away, for 60 h. The mixture was washed with Water (2 mL), and brine (10 mL) sequentially, dried over Na₂SO₄. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the product.

(2). General Procedure B

In a nitrogen-filled glovebox, an oven-dried 4 mL vial, CuCl (2.0 mg, 0.02 mmol, 10 mol %) and race-BINOL (11.5 mg, 0.040 mmol, 20 mol %), LiO'Bu (24.0 mg, 0.3 mmol, 1.5 equiv), were dissolved in CH₃CN (1.5 mL) and DMA (0.3 mL). The mixture was stirred for 5-10 min. Then, the amine (0.3 mmol, 1.5 equiv) was added and the mixture stirred for another 5-10 min. Next, alkene substrate (0.20 mmol, 1.0 equiv) was added, followed by the alkyl iodide (0.4 mmol, 2.0 equiv). The reaction mixture was irradiated with 40 W Kessil blue LED lamps (two or three reactions with one lamps), placed ~3.5 cm away, for 60 h. The mixture was washed with Water (2 mL), and brine (10 mL) sequentially, dried over Na₂SO₄. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the product.

3. Synthesis and Characterization of Products

9-(4,4,4-Trifluoro-1-phenylbutyl)-9H-carbazole d1

$$\bigcap_{N} \bigcap_{CF_3}$$

According to the general procedure A, this reaction was conducted in 0.4 mmol scale. d1 (115.8 mg, 0.328 mmol) was prepared from 9*H*-carbazole (100.3 mg, 0.6 mmol), styrene (41.7 mg, 0.4 mmol) and 1,1,1-trifluoro-2-iodoethane (168.0 mg, 0.4 mmol) as white solid in 82% yield by column chromatography on silica gel with a gradient eluent of PE.

1 mmol scale: In a nitrogen-filled glovebox, an oven-dried 20 mL vial, CuCl (9.9 mg, 0.1 mmol, 10 mol %), LiO'Bu (120.1 mg, 1.5 mmol, 1.5 equiv), 9*H*-carbazole (250.8 mg, 1.5 mmol, 1.5 equiv)

were dissolved in CH₃CN (7.5 mL). The mixture was stirred for 5-10 min. Then, styrene (104.2 mg, 1.0 mmol, 1.0 equiv) was added, followed by the 1,1,1-trifluoro-2-iodoethane (419.9 mg, 2.0 mmol, 2.0 equiv). The reaction mixture was irradiated with 40 W Kessil blue LED lamps (with one lamps), placed ~3.5 cm away, for 60 h. The mixture was washed with Water (10 mL), and brine (20 mL) sequentially, dried over Na₂SO₄. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether (PE) to afford the product **d1** (247.4 mg, 0.70 mmol) in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.31 – 7.16 (m, 9H), 5.92 (dd, J = 11.5, 4.7 Hz, 1H), 3.00 – 2.87 (m, 1H), 2.84 – 2.73 (m, 1H), 2.13 – 1.96 (m, 1H), 1.77 – 1.59 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 139.0, 129.0, 127.9, 127.0 (d, J = 276.4 Hz), 126.6, 126.0, 123.6, 120.6, 119.6, 110.0, 56.1, 31.1 (q, J = 29.0 Hz), 24.3 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2926.5, 1450.6, 1252.0, 1141.2, 749.1, 697.7. HRMS (EI (+), 70 eV): C₂₂H₁₈NF₃ calcd. [M]⁺: 353.1391, found: 353.1385.

9-(4,4,4-Trifluoro-1-(p-tolyl)butyl)-9H-carbazole d2

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d2** (55.1 mg, 0.150 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-methyl-4-vinylbenzene (23.6 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 75% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.31 – 7.18 (m, 4H), 7.10 (dd, J = 23.2, 8.0 Hz, 4H), 5.88 (dd, J = 11.3, 4.5 Hz, 1H), 2.99 – 2.83 (m, 1H), 2.82 – 2.69 (m, 1H), 2.28 (s, 3H), 2.09 – 1.95 (m, 1H), 1.75 – 1.58 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 137.6, 136.0, 129.6, 127.0 (d, J = 276.5 Hz), 126.5, 126.0, 123.5, 120.6, 119.5, 110.1, 56.0, 31.2 (d, J = 29.1 Hz), 24.3(d, J = 2.7 Hz), 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2920.0, 1449.5, 1233.0, 1142.4, 745.7, 723.6. HRMS (EI (+), 70 eV): C₂₃H₂₀NF₃ calcd. [M]⁺: 367.1548, found: 367.1541.

9-(1-(4-(Tert-butyl)phenyl)-4,4,4-trifluorobutyl)-9H-carbazole d3

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d3** (62.2 mg, 0.152 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-(*tert*-butyl)-4-vinylbenzene (32.1 mg, 0.2 mmol) and 11,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 76% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 (d, J = 8.9 Hz, 4H), 7.26 (t, J = 7.4 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 5.92 (dd, J = 11.4, 4.7 Hz, 1H), 3.03 – 2.89 (m, 1H), 2.86 – 2.71 (m, 1H), 2.13 – 1.99 (m, 1H), 1.78 – 1.64 (m, 1H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 140.1, 136.0, 127.0 (d, J = 276.3 Hz), 126.3, 126.0, 125.8, 123.5, 120.6, 119.5, 110.1, 56.0, 34.6, 31.4, 31.2 (d, J = 29.0 Hz), 24.4 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J =

10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2920.0, 1450.2, 1233.1, 1144.4, 1126.6, 745.8, 720.5, 584.8. HRMS (EI (+), 70 eV): C₂₆H₂₆NF₃ calcd. [M]⁺: 409.2017, found: 409.2026.

9-(4,4,4-Trifluoro-1-(4-fluorophenyl)butyl)-9H-carbazole d4

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d4** (55.7 mg, 0.150 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-fluoro-4-vinylbenzene (24.4 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 75% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.28 – 7.14 (m, 6H), 6.95 (t, J = 8.5 Hz, 2H), 5.87 (dd, J = 11.4, 4.1 Hz, 1H), 3.01 – 2.85 (m, 1H), 2.81 – 2.67 (m, 1H), 2.12 – 1.93 (m, 1H), 1.76 – 1.57 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 247.1 Hz), 139.9, 134.8, 128.2, 126.9 (d, J = 276.7 Hz), 126.1, 123.6, 120.7, 119.8, 116.0, 115.8, 109.9, 55.6, 31.1 (q, J = 29.3 Hz), 24.42 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.6 Hz, 3F), -114.3 – -114.4 (m, 1F). IR (neat) cm⁻¹ \hat{v} : 2923.3, 1450.3, 1235.3, 1144.9, 747.3, 724.3, 497.5. HRMS (EI (+), 70 eV): C₂₂H₁₇NF₄ calcd. [M]⁺: 371.1297, found: 371.1296.

9-(1-(4-Chlorophenyl)-4,4,4-trifluorobutyl)-9H-carbazole d5

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d5** (56.6 mg, 0.146 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-chloro-4-vinylbenzene (27.7 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 73% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.7 Hz, 6H), 7.15 (d, J = 8.4 Hz, 2H), 5.85 (dd, J = 11.5, 4.4 Hz, 1H), 2.97 – 2.84 (m, 1H), 2.79 – 2.67 (m, 1H), 2.09 – 1.94 (m, 1H), 1.73 – 1.59 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 137.6, 133.8, 129.1, 128.0, 126.9 (d, J = 276.4 Hz), 126.1, 123.6, 120.7, 119.8, 109.9, 55.6, 31.0 (q, J = 29.3 Hz), 24.3 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2922.1, 1449.6, 1234.0, 1140.8, 746.6, 723.4, 563.0. HRMS (EI (+), 70 eV): C₂₂H₁₇NF₃Cl calcd. [M]⁺: 387.1002, found: 387.1003.

9-(1-(4-Bromophenyl)-4,4,4-trifluorobutyl)-9H-carbazole d6

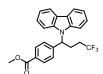
According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d6** (65.7 mg, 0.152 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-bromo-4-vinylbenzene (36.6 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 76% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃)

δ 8.12 (d, J = 7.7 Hz, 2H), 7.37 (dd, J = 11.9, 8.2 Hz, 4H), 7.28 – 7.17 (m, 4H), 7.09 (d, J = 8.2 Hz, 2H), 5.83 (dd, J = 11.5, 4.4 Hz, 1H), 2.96 – 2.84 (m, 1H), 2.78 – 2.67 (m, 1H), 2.10 – 1.94 (m, 1H), 1.74 – 1.57 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 139.8, 138.1, 132.1, 128.3, 126.8 (d, J = 260.1 Hz), 126.1, 123.6, 122.0, 120.7, 119.8, 109.9, 55.6, 31.0 (d, J = 29.1 Hz), 24.2 (d, J = 2.5 Hz). 19 F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2922.1, 1449.5, 1234.0, 1141.2, 1117.8, 745.8, 722.7, 560.8. HRMS (EI (+), 70 eV): C₂₂H₁₇NF₃Br calcd. [M]⁺: 431.0496, found: 431.0491.

9-(4,4,4-Trifluoro-1-(4-methoxyphenyl)butyl)-9H-carbazole d7

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d7** (63.6 mg, 0.166 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-methoxy-4-vinylbenzene (26.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 83% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.7 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.32 – 7.19 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 5.87 (dd, J = 11.2, 4.5 Hz, 1H), 3.74 (s, 3H), 2.96 – 2.83 (m, 1H), 2.80 – 2.67 (m, 1H), 2.12 – 1.97 (m, 1H), 1.75 – 1.61 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 140.0, 131.0, 127.8, 127.0 (d, J = 276.5 Hz), 126.0, 123.5, 120.6, 119.5, 114.2, 110.0, 55.6, 55.3, 31.2 (q, J = 29.1 Hz), 24.3 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2921.6, 1450.6, 1248.1, 1180.4, 747.6, 723.3, 565.1. HRMS (EI (+), 70 eV): C₂₃H₂₀NOF₃ calcd. [M]⁺: 383.1497, found: 383.1488.

9-(1-([1,1'-Biphenyl]-4-yl)-4,4,4-trifluorobutyl)-9*H*-carbazole d8


According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d8** (64.4 mg, 0.150 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 4-vinyl-1,1'-biphenyl (26.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 75% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.7 Hz, 2H), 7.45 (dd, J = 11.8, 8.0 Hz, 4H), 7.39 – 7.31 (m, 4H), 7.31 – 7.17 (m, 7H), 5.89 (dd, J = 11.4, 4.5 Hz, 1H), 3.01 – 2.87 (m, 1H), 2.83 – 2.70 (m, 1H), 2.10 – 1.94 (m, 1H), 1.75 – 1.59 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 140.3, 140.0, 138.0, 128.9, 127.6, 127.5, 127.1, 126.99 (d, J = 276.4 Hz), 126.98, 126.1, 123.6, 120.7, 119.7, 110.1, 55.9, 31.1 (q, J = 29.4 Hz), 24.3 (d, J = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \bar{v} : 2922.2, 1450.4, 1233.6, 1141.7, 748.7, 722.4, 585.9. HRMS (EI (+), 70 eV): C₂₈H₂₂NF₃ calcd. [M]⁺: 429.1704, found: 429.1713.

9-(4,4,4-Trifluoro-1-(4-(trifluoromethyl)phenyl)butyl)-9H-carbazole d9

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d9** (59.8 mg, 0.142 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-(trifluoromethyl)-4-vinylbenzene (34.4 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 71% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.39 (dd, J = 14.7, 7.6 Hz, 4H), 7.27 (dd, J = 16.8, 8.5 Hz, 4H), 5.96 (dd, J = 11.6, 4.0 Hz, 1H), 3.05 – 2.91 (m, 1H), 2.87 – 2.75 (m, 1H), 2.13 – 2.00 (m, 1H), 1.78 – 1.64 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 139.8, 130.3 (q, J = 32.7 Hz), 127.0, 126.9 (d, J = 276.3 Hz), 126.2, 126.0 (q, J = 3.7 Hz), 123.7, 120.8, 120.0, 109.8, 55.8, 31.0 (q, J = 29.2 Hz), 24.3 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F), -66.2 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2920.0, 1451.2, 1321.1, 1114.2, 1067.4, 748.4, 722.8. HRMS (EI (+), 70 eV): C₂₈H₂₂NF₃ calcd. [M]⁺: 429.1704, found: 429.1713.

Methyl 4-(1-(9H-carbazol-9-yl)-4,4,4-trifluorobutyl)benzoate d10

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d10** (58.4 mg, 0.142 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), methyl-4-vinylbenzoate (32.4 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 71% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.7 Hz, 2H), 7.94 (d, J = 8.2 Hz, 2H), 7.43 – 7.33 (m, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.26 – 7.14 (m, 4H), 5.92 (dd, J = 11.5, 4.3 Hz, 1H), 3.86 (s, 3H), 3.01 – 2.87 (m, 1H), 2.84 – 2.72 (m, 1H), 2.11 – 1.98 (m, 1H), 1.75 – 1.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 144.1, 139.8, 130.2, 129.8, 126.9 (d, J = 276.4 Hz), 126.6, 126.1, 123.6, 120.7, 119.9, 109.8, 55.9, 52.3, 31.0 (dd, J = 58.4, 29.3 Hz), 24.2 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2951.8, 1719.4, 1451.2, 1280.1, 1112.1, 750.2, 724.3. HRMS (EI (+), 70 eV): C₂₄H₂₀NO₂F₃ calcd. [M]⁺: 411.1446, found: 411.1442.

9-(4,4,4-Trifluoro-1-(naphthalen-2-yl)butyl)-9H-carbazole d11

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d11** (45.8 mg, 0.170 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 2-vinylnaphthalene (30.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 71% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.7 Hz, 2H), 7.85 (s, 1H), 7.81 – 7.70 (m, 2H), 7.66 (d, J = 8.6 Hz, 1H), 7.46 (p, J = 7.2 Hz, 2H), 7.39 – 7.26 (m, 4H), 7.22 (dd, J = 12.9, 5.8 Hz, 2H), 7.17 (d, J = 8.5 Hz, 1H), 6.03 (dd, J = 11.3, 4.4 Hz, 1H), 3.12 – 2.98 (m, 1H), 2.96 – 2.84 (m, 1H), 2.15 – 2.00 (m, 1H), 1.79

-1.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.1, 136.6, 133.3, 132.9, 128.9, 128.2, 127.8, 127.0 (d, J = 276.2 Hz), 126.6, 126.5, 126.1, 125.0, 124.9, 123.6, 120.7, 119.7, 110.0, 56.2, 31.2 (q, J = 29.0 Hz), 24.1 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.0 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2921.0, 1451.4, 1249.9, 1126.1, 1026.6, 745.1, 718.7, 474.0. HRMS (EI (+), 70 eV): C₂₆H₂₀NF₃ calcd. [M]⁺: 403.1548, found: 403.1545.

9-(1-(2,5-Dimethylphenyl)-4,4,4-trifluorobutyl)-9H-carbazole d12

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d12** (61.0 mg, 0.160 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1,2-dimethyl-4-vinylbenzene (26.4 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 80% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.7 Hz, 2H), 7.52 (s, 1H), 7.40 – 7.29 (m, 4H), 7.28 – 7.16 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 5.83 (dd, J = 10.1, 5.2 Hz, 1H), 2.94 – 2.80 (m, 1H), 2.76 – 2.64 (m, 1H), 2.44 (s, 3H), 2.30 – 2.12 (m, 1H), 1.90 – 1.83 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 136.4, 135.6, 135.0, 131.6, 128.9, 127.4, 127.0 (d, J = 276.3 Hz), 125.9, 123.4, 120.5, 119.4, 110.0, 54.7, 31.6 (d, J = 28.9 Hz), 24.9 (d, J = 2.7 Hz), 21.6, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2919.7, 1450.9, 1257.9, 1128.6, 1026.2, 746.7, 720.6, 516.8. HRMS (EI (+), 70 eV): C₂₄H₂₂NF₃ calcd. [M]⁺: 381.1704, found: 381.1710.

9-(1-(3-Ethoxy-4-methoxyphenyl)-4,4,4-trifluorobutyl)-9H-carbazole d13

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d13** (72.7 mg, 0.170 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 2-ethoxy-1-methoxy-4-vinyl-benzene (35.7 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 85% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 20/1. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.4 Hz, 2H), 7.31 – 7.17 (m, 4H), 6.82 (d, J = 8.3 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.67 (s, 1H), 5.84 (dd, J = 11.1, 4.5 Hz, 1H), 3.85 (dt, J = 14.4, 7.1 Hz, 1H), 3.78 (s, 3H), 3.74 (dd, J = 16.3, 7.4 Hz, 1H), 2.94 – 2.80 (m, 1H), 2.77 – 2.65 (m, 1H), 2.12 – 1.95 (m, 1H), 1.73 – 1.59 (m, 1H), 1.25 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 148.6, 140.0, 131.4, 127.0 (d, J = 276.7 Hz), 125.9, 123.5, 120.6, 119.5, 118.7, 111.6, 111.4, 110.7, 110.1, 64.4, 55.9, 55.8, 31.1 (q, J = 28.9 Hz), 24.4 (d, J = 2.3 Hz), 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2929.8, 1450.0, 1251.2, 1137.9, 1025.5, 748.1, 723.5, 421.8. HRMS (EI (+), 70 eV): C₂₅H₂₄NO₂F₃ calcd. [M]⁺: 427.1759, found: 427.1755.

9-(4,4,4-Trifluoro-1-(pyridin-2-yl)butyl)-9H-carbazole d14

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d14** (36.2 mg, 0.102 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 2-ethoxy-1-methoxy-4-vinyl-benzene (21.0 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow solid in 51% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.4 Hz, 1H), 8.12 (d, J = 7.7 Hz, 2H), 8.07 (d, J = 7.8 Hz, 1H), 7.49 – 7.34 (m, 4H), 7.30 (d, J = 8.1 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.19 – 7.14 (m, 1H), 6.85 (d, J = 7.9 Hz, 1H), 5.93 (dd, J = 10.6, 5.2 Hz, 1H), 3.24 – 3.07 (m, 1H), 2.98 – 2.82 (m, 1H), 2.26 – 2.07 (m, 1H), 1.89 – 1.71 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 149.1, 139.6, 137.0, 127.1 (d, J = 276.5 Hz), 126.1, 125.9, 123.6, 122.9, 122.4, 120.6, 120.4, 119.7, 119.5, 110.7, 110.0, 58.25, 31.2 (q, J = 29.0 Hz), 23.4 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.0 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 3048.3, 1432.1, 1254.9, 1119.1, 1024.7, 748.2, 723.5. HRMS (EI (+), 70 eV): C₂₁H₁₇N₂F₃ calcd. [M]⁺: 354.1344, found: 354.1348.

9-(4,4,4-Trifluoro-1-Ferrocenebutyl)-9H-carbazole d15

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d15** (70.1 mg, 0.152 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), vinylferrocene (42.4 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow solid in 76% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/0.5. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 5.5 Hz, 2H), 7.51 (s, 2H), 7.34 – 7.07 (m, 4H), 5.89 (dd, J = 11.7, 3.5 Hz, 1H), 4.51 (s, 1H), 4.16 (s, 1H), 4.13 (s, 4H), 4.00 (s, 2H), 2.88 – 2.74 (m, 1H), 2.69 – 2.57 (m, 1H), 2.09 – 1.92 (m, 1H), 1.82 – 1.62 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 127.1 (d, J = 276.5 Hz), 126.1, 125.5, 120.5, 119.3, 111.7, 108.2, 86.9, 69.1, 68.71, 68.66, 67.7, 67.0, 54.1, 31.0 (q, J = 28.8 Hz), 24.9 (d, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.7 (td, J = 10.8, 3.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 3058.3, 1450.0, 1245.3, 1138.7, 746.2, 721.3, 479.4, 421.7. HRMS (DART (+)): C₂₆H₂₂NF₃Fe calcd. [M]⁺: 461.1048, found: 461.1046.

9-(5,5,5-Trifluoro-2-phenylpentan-2-yl)-9H-carbazole d16

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d16** (38.9 mg, 0.106 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), prop-1-en-2-ylbenzene (23.6 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 53% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 6.9, 1.9 Hz, 2H), 7.37 – 7.26 (m, 6H), 7.25 – 7.16 (m, 5H), 3.22 (td, J = 13.1, 4.8 Hz, 1H), 2.61 (td, J = 13.0, 3.6 Hz, 1H), 2.32 (s, 3H), 2.16 – 2.04 (m, 1H), 1.38 – 1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 141.0, 129.2, 127.4, 127.2 (d, J = 276.3 Hz), 125.7, 125.0, 124.5,

120.1, 119.5, 113.5, 65.5, 31.9, 31.6 (d, J = 2.5 Hz), 29.1 (q, J = 28.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 3054.2, 1443.0, 1252.6, 1135.0, 1060.7, 747.3, 702.8. HRMS (EI (+), 70 eV): C₂₃H₂₀NF₃ calcd. [M]⁺: 367.1548, found: 367.1549.

(E)-9-(6,6,6-trifluorohex-2-en-1-yl)-9*H*-carbazole d17

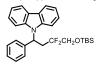
According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d17** (30.3 mg, 0.100 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), buta-1,3-diene (1 mol/L in THF, 200ul, 0.2 mmol) and 11,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) in 50% yield by column chromatography on silica gel with a gradient eluent of PE. The ratio of regioisomer > 10:1, major regioisomer: ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.7 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 5.69 (dt, J = 15.2, 4.9 Hz, 1H), 5.54 – 5.43 (m, 1H), 4.86 (d, J = 4.6 Hz, 1H), 2.23 (dd, J = 14.6, 6.8 Hz, 1H), 2.13 – 1.95 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 129.6, 126.9 (d, J = 276.5 Hz), 126.2, 125.9, 123.1, 120.5, 119.2, 108.8, 44.5, 33.4 (d, J = 28.4 Hz), 24.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2962.8, 1458.7, 1259.7, 1092.8, 1019.7, 798.5. HRMS (EI (+), 70 eV): C₁₈H₁₆NF₃ calcd. [M]⁺: 303.1235, found: 303.1240.

(E)-9-(6,6,6-trifluoro-1-(4-methoxyphenyl)hex-2-en-1-yl)-9H-carbazole d18

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d18** (49.1 mg, 0.120 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), (*E*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (32.0 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 60% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 – 7.21 (m, 4H), 7.16 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 6.38 (d, J = 6.9 Hz, 1H), 6.28 (dd, J = 15.2, 6.8 Hz, 1H), 5.73 – 5.59 (m, 1H), 3.77 (s, 3H), 2.36 (dd, J = 15.0, 7.0 Hz, 2H), 2.22 – 2.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 140.0, 131.8, 131.0, 128.4, 128.3, 126.9 (d, J = 276.7 Hz), 125.6, 123.6, 120.4, 119.3, 114.2, 110.5, 59.0, 55.4, 33.4 (q, J = 28.5 Hz), 25.0 (d, J = 3.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.5 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2921.9, 1510.8, 1450.3, 1248.2, 1125.2, 749.1, 723.4. HRMS (EI (+), 70 eV): C₂₅H₂₂NOF₃ calcd. [M]⁺: 409.1653, found: 409.1655.

9-(6,6,6-Trifluoro-1-phenylhexan-3-yl)-9H-carbazole d19

According to the general procedure A, this reaction was conducted in 0.3 mmol scale, for 72 h. **d19** (45.7 mg, 0.12 mmol) was prepared from 9*H*-carbazole (75.2 mg, 0.45 mmol), but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol) and 1,1,1-trifluoro-2-iodoethane (126.0 mg, 0.6 mmol) as white solid in 40% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz,


CDCl₃) δ 8.14 (dd, J = 18.0, 7.3 Hz, 2H), 7.58 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 4.0 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.24 – 7.13 (m, 4H), 6.97 (d, J = 7.4 Hz, 2H), 4.72 – 4.57 (m, 1H), 2.81 – 2.57 (m, 2H), 2.43 (dt, J = 14.8, 7.0 Hz, 2H), 2.38 – 2.26 (m, 1H), 2.26 – 2.11 (m, 1H), 2.06 – 1.85 (m, 1H), 1.77 – 1.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 128.6, 128.5, 127.0 (d, J = 275.9 Hz), 126.3, 126.0, 125.8, 120.9, 120.4, 119.4, 119.3, 111.2, 108.8, 54.4, 35.2, 32.7, 31.1 (q, J = 28.9 Hz), 26.1 (d, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2962.7, 1452.4, 1259.2, 1087.3, 1021.8, 798.5, 749.6. HRMS (EI (+), 70 eV): C₂₄H₂₂NF₃ calcd. [M]⁺: 381.1704, found: 381.1703.

2-Chloro-9-(4,4-difluoro-1-phenylbutyl)-9H-carbazole d20

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d20** (39.2 mg, 0.106 mmol) was prepared from 2-chloro-9*H*-carbazole (60.5 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1-difluoro-2-iodoethane (76.8 mg, 0.4 mmol) as white solid in 53% yield by column chromatography on silica gel with a gradient eluent of PE. 1 H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.40 – 7.34 (m, 1H), 7.32 – 7.24 (m, 8H), 7.20 (dd, J = 8.3, 1.7 Hz, 1H), 5.85 (dd, J = 11.0, 5.5 Hz, 1H), 5.92 – 5.56 (m, 1H), 2.85 – 2.68 (m, 2H), 1.91 – 1.72 (m, 1H), 1.52 – 1.39 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 140.7, 140.4, 138.9, 131.7, 129.0, 128.0, 126.6, 126.2, 123.0, 122.1 121.4, 120.5, 120.1, 120.0, 116.6 (t, J = 239.5 Hz), 110.5, 110.1, 56.9, 31.2 (t, J = 21.4 Hz), 23.8 (t, J = 5.1 Hz). 19 F NMR (376 MHz, CDCl₃) δ -114.8 – -118.6 (m, 2F). IR (neat) cm $^{-1}$ \tilde{v} : 2922.6, 1591.2, 1436.1, 1322.0, 1123.5, 809.1, 743.2, 698.2. HRMS (EI (+), 70 eV): C₂₂H₁₈NF₂Cl calcd. [M] $^{+}$: 369.1096, found: 369.1100.

9-(4-((Tert-butyldimethylsilyl)oxy)-3,3-difluoro-1-phenylbutyl)-9H-carbazole d21

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d21** (65.2 mg, 0.140 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and (2-bromo-2,2-difluoroethoxy)(*tert*-butyl)dimethylsilane (110.1 mg, 0.4 mmol) as colorless oil in 70% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 30/1. 1 H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.43 – 7.27 (m, 6H), 7.23 (dd, J = 13.6, 6.1 Hz, 5H), 6.31 (dd, J = 8.4, 4.0 Hz, 1H), 3.57 (q, J = 11.4 Hz, 1H), 3.43 – 3.12 (m, 3H), 0.78 (s, 9H), -0.07 (s, 3H), -0.17 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 139.8, 139.4, 128.8, 128.6 (d, J = 193.9 Hz), 127.7, 126.6, 125.8, 123.6, 120.5, 119.4, 110.4, 64.4 (t, J = 26.8 Hz), 51.1, 35.1, 25.8, 18.3, -5.6, -5.7. 19 F NMR (376 MHz, CDCl₃) δ -103.1 – -104.2 (m, 1F), -107.4 – -108.6 (m, 1F). IR (neat) cm⁻¹ \tilde{v} : 2928.7, 1451.9, 1120.9, 838.5, 748.2, 723.1. HRMS (EI (+), 70 eV): C₂₈H₃₃NOF₂Si calcd. [M]⁺: 465.2299, found: 465.2301.

9-(4-(Benzyloxy)-3,3-difluoro-1-phenylbutyl)-9H-carbazole d22

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d22** (58.3 mg, 0.132 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and ((2-bromo-2,2-difluoroethoxy)methyl)benzene (100.4 mg, 0.4 mmol) as colorless oil in 66% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.43 – 7.27 (m, 6H), 7.26 – 7.15 (m, 8H), 7.09 – 6.99 (m, 2H), 6.28 (dd, J = 9.3, 2.9 Hz, 1H), 4.07 (s, 2H), 3.48 – 3.32 (m, 2H), 3.27 – 2.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 139.2, 137.0, 128.9, 128.5, 128.0, 127.9, 127.8, 126.6, 125.9, 123.6 (t, J = 121.7 Hz), 120.5, 119.4, 110.4, 73.6, 70.3 (dd, J = 35.1, 29.6 Hz), 51.25, 35.3 (t, J = 23.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -99.1 – -100.3 (m, 1F), -104.9 – -106.2 (m, 1F). IR (neat) cm⁻¹ \tilde{v} : 2920.1, 1450.5, 1219.8, 1097.2, 746.5, 695.5. HRMS (EI (+), 70 eV): C₂₉H₂₅NOF₂ calcd. [M]⁺: 441.1904, found: 441.1908.

9-(4,4,5,5-Tetrafluoro-1-phenylpentyl)-9H-carbazole d23

$$\bigcap_{N}\bigcap_{CF_2CHF_2}$$

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d23** (58.6 mg, 0.152 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,2,2-tetrafluoro-3-iodopropane (96.8 mg, 0.4 mmol) as white solid in 76% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.7 Hz, 2H), 7.40 - 7.34 (m, 2H), 7.33 - 7.21 (m, 9H), 5.92 (dd, J = 11.1, 5.1 Hz, 1H), 5.57 (tt, J = 53.8, 2.8 Hz, 1H), 3.08 - 2.77 (m, 2H), 2.09 - 1.86 (m, 1H), 1.73 - 1.56 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.1, 139.3, 128.9, 127.9, 126.6, 126.0, 123.6, 120.6, 119.56, 115.3 (dt, J = 82.1, 35.1 Hz), 110.1, 108.9 (dt, J = 249.4, 40.7 Hz), 56.7, 27.3 (t, J = 22.4 Hz), 22.8 (t, J = 3.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.9 (dt, J = 18.2, 13.6 Hz, 2F), -133.2 – -136.6 (m, 2F). IR (neat) cm⁻¹ \tilde{v} : 2917.8, 1450.5, 1229.8, 1078.9, 749.7, 691.1. HRMS (EI (+), 70 eV): C₂₃H₁₉NF₄ calcd. [M]⁺: 385.1454, found: 385.1457.

9-(5,5,6,6,6-Pentafluoro-1-phenylhexyl)-9H-carbazole d24

$$\bigcap_{N} CF_2CF_3$$

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d24** (46.7 mg, 0.112 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1,2,2-pentafluoro-4-iodobutane (109.6 mg, 0.4 mmol) as white solid in 56% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.6 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.32 – 7.18 (m, 8H), 5.89 (dd, J = 10.7, 4.8 Hz, 1H), 2.88 – 2.56 (m, 2H), 2.09 – 1.86 (m, 2H), 1.68 – 1.56 (m, 1H), 1.39 – 1.29 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 139.7, 128.9, 127.7, 126.7, 126.2 (dd, J = 71.6, 33.2 Hz), 125.8, 123.5, 120.6, 119.4, 116.6 (dd, J = 187.8, 36.8 Hz), 110.1, 57.0, 31.1, 30.2 (t, J = 22.1 Hz), 18.04. ¹⁹F NMR (376

MHz, CDCl₃) δ -85.70 (s, 3F), -118.22 (t, J = 18.6 Hz, 2F). IR (neat) cm⁻¹ \tilde{v} : 2963.1, 1450.6, 1260.5, 1091.0, 1018.6, 798.5, 747.7. HRMS (EI (+), 70 eV): C₂₄H₂₀NF₅ calcd. [M]⁺: 417.1516, found: 417.1511.

9-(2-Cyclohexyl-1-phenylethyl)-9H-carbazole d25

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d25** (42.4 mg, 0.120 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and iodocyclohexane (84.0 mg, 0.4 mmol) as white solid in 60% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.42 – 7.30 (m, 4H), δ 7.29 – 7.15 (m, 7H), 5.99 (dd, J = 10.1, 5.2 Hz, 1H), 2.61 – 2.49 (m, 1H), 2.40 – 2.29 (m, 1H), 1.71 – 1.47 (m, 5H), 1.11 – 0.94 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 128.7, 127.4, 126.9, 125.6, 123.4, 122.2, 120.4, 119.0, 110.4, 54.8, 39.7, 34.5, 34.1, 33.2, 26.5, 26.1, 26.0. IR (neat) cm⁻¹ \tilde{v} : 2920.2, 1482.0, 1448.8, 1329.8, 745.6, 720.8, 695.7. HRMS (EI (+), 70 eV): C₂₆H₂₇N calcd. [M]⁺: 353.2144, found: 353.2149.

9-(2-(Oxetan-3-yl)-1-phenylethyl)-9H-carbazole d26

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d26** (34.7 mg, 0.106 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 3-iodooxetane (73.6 mg, 0.4 mmol) as white solid in 53% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 20/1. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.43 – 7.27 (m, 7H), 7.25 – 7.13 (m, 4H), 5.81 (dd, J = 11.6, 4.1 Hz, 1H), 4.61 – 4.54 (m, 1H), 4.50 (t, J = 6.2 Hz, 1H), 4.12 – 4.04 (m, 1H), 3.89 (t, J = 6.2 Hz, 1H), 3.07 – 2.95 (m, 1H), 2.93 – 2.82 (m, 1H), 2.69 – 2.54 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 139.6, 128.9, 127.7, 126.6, 125.8, 123.4, 120.6, 119.4, 109.9, 77.0, 76.9, 55.1, 34.6, 33.0. IR (neat) cm⁻¹ \tilde{v} : 2946.0, 1448.5, 1328.5, 1218.6, 969.1, 745.1, 717.9, 699.9. HRMS (EI (+), 70 eV): C₂₃H₂₁NO calcd. [M]⁺: 327.1623, found: 327.1621.

9-(1-Phenyl-2-(tetrahydro-2H-pyran-4-yl)ethyl)-9H-carbazole d27

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d27** (36.3 mg, 0.102 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 4-iodotetrahydro-2*H*-pyran (84.8 mg, 0.4 mmol) as white solid in 51% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 20/1. ¹H NMR (400 MHz, CDCl₃) 8.13 (d, J = 7.7 Hz, 2H), 7.43 - 7.30 (m, 4H), 7.30 - 7.16 (m, 7H), 6.00 (dd, J = 10.9, 4.8 Hz, 1H), 3.85 (dd, J = 11.5, 2.5 Hz, 1H), 3.78 (d, J = 11.3 Hz, 1H), 3.17 - 3.02 (m, 2H), 2.81 - 2.66 (m, 1H), 2.37 (ddd, J = 13.9, 8.8, 4.9 Hz, 1H), 1.82 (d, J = 12.7 Hz, 1H), 1.48 - 1.28 (m, 4H). ¹³C NMR (101

MHz, CDCl₃) δ 140.4, 128.8, 127.5, 126.7, 125.8, 123.5, 120.5, 119.2, 110.2, 67.8, 67.7, 54.3, 39.2, 33.6, 33.0, 32.0. IR (neat) cm⁻¹ \tilde{v} : 2920.1, 1449.2, 1326.3, 1218.6, 969.1, 745.1, 717.9, 699.9. HRMS (EI (+), 70 eV): C₂₅H₂₅NO calcd. [M]⁺: 355.1936, found: 355.1935.

Ethyl 4-(9H-carbazol-9-yl)-2,2-dimethyl-4-phenylbutanoate d28

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d28** (43.9 mg, 0.114 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and ethyl 2-iodo-2-methylpropanoate (96.8 mg, 0.4 mmol) as white solid in 57% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 15/1. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.7 Hz, 2H), 7.46 – 7.30 (m, 5H), 7.26 – 7.13 (m, 7H), 6.01 (dd, J = 10.0, 3.0 Hz, 1H), 3.67 – 3.56 (m, 1H), 3.41 – 3.30 (m, 1H), 3.14 (dd, J = 14.6, 10.1 Hz, 1H), 2.75 (dd, J = 14.6, 3.1 Hz, 1H), 1.24 (s, 3H), 0.96 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 140.6, 128.6, 127.4, 126.6, 125.9, 125.6, 123.5, 120.3, 119.2, 110.7, 60.5, 54.2, 42.1, 41.8, 26.0, 25.7, 13.8. IR (neat) cm⁻¹ \tilde{v} : 2974.8, 1720.1, 1449.8, 1323.0, 1136.9, 1025.4, 746.4, 722.3. HRMS (EI (+), 70 eV): C₂₆H₂₇NO₂ calcd. [M]⁺: 385.2042, found: 385.2044.

9-(3-Chloro-1-(3-ethoxy-4-methoxyphenyl)-propyl)-9H-carbazole d29

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d29** (32.3 mg, 0.082 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 2-ethoxy-1-methoxy-4-vinylbenzene (35.7 mg, 0.2 mmol) and CH₂Cl₂ (0.2 mL) as yellow solid in 41% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.7 Hz, 2H), 7.41 – 7.32 (m, 4H), 7.24 – 7.19 (m, 2H), 6.85 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.69 (s, 1H), 6.16 (dd, J = 10.5, 3.4 Hz, 1H), 3.92 – 3.84 (m, 1H), 3.82 (s, 3H), 3.80 – 3.72 (m, 1H), 3.43 (dd, J = 10.7, 4.5 Hz, 1H), 3.16 – 3.03 (m, 2H), 2.92 – 2.80 (m, 1H), 1.27 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 148.5, 140.0, 133.3, 125.9, 125.6, 123.6, 120.4, 119.5, 119.0, 118.8, 111.8, 111.4, 110.7, 110.3, 64.4, 56.1, 56.0, 52.2, 17.6, 14.7. IR (neat) cm⁻¹ \tilde{v} : 2931.5, 1450.9, 1233.2, 1138.2, 749.0, 724.2. HRMS (EI (+), 70 eV): C₂₄H₂₄NO₂Cl calcd. [M]⁺: 393.1496, found: 393.1498.

9-(2-(2,6-Dimethylphenyl)-1-(4-methoxyphenyl)ethyl)-9H-carbazole d30

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d30** (24.3 mg, 0.06 mmol) was prepared from 9*H*-carbazole (50.2 mg, 0.3 mmol), 1-methoxy-4-vinylbenzene (26.8

mg, 0.2 mmol) and 2-iodo-1,3-dimethylbenzene (92.8 mg, 0.4 mmol) as yellow solid in 30% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.31 – 7.21 (m, 5H), 7.14 (dd, J = 7.6, 6.2 Hz, 4H), 6.85 – 6.78 (m, 2H), 6.58 (s, 1H), 6.42 – 6.34 (m, 2H), 6.01 (dd, J = 9.5, 5.4 Hz, 1H), 3.75 (s, 3H), 3.73 – 3.59 (m, 2H), 2.46 – 2.37 (m, 1H), 1.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 140.4, 138.1, 137.6, 132.19, 129.2, 128.2, 128.0, 126.6, 125.3, 123.3, 120.1, 118.8, 114.0, 110.4, 58.6, 55.3, 37.5, 21.1. IR (neat) cm⁻¹ \tilde{v} : 2918.1, 1599.8, 1510.9, 1450.3, 1245.1, 1178.1, 746.9, 721.0. HRMS (EI (+), 70 eV): C₂₉H₂₇NO calcd. [M]⁺: 405.2093, found: 405.2101.

3-Bromo-9-(4,4,4-trifluoro-1-phenylbutyl)-9H-carbazole d31

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d31** (67.4 mg, 0.156 mmol) was prepared from 3-bromo-9*H*-carbazole (73.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 78% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.40 (dd, J = 14.5, 7.8 Hz, 2H), 7.33 – 7.18 (m, 7H), 7.11 (d, J = 8.7 Hz, 1H), 5.87 (dd, J = 11.2, 4.6 Hz, 1H), 2.96 – 2.70 (m, 2H), 2.12 – 1.95 (m, 1H), 1.75 – 1.57 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 138.6, 129.0, 128.7, 128.1, 126.9 (d, J = 276.2 Hz), 126.8, 126.5, 125.4, 123.4, 122.5, 120.9, 120.1, 112.6, 111.6, 110.1, 56.3, 31.1 (q, J = 29.3 Hz), 24.2 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2972.7, 1443.3, 1253.0, 1138.3, 1022.8, 743.9, 696.0. HRMS (EI (+), 70 eV): C₂₂H₁₇NF₃Br calcd. [M]⁺: 431.0496, found: 431.0493.

2-Methoxy-9-(4,4,4-trifluoro-1-phenylbutyl)-9H-carbazole d32

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d32** (64.4 mg, 0.168 mmol) was prepared from 3-methoxy-9H-carbazole (59.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 84% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 14.2, 8.1 Hz, 2H), 7.35 – 7.26 (m, 5H), 7.25 – 7.15 (m, 3H), 6.85 (d, J = 8.5 Hz, 1H), 6.74 (s, 1H), 5.85 (dd, J = 11.4, 4.6 Hz, 1H), 3.80 (s, 3H), 2.99 – 2.85 (m, 1H), 2.83 – 2.72 (m, 1H), 2.15 – 1.98 (m, 1H), 1.80 – 1.65 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 141.4, 140.1, 138.9, 129.0, 128.0, 127.0 (d, J = 276.3 Hz), 126.6, 124.7, 123.8, 121.3, 119.8, 119.7, 117.5, 109.9, 107.7, 94.8, 56.1, 55.7, 31.1 (q, J = 29.2 Hz), 24.1 (d, J = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2923.2, 1459.7, 1231.4, 1140.8, 1115.2, 1021.1, 741.5, 696.8. HRMS (EI (+), 70 eV): C₂₃H₂₀NOF₃ calcd. [M]⁺: 383.1497, found: 383.1500.

2,3-Diphenyl-1-(4,4,4-trifluoro-1-phenylbutyl)-1*H*-indole d33

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d33** (64.7 mg, 0.142 mmol) was prepared from 2,3-diphenyl-1*H*-indole (80.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 71% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.44 – 7.22 (m, 14H), 7.17 (dd, J = 16.8, 7.5 Hz, 2H), 7.08 (dd, J = 17.9, 8.1 Hz, 2H), 5.52 (dd, J = 11.2, 4.7 Hz, 1H), 2.83 – 2.67 (m, 1H), 2.62 – 2.49 (m, 1H), 1.87 – 1.72 (m, 1H), 1.52 – 1.40 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 138.8, 135.0, 134.9, 132.0, 131.2, 130.1, 129.0, 128.9, 128.6, 128.5, 128.3, 127.7, 127.4 (d, J = 272.2 Hz), 126.4, 125.9, 122.4, 120.7, 120.3, 116.2, 112.7, 57.1, 30.9 (q, J = 29.5 Hz), 25.1 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2921.8, 1452.9, 1253.8, 1136.0, 1024.3, 738.4, 697.1. HRMS (EI (+), 70 eV): C₃₀H₂₄NF₃ calcd. [M]⁺: 455.1861, found: 455.1871.

2-Phenyl-1-(4,4,4-trifluoro-1-phenylbutyl)-1*H*-indole-3-carbaldehyde d34

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d34** (49.7 mg, 0.122 mmol) was prepared from 2-phenyl-1*H*-indole-3-carbaldehyde (66.4 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 61% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 8.48 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 3.3 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.39 – 7.29 (m, 4H), 7.25 – 7.21 (m, 2H), 7.18 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 5.54 (dd, J = 11.0, 5.2 Hz, 1H), 2.82 – 2.55 (m, 2H), 1.88 – 1.76 (m, 1H), 1.64 – 1.46 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.2, 152.3, 138.3, 134.9, 131.8, 130.4, 129.9, 129.3, 129.1, 128.7, 128.3, 126.6 (d, J = 276.5 Hz), 126.3, 126.1, 124.3, 123.7, 122.7, 116.4, 112.8, 57.8, 30.9 (dd, J = 58.8, 29.5 Hz), 24.84 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2920.8, 1653.9, 1415.6, 1129.8, 1024.0, 747.0, 698.0. HRMS (EI (+), 70 eV): C₂₅H₂₀NOF₃ calcd. [M]⁺: 407.1497, found: 407.1499.

3-Chloro-1-(4,4,4-trifluoro-1-phenylbutyl)-1*H*-indazole d35

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d35** (33.9 mg, 0.100 mmol) was prepared from 3-chloro-1*H*-indazole (45.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 50% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃)

δ 7.67 (d, J = 8.1 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.34 – 7.22 (m, 6H), 7.19 (t, J = 7.4 Hz, 1H), 5.57 (dd, J = 9.8, 5.7 Hz, 1H), 3.00 – 2.88 (m, 1H), 2.54 (dt, J = 14.5, 6.3 Hz, 1H), 2.25 – 2.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 139.6, 133.9, 129.1, 128.4, 127.9, 127.1 (d, J = 276.3 Hz), 126.7, 121.8, 121.7, 120.1, 109.5, 61.9, 31.2 (q, J = 29.1 Hz), 27.8 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.7 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2922.6, 1255.4, 1141.9, 1068.5, 1029.0, 798.4, 743.1, 699.4. HRMS (EI (+), 70 eV): C₁₇H₁₄N₂CIF₃ calcd. [M]⁺: 338.0798, found: 338.0802.

3-Phenyl-1-(4,4,4-trifluoro-1-phenylbutyl)-1*H*-indazole d36

According to the general procedure A, this reaction was conducted in 0.2 mmol scale. **d36** (41.1 mg, 0.108 mmol) was prepared from 3-phenyl-1*H*-indazole (58.3 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as white solid in 54% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.1 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.55 – 7.45 (m, 3H), 7.44 – 7.36 (m, 3H), 7.34 – 7.29 (m, 3H), 7.21 – 7.13 (m, 2H), 5.77 (dd, J = 11.3, 5.0 Hz, 1H), 2.81 – 2.68 (m, 1H), 2.65 – 2.53 (m, 1H), 1.82 – 1.70 (m, 1H), 1.53 – 1.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 143.8, 138.5, 133.5, 130.3, 130.3, 129.5, 129.3, 129.1, 128.3, 126.6 (d, J = 276.3 Hz), 126.2, 123.2, 123.0, 120.7, 112.6, 58.6, 30.8 (d, J = 29.5 Hz), 25.5 (d, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.8 (t, J = 10.8 Hz). IR (neat) cm⁻¹ \tilde{v} : 2922.8, 1254.5, 1140.5, 1024.8, 741.8, 696.9. HRMS (EI (+), 70 eV): C₂₃H₁₉N₂F₃ calcd. [M]⁺: 380.1500, found: 380.1496.

1-(4,4,4-Trifluoro-1-phenylbutyl)indoline d37

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d37** (45.8 mg, 0.150 mmol) was prepared from indoline (35.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 75% yield by column chromatography on silica gel with a gradient eluent of PE. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 4H), 7.04 (t, J = 7.2 Hz, 2H), 6.60 (t, J = 7.3 Hz, 1H), 6.50 (d, J = 8.1 Hz, 1H), 4.69 – 4.63 (m, 1H), 3.41 (dd, J = 15.4, 8.9 Hz, 1H), 3.19 (dd, J = 18.1, 8.7 Hz, 1H), 3.06 – 2.80 (m, 2H), 2.45 – 2.04 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 139.0, 129.7, 128.7, 127.8, 127.4 (d, J = 276.1 Hz), 127.5, 124.8, 117.3, 106.7, 57.9, 46.7, 31.4 (dd, J = 51.7, 22.9 Hz), 28.2, 24.0 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.4 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2960.2, 1257.7, 1138.2, 1021.1, 798.8, 743.3. HRMS (EI (+), 70 eV): C₁₈H₁₈NF₃ calcd. [M]⁺: 305.1391, found: 305.1398.

1-(4,4,4-Trifluoro-1-phenylbutyl)-2,3-dihydro-1*H*-pyrrolo[2,3-b]pyridine d38

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d38** (37.4 mg, 0.122 mmol) was prepared from 2,3-dihydro-1*H*-pyrrolo[2,3-b]pyridine (36.1 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 61% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 50/1. 1 H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 4.6 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.26 (ddd, J = 9.6, 4.4, 1.9 Hz, 1H), 7.13 (dd, J = 7.0, 1.4 Hz, 1H), 6.42 (dd, J = 6.9, 5.4 Hz, 1H), 5.51 – 5.42 (m, 1H), 3.45 (ddd, J = 9.9, 9.0, 5.6 Hz, 1H), 3.12 (dt, J = 10.3, 8.5 Hz, 1H), 3.01 – 2.82 (m, 2H), 2.36 – 2.13 (m, 4H). 13 C NMR (101 MHz, CDCl₃) δ 162.6, 145.7, 138.8, 131.3, 128.8, 127.9, 127.8, 127.4 (d, J = 276.0 Hz), 122.9, 112.5, 54.6, 43.4, 31.6 (q, J = 28.9 Hz), 25.7, 23.1. 19 F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2961.9, 1260.1, 1091.4, 1019.1, 798.6. HRMS (EI (+), 70 eV): C_{17} H₁₇N₂F₃ calcd. [M]⁺: 306.1344, found: 306.1351.

1-(4,4,4-Trifluoro-1-phenylbutyl)-1,2,3,4-tetrahydroquinoline d39

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d39** (45.4 mg, 0.142 mmol) was prepared from 1,2,3,4-tetrahydroquinoline (40.0 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 71% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 7.09 – 7.02 (m, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.77 (d, J = 8.3 Hz, 1H), 6.60 (td, J = 7.3, 0.8 Hz, 1H), 5.06 (dd, J = 8.7, 6.2 Hz, 1H), 3.11 (ddd, J = 11.8, 8.3, 3.8 Hz, 1H), 3.03 – 2.92 (m, 1H), 2.74 (t, J = 6.3 Hz, 2H), 2.38 – 2.12 (m, 4H), 1.94 – 1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 140.1, 129.7, 128.7, 127.5, 127.44, 127.37 (d, J = 275.3 Hz), 127.3, 123.0, 116.2, 110.8, 58.2, 42.3, 31.6 (q, J = 28.8 Hz), 28.6, 23.2 (d, J = 2.6 Hz), 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2926.9, 1497.3, 1255.7, 1138.4, 745.1, 700.2. HRMS (EI (+), 70 eV): C₁₉H₂₀NF₃ calcd. [M]⁺: 319.1548, found: 319.1552.

N-methyl-N-(4,4,4-trifluoro-1-phenylbutyl)aniline d40

$$\bigcap_{N' \in F_3}$$

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d40** (37.6 mg, 0.128 mmol) was prepared from *N*-methylaniline (32.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 64% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.19 (m, 6H), 6.84 (d, J = 8.3 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 5.00 (dd, J = 9.1, 5.5 Hz, 1H), 2.66 (s, 3H), 2.42 – 2.05 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 140.0, 129.5, 128.9, 127.6, 127.5 (d, J = 294.9 Hz), 127.1, 117.6, 113.5, 60.7, 31.58 (t, J = 14.4 Hz), 24.11 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.5 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2924.5, 1502.3, 1252.7, 1138.4, 749.7, 696.5. HRMS (EI (+), 70 eV): C₁₇H₁₈NF₃ calcd. [M]⁺: 293.1391, found: 293.1399.

N-(1-([1,1'-biphenyl]-4-yl)-4,4,4-trifluorobutyl)aniline d41

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d41** (43.4 mg, 0.122 mmol) was prepared from aniline (27.9 mg, 0.3 mmol), 4-vinyl-1,1'-biphenyl (36.1 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow solid in 61% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 50/1. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.51 (m, 4H), 7.45 – 7.36 (m, 4H), 7.33 (dd, J = 8.3, 6.4 Hz, 1H), 7.12 (dd, J = 8.4, 7.5 Hz, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 7.7 Hz, 2H), 4.44 (t, J = 6.6 Hz, 1H), 4.02 (s, 1H), 2.33 – 2.19 (m, 1H), 2.18 – 2.02 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 141.5, 140.8, 140.6, 129.4, 128.9, 127.8, 127.5, 127.18 (d, J = 276.2 Hz), 127.17, 126.9, 118.1, 113.6, 56.9, 30.9 (dd, J = 42.1, 15.7 Hz), 29.8 (d, J = 5.9 Hz). IR (neat) cm⁻¹ \tilde{v} : 2926.7, 1503.9, 1257.7, 1089.7, 1021.5, 798.5, 694.3. HRMS (EI (+), 70 eV): C₂₂H₂₀NF₃ calcd. [M]⁺: 355.1548, found: 355.1552.

2-(4,4,4-Trifluoro-1-phenylbutyl)-1,2,3,4-tetrahydroisoquinoline d42

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d42** (46.0 mg, 0.144 mmol) was prepared from 1,2,3,4-tetrahydroisoquinoline (40.0 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 72% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 5H), 7.13 – 7.04 (m, 3H), 7.02 – 6.95 (m, 1H), 3.73 – 3.51 (m, 3H), 2.93 – 2.74 (m, 3H), 2.61 – 2.47 (m, 1H), 2.35 – 2.21 (m, 1H), 2.16 – 1.90 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 135.0, 134.6, 128.8, 128.6, 128.5, 127.8, 127.5 (d, J = 275.9 Hz), 126.8, 126.2, 125.7, 68.1, 53.2, 47.6, 30.8 (q, J = 28.5 Hz), 29.5, 25.3 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 (t, J = 10.2 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2922.1, 1252.4, 1128.2, 1090.3, 740.2, 702.3. HRMS (EI (+), 70 eV): C₁₉H₂₀NF₃ calcd. [M]⁺: 319.1548, found: 319.1549.

4,4,4-Trifluoro-N,N-bis(4-methoxybenzyl)-1-phenylbutan-1-amine d43

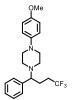
According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d43** (47.0 mg, 0.106 mmol) was prepared from bis(4-methoxybenzyl)amine (77.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as black oil in 53% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 7.24 (dd, J = 16.7, 7.9 Hz, 6H), 6.89 (d, J = 8.4 Hz, 4H), 3.81 (s, 6H), 3.76 (d, J = 13.5 Hz, 2H), 3.71 – 3.64 (m, 1H), 3.04 (d, J = 13.5 Hz, 2H), 2.43 – 2.27 (m, 2H), 2.03 – 1.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 137.5, 131.9,

130.0, 128.9, 128.3, 127.60, 127.60 (d, J = 282.6 Hz), 113.9, 60.6, 55.4, 55.37, 52.8, 31.8 (d, J = 28.0 Hz), 23.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2924.1, 1493.2, 1258.9, 1025.1, 799.0, 747.7, 695.5. HRMS (EI (+), 70 eV): C₂₆H₂₈NO₂F₃ calcd. [M]⁺: 443.2072, found: 443.2079.

N-benzyl-4,4,4-trifluoro-N-methyl-1-phenylbutan-1-amine d44

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d44** (41.2 mg, 0.134 mmol) was prepared from *N*-methyl-1-phenylmethanamine (36.4 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 67% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.27 (m, 5H), 7.26 – 7.21 (m, 3H), 3.56 (dd, J = 13.6, 6.2 Hz, 2H), 3.26 (d, J = 13.4 Hz, 1H), 2.31 – 2.18 (m, 2H), 2.10 (s, 3H), 2.06 – 1.91 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 138.4, 128.8, 128.7, 128.43, 128.41, 127.7, 127.6 (d, J = 276.1 Hz), 127.1, 66.6, 58.8, 37.6, 31.2 (q, J = 28.6 Hz), 25.0 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2950.8, 1452.7, 1252.0, 1130.5, 734.7, 699.5. HRMS (EI (+), 70 eV): C₁₈H₂₀NF₃ calcd. [M]⁺: 307.1548, found: 307.1542.

4-Phenyl-1-(4,4,4-trifluoro-1-phenylbutyl)piperidine d45

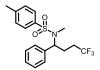

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d45** (48.6 mg, 0.140 mmol) was prepared from 4-phenylpiperidine (48.4 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 70% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 7.2 Hz, 21H), 7.33 – 7.21 (m, 5H), 7.20 – 7.13 (m, 3H), 3.48 (t, J = 7.0 Hz, 1H), 3.08 (d, J = 10.3 Hz, 1H), 2.96 (d, J = 11.0 Hz, 1H), 2.42 – 2.31 (m, 1H), 2.28 – 1.65 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 128.7, 128.5, 128.4, 127.8, 127.5 (d, J = 276.2 Hz), 127.0, 126.3, 68.8, 53.0, 48.7, 42.8, 33.8 (d, J = 23.2 Hz), 31.1 (q, J = 28.7 Hz), 29.8, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2962.3, 1261.7, 1141.7, 1097.0, 799.4, 702.5. HRMS (EI (+), 70 eV): C₂₁H₂₄NF₃ calcd. [M]⁺: 347.1861, found: 347.1865.

4-(1-([1,1'-Biphenyl]-4-yl)-4,4,4-trifluorobutyl)morpholine d46

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d46** (52.4 mg, 0.150 mmol) was prepared from morpholine (26.1 mg, 0.3 mmol), 4-vinyl-1,1'-biphenyl (36.1 mg,

0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 75% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 12.9, 4.8 Hz, 4H), 7.44 (dd, J = 10.4, 4.8 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.29 – 7.22 (m, 2H), 3.75 – 3.64 (m, 4H), 3.34 (t, J = 6.7 Hz, 1H), 2.48 – 2.40 (m, 4H), 2.24 – 2.11 (m, 1H), 2.11 – 1.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 137.8, 128.93, 128.91, 127.50 (d, J = 276.1 Hz), 127.49, 127.3, 127.2, 68.6, 67.3, 50.9, 30.7 (q, J = 28.7 Hz), 24.8 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2956.3, 1252.8, 1116.0, 1005.6, 764.6, 697.5. HRMS (EI (+), 70 eV): C₂₀H₂₂NOF₃ calcd. [M]⁺: 349.1653, found: 349.1650.

1-(4-Methoxyphenyl)-4-(4,4,4-trifluoro-1-phenylbutyl)piperazine d47



According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d47** (53.7 mg, 0.142 mmol) was prepared from 1-(4-methoxyphenyl)piperazine (57.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 71% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, J = 7.2 Hz, 2H), 7.31 – 7.26 (m, 1H), 7.24 (dd, J = 6.1, 4.6 Hz, 2H), 6.90 – 6.77 (m, 4H), 3.75 (s, 3H), 3.40 (t, J = 6.7 Hz, 1H), 3.05 (t, J = 4.9 Hz, 4H), 2.58 (d, J = 5.4 Hz, 4H), 2.26 – 2.13 (m, 1H), 2.11 – 1.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 145.8, 138.7, 128.54, 128.52, 127.8, 127.5 (d, J = 276.2 Hz), 118.3, 114.5, 68.5, 55.7, 51.0, 50.2, 30.8 (q, J = 28.6 Hz), 25.0 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (t, J = 10.8 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2951.0, 1510.9, 1242.8, 1131.5, 822.4, 702.8. HRMS (EI (+), 70 eV): C₂₁H₂₅N₂OF₃ calcd. [M]⁺: 378.1919, found: 378.1926.

4-(1-([1,1'-Biphenyl]-4-yl)-4,4,4-trifluorobutyl)piperazine-1-carbaldehyde d48

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d48** (41.4 mg, 0.110 mmol) was prepared from piperidine-4-carbaldehyde (34.0 mg, 0.3 mmol), 4-vinyl-1,1'-biphenyl (36.1 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow solid in 55% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 50/1. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.58 (dd, J = 7.5, 5.2 Hz, 4H), 7.45 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.27 – 7.21 (m, 2H), 3.54 (t, J = 5.0 Hz, 2H), 3.48 (t, J = 6.9 Hz, 1H), 3.40 – 3.30 (m, 2H), 2.56 – 2.36 (m, 4H), 2.26 – 2.10 (m, 2H), 2.08 – 1.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 141.0, 140.6, 136.8, 129.0, 128.8, 127.6, 127.4 (d, J = 276.3 Hz), 127.3, 127.2, 68.1, 50.5, 49.3, 46.0, 40.3, 31.0 (q, J = 28.8 Hz), 24.7 (d, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.6 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2919.9, 1671.9, 1252.6, 1127.0, 1003.5, 697.9. HRMS (EI (+), 70 eV): C₂₁H₂₃N₂OF₃ calcd. [M]⁺: 376.1762, found: 376.1760.

N,4-dimethyl-N-(4,4,4-trifluoro-1-phenylbutyl)benzenesulfonamide d49

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d49** (63.9 mg, 0.172 mmol) was prepared from *N*,4-dimethylbenzenesulfonamide (55.6 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as yellow oil in 86% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 30/1. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.33 – 7.23 (m, 5H), 7.13 (dt, J = 6.0, 3.2 Hz, 2H), 5.12 (dd, J = 8.4, 6.1 Hz, 1H), 2.61 (s, 3H), 2.42 (s, 3H), 2.18 – 1.98 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 137.1, 137.0, 129.8, 128.8, 128.3, 127.9, 127.2, 127.0 (d, J = 276.1 Hz), 59.1, 31.5 (q, J = 29.1 Hz), 28.74, 23.23 (d, J = 2.8 Hz), 21.60. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 (t, J = 10.2 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2926.4, 1335.5, 1256.2, 1144.6, 981.9, 715.6, 546.5. HRMS (EI (+), 70 eV): C₁₈H₂₀NO₂F₃S calcd. [M]⁺: 371.1167, found: 371.1159.

1-(2-Cyclohexyl-1-phenylethyl)indoline d50

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d50** (36.7 mg, 0.120 mmol) was prepared from indoline (35.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and iodocyclohexane (84.0 mg, 0.4 mmol) as yellow oil in 60% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 7.24 – 7.18 (m, 1H), 7.05 – 6.96 (m, 2H), 6.53 (ddd, J = 16.4, 11.5, 4.3 Hz, 2H), 4.75 (t, J = 7.7 Hz, 1H), 3.45 (ddd, J = 9.6, 8.7, 6.8 Hz, 1H), 3.22 (dt, J = 9.9, 8.3 Hz, 1H), 3.00 – 2.78 (m, 2H), 1.91 – 1.76 (m, 4H), 1.70 – 1.51 (m, 4H), 1.38 – 1.30 (m, 1H), 1.22 – 1.15 (m, 2H), 1.06 – 0.93 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 140.9, 129.7, 128.4, 128.0, 127.4, 127.1, 124.6, 116.4, 106.3, 55.7, 46.8, 38.8, 34.4, 33.7, 33.6, 28.2, 26.7, 26.4, 26.3. IR (neat) cm⁻¹ \tilde{v} : 2921.1, 1260.1, 1088.7, 1021.6, 798.5, 739.4. HRMS (EI (+), 70 eV): C₂₂H₂₇N calcd. [M]⁺: 305.2144, found: 305.2151.

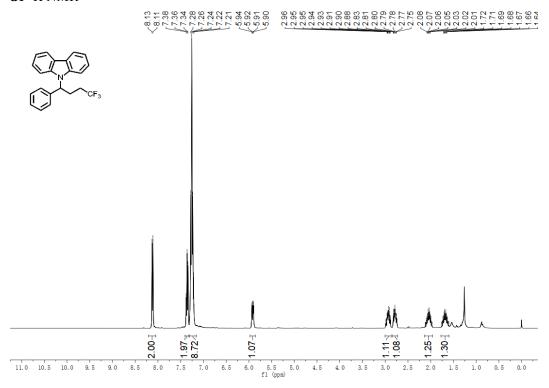
1-(5,5,5-Trifluoro-2-phenylpentan-2-yl)indoline d51

According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d51** (41.5 mg, 0.130 mmol) was prepared from indoline (35.8 mg, 0.3 mmol), prop-1-en-2-ylbenzene (23.6 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as brown oil in 65% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 100/1. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.06 (d, J = 7.1 Hz, 1H), 6.69 (t, J = 7.7 Hz, 1H), 6.58 (t, J = 7.3 Hz, 1H), 5.63 (d, J = 8.0 Hz, 1H), 3.61 (td, J = 8.4,

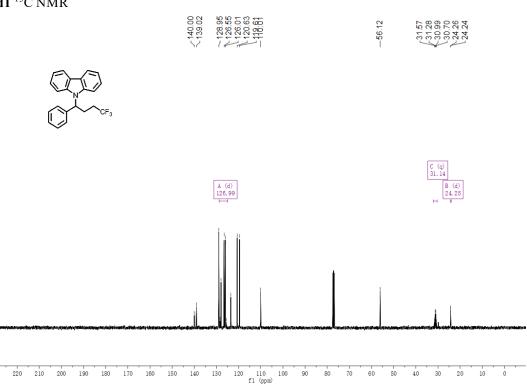
2.7 Hz, 1H), 3.44 (dt, J = 11.7, 9.1 Hz, 1H), 3.12 – 2.92 (m, 2H), 2.16 (dd, J = 19.2, 6.3 Hz, 1H), 2.04 – 1.88 (m, 2H), 1.82 – 1.69 (m, 1H), 1.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 144.3, 131.5, 128.8, 127.5 (d, J = 276.0 Hz), 127.2, 126.5, 126.4, 124.3, 117.9, 112.2, 60.6, 48.9, 35.9 (d, J = 2.6 Hz), 29.6 (d, J = 28.5 Hz), 28.4, 17.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.5 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2925.5, 1453.5, 1254.3, 1132.3, 744.9, 701.4. HRMS (EI (+), 70 eV): C₁₉H₂₀NF₃ calcd. [M]⁺: 319.1548, found: 319.1549.

(3S,4R)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)-1-(4,4,4-trifluoro-1-phenylbutyl)piperidine d52

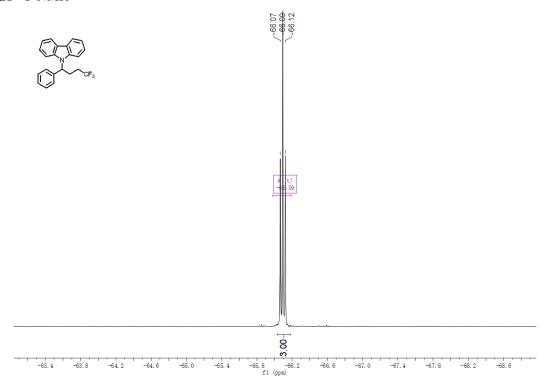
According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d52** (38.2 mg, 0.074 mmol) was prepared from (3*S*,4*R*)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine (98.8 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as brown oil in 37% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 50/1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 3H), 7.24 – 7.17 (m, 2H), 7.17 – 7.05 (m, 2H), 6.94 (td, J = 8.7, 1.8 Hz, 2H), 6.61 (dd, J = 8.4, 6.7 Hz, 1H), 6.30 (dd, J = 22.0, 2.4 Hz, 1H), 6.09 (ddd, J = 17.1, 8.5, 2.5 Hz, 1H), 5.85 (d, J = 2.1 Hz, 2H), 3.59 – 3.46 (m, 2H), 3.38 (ddd, J = 16.8, 9.3, 7.4 Hz, 1H), 3.25 (dd, J = 44.2, 10.5 Hz, 1H), 2.97 (dd, J = 33.8, 10.9 Hz, 1H), 2.38 – 1.95 (m, 8H), 1.91 – 1.77 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 127.59 (d, J = 276.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 160.4, 154.5, 148.3, 141.7, 139.9 (d, J = 276.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 160.4, 154.5, 148.3, 141.7, 139.9 (d, J = 2.5 Hz), 138.2, 128.9, 128.6, 128.4, 127.7, 115.6, 115.4, 108.0, 105.7, 101.2, 98.1, 69.7, 68.5, 56.4, 52.6, 51.7, 48.2, 44.5, 42.7, 34.9, 31.1 (q, J = 28.6 Hz), 24.8 (d, J = 10.1 Hz), 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.1 (t, J = 10.8 Hz, 3F), -116.4 – -116.6 (m, 1F). IR (neat) cm⁻¹ \tilde{v} : 2919.6, 1486.5, 1181.6, 1130.9, 1037.1, 830.7, 702.4. HRMS (EI (+), 70 eV): C₂₉H₂₉NO₃F₄ calcd. [M]⁺: 515.2084, found: 515.2088.

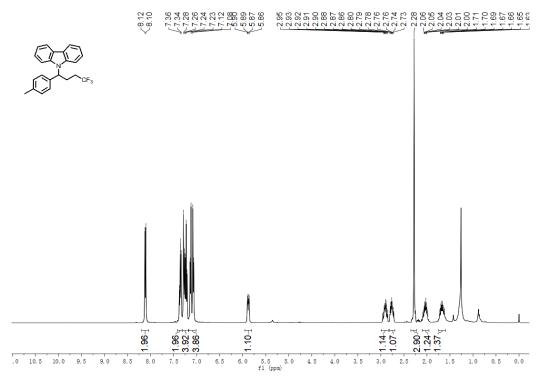

8-Chloro-11-(1-(4,4,4-trifluoro-1-phenylbutyl)piperidin-4-ylidene)-6,11-dihydro-5H-benzo-[5,6]cyclohepta[1,2-b]pyridine d53

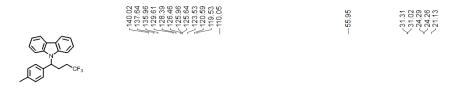
According to the general procedure B, this reaction was conducted in 0.2 mmol scale. **d53** (38.8 mg, 0.078 mmol) was prepared from 8-chloro-11-(piperidin-4-ylidene)-6,11-dihydro-5*H*-benzo[5,6]-cyclohepta[1,2-b]pyridine (93.2 mg, 0.3 mmol), styrene (20.8 mg, 0.2 mmol) and 1,1,1-trifluoro-2-iodoethane (84.0 mg, 0.4 mmol) as brown oil in 39% yield by column chromatography on silica gel with a gradient eluent of PE / EA = 50/1. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (td, J = 4.6, 1.5 Hz, 1H), 7.42 – 7.36 (m, 1H), 7.33 – 7.25 (m, 3H), 7.18 – 7.13 (m, 2H), 7.12 – 7.07 (m, 3H), 7.07 – 7.01 (m, 1H), 3.41 (t, J = 6.8 Hz, 1H), 3.35 – 3.20 (m, 2H), 2.82 – 2.64 (m, 4H), 2.57 – 2.40 (m, 2H),

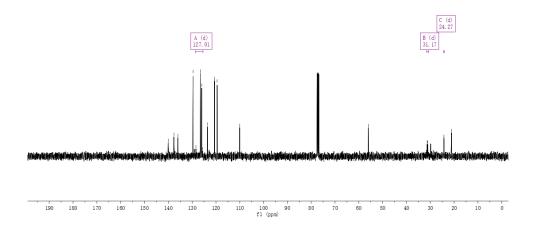

2.36 - 2.27 (m, 2H), 2.21 - 2.06 (m, 3H), 2.04 - 1.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 146.7, 139.6, 139.2, 138.6, 137.8, 137.3, 133.5, 132.7, 132.5, 131.0, 129.0, 128.4, 127.6, 127.5 (d, J = 276.2 Hz), 126.4, 122.2, 68.3, 52.2, 50.7, 31.9, 31.5, 31.4, 31.2, 31.0 (d, J = 26.4 Hz), 24.98 (d, J = 2.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2 (t, J = 10.7 Hz, 3F). IR (neat) cm⁻¹ \tilde{v} : 2921.6, 1477.2, 1252.9, 1099.9, 999.3, 730.8, 701.5. HRMS (EI (+), 70 eV): C₂₉H₂₈N₂F₃Cl calcd. [M]⁺: 496.1893, found: 496.1892.

4. Copies of NMR spectra

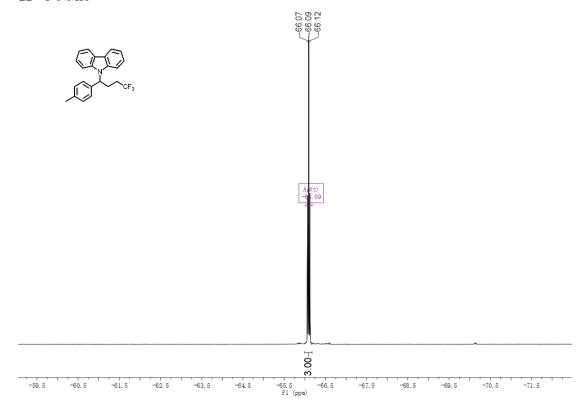

d1 ¹H NMR


d1 ¹³C NMR

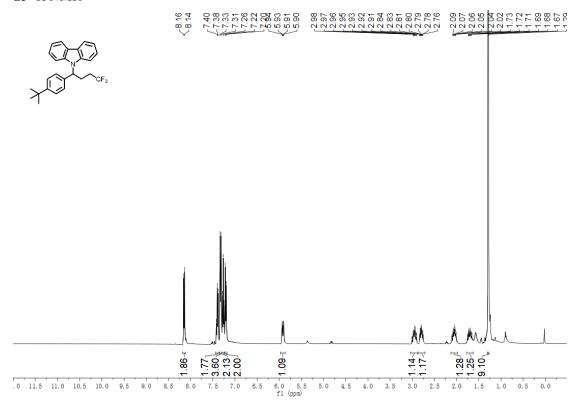

d1 ¹⁹F NMR

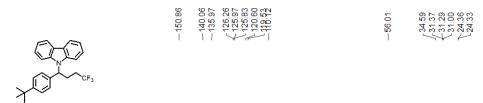


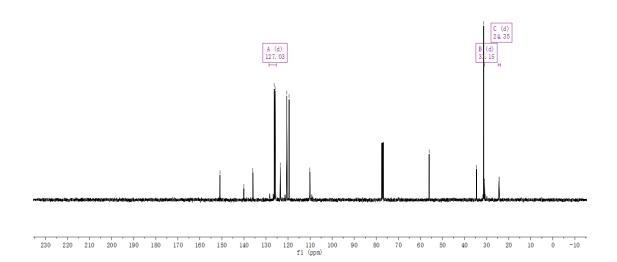
d2 ¹H NMR

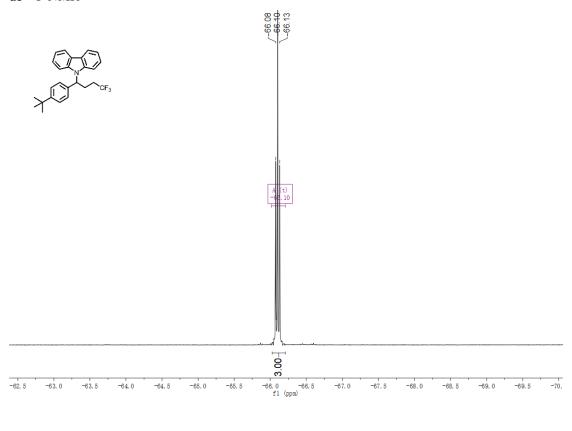


d2 ¹³C NMR

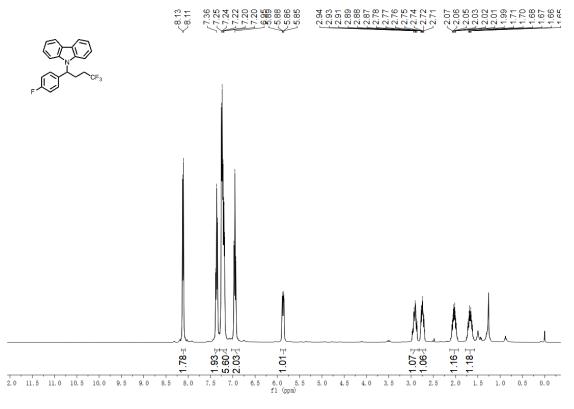


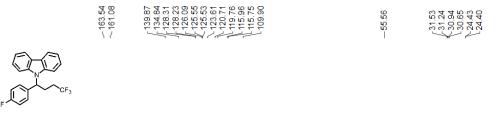

d2 ¹⁹F NMR

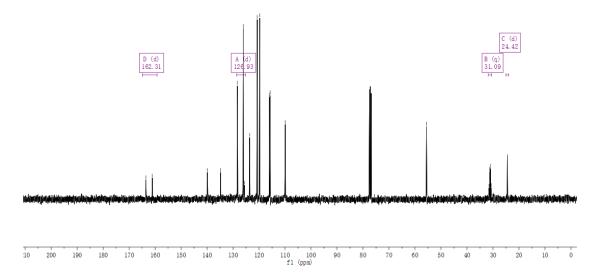




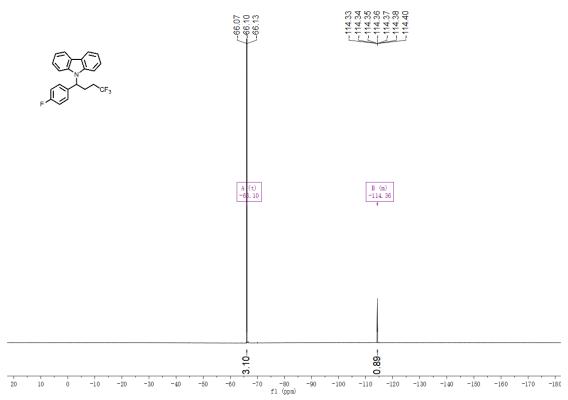
d3 ¹³C NMR

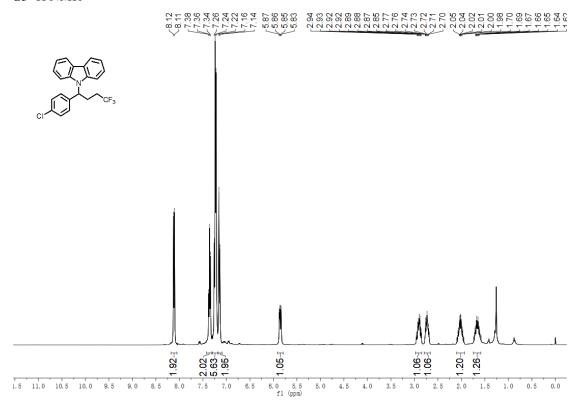


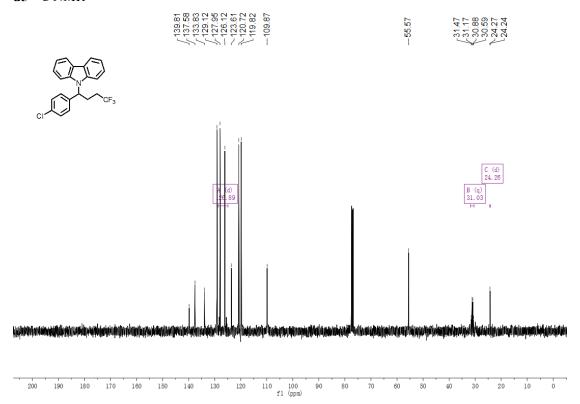


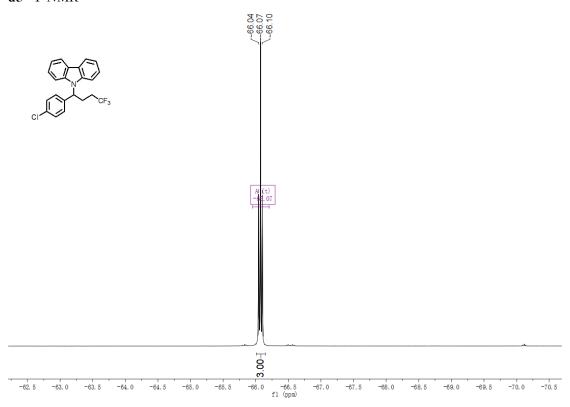


d4 ¹H NMR

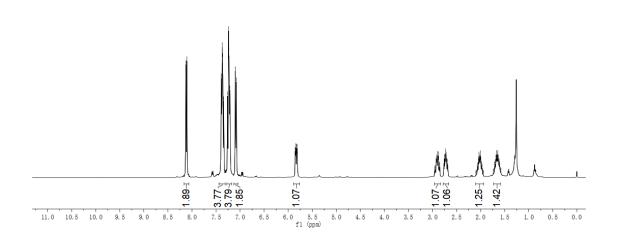


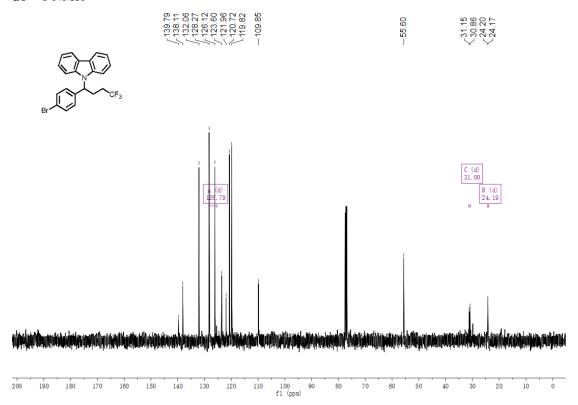



d4 ¹⁹F NMR

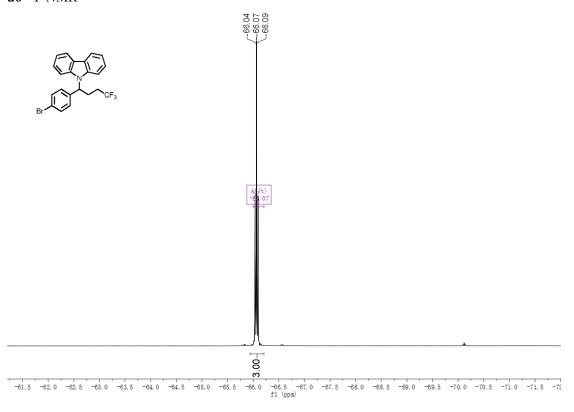


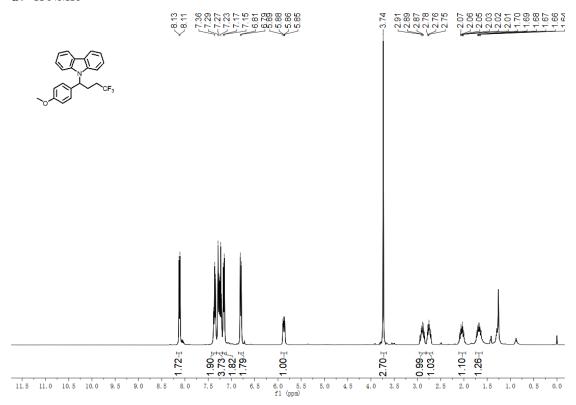
d5 13 C NMR

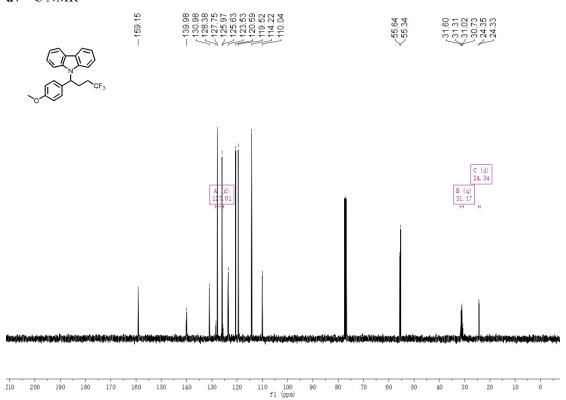


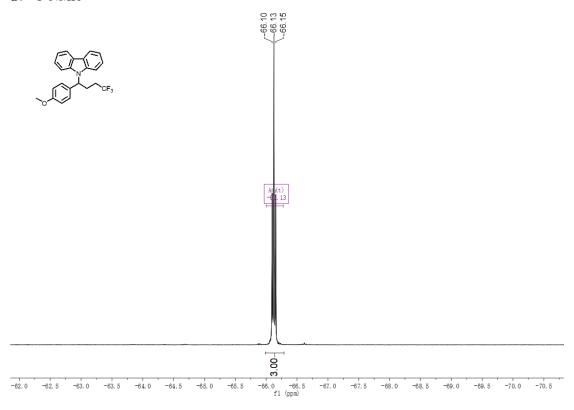


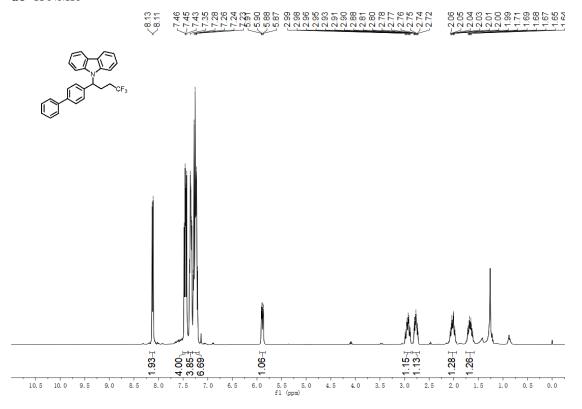
d6 ¹H NMR

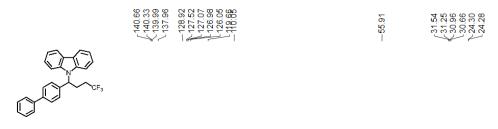


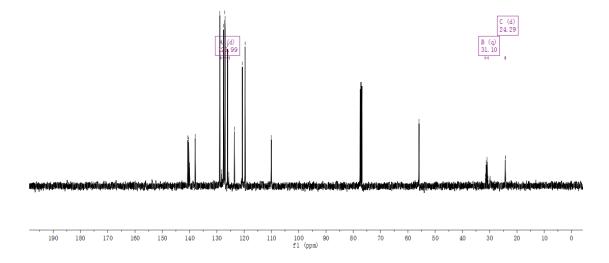




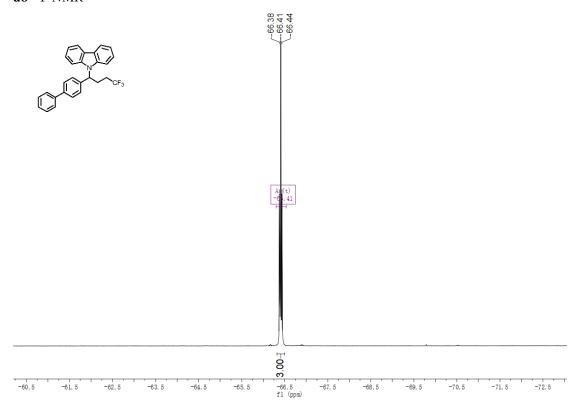


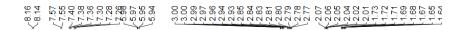


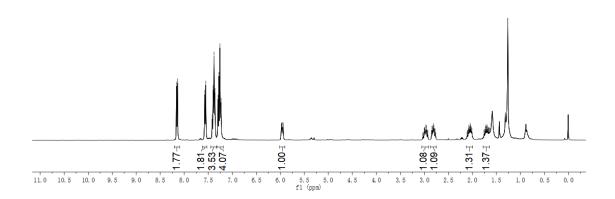




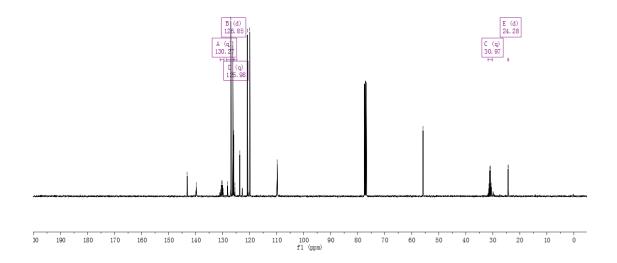
d8 ¹H NMR

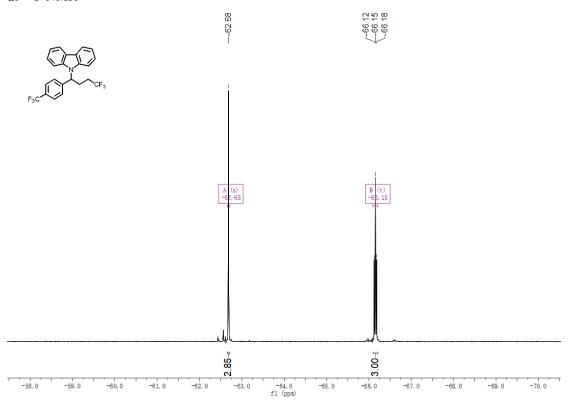




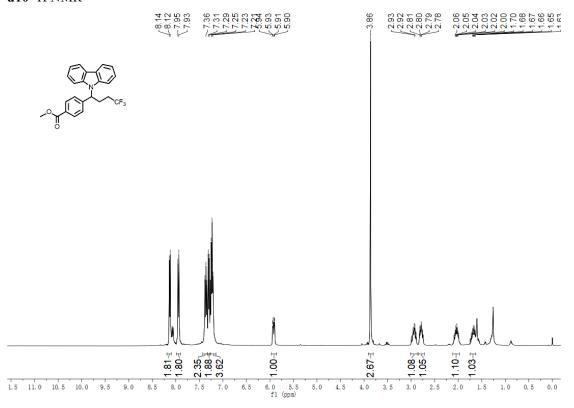


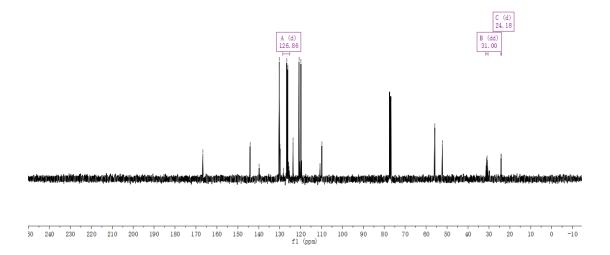
d8 ¹⁹F NMR

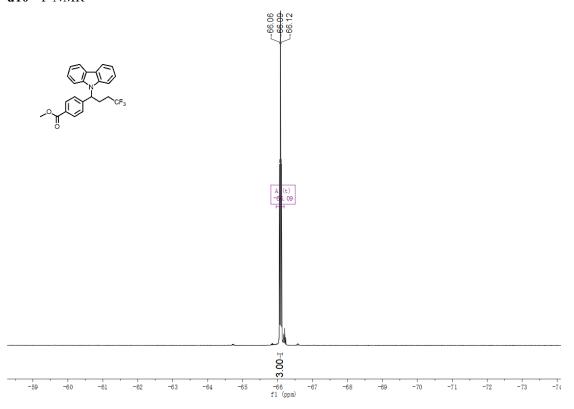


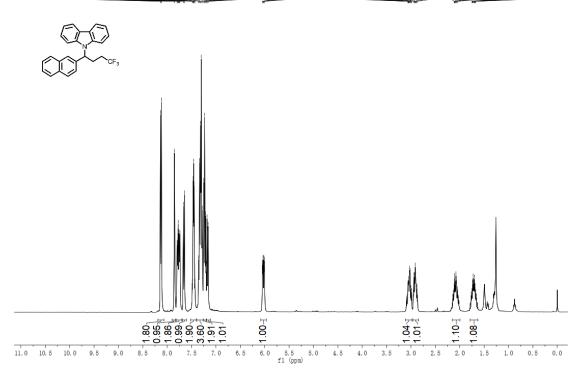


d9 ¹³C NMR

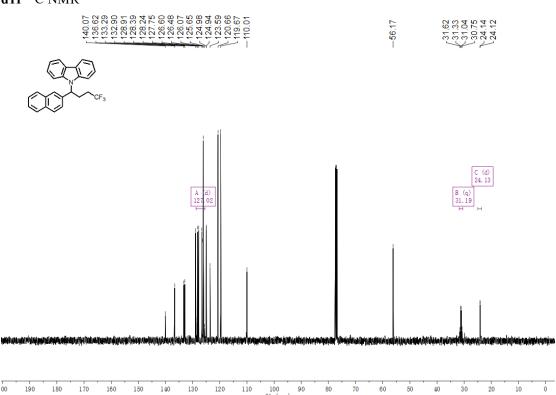




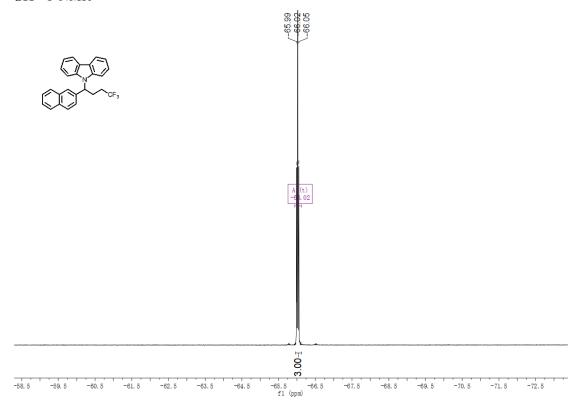


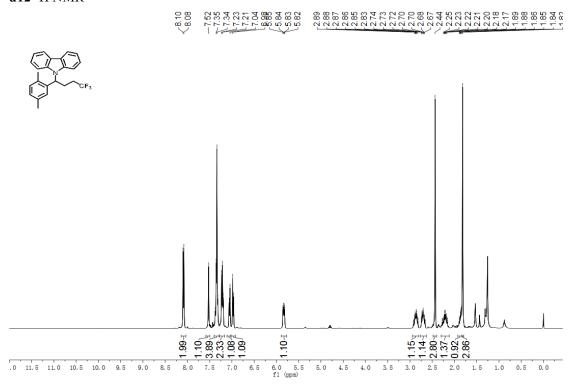


d10 ¹⁹F NMR

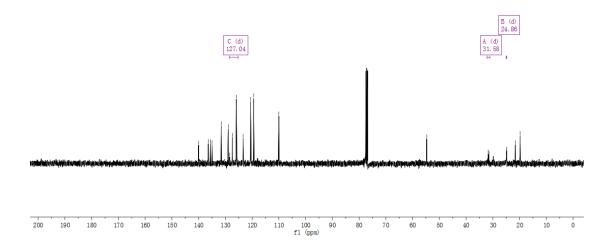


d11 ¹H NMR

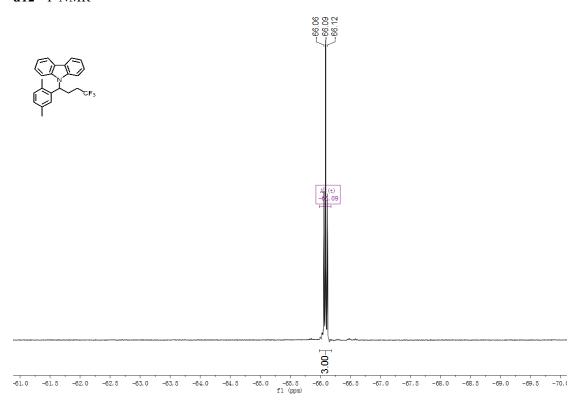



d11 13 C NMR

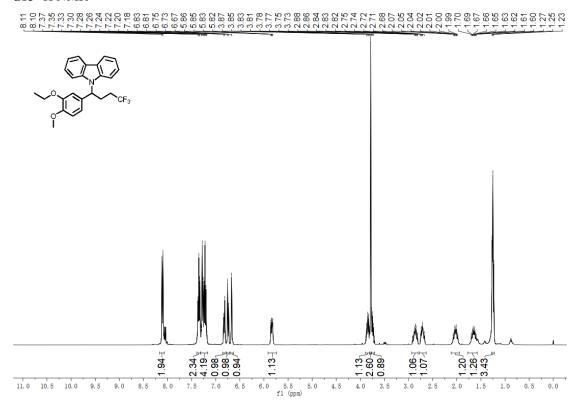
d11 ¹⁹F NMR

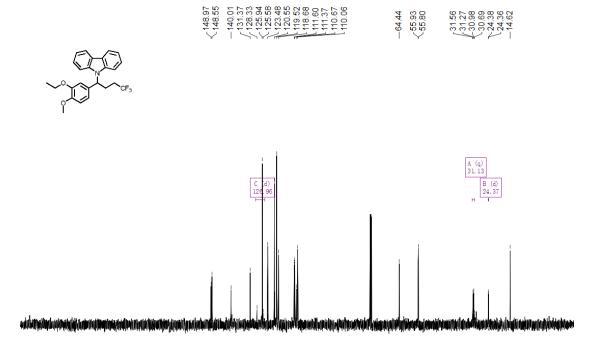


d12 ¹H NMR

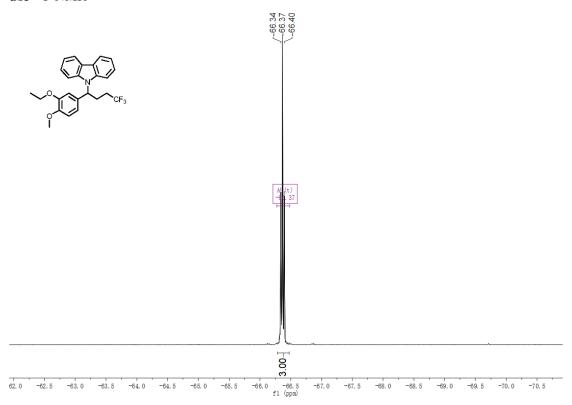


d12 13 C NMR

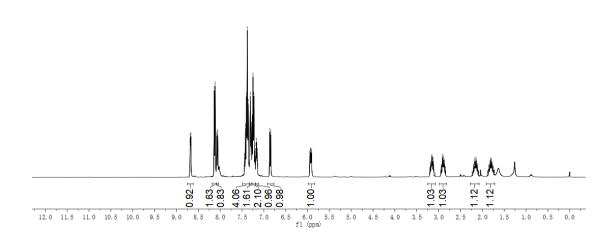



d12 ¹⁹F NMR

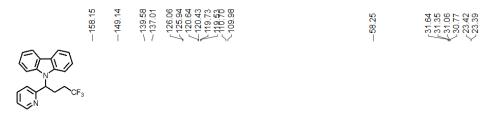
d13 ¹H NMR

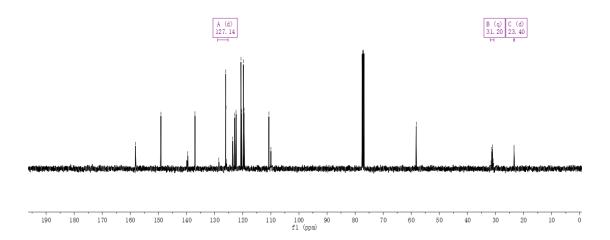


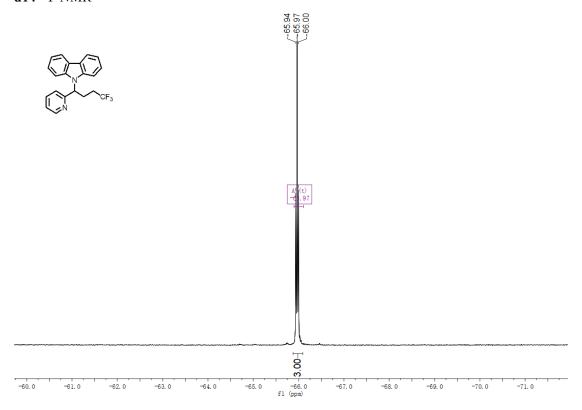
d13 ¹³C NMR

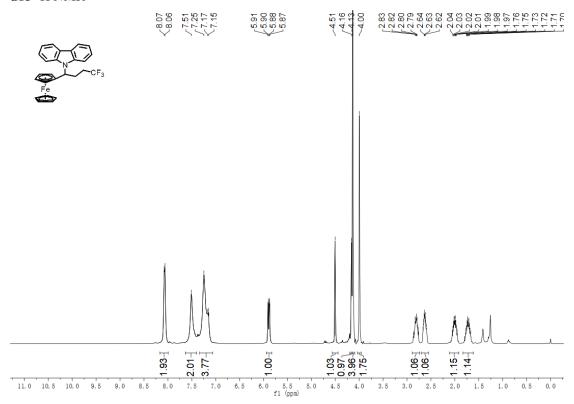

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 fl (ppm)

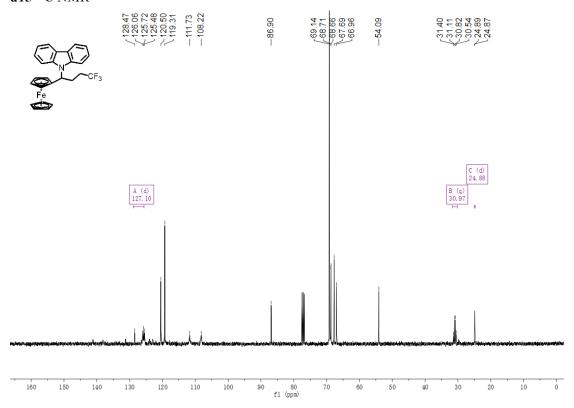
d13 ¹⁹F NMR

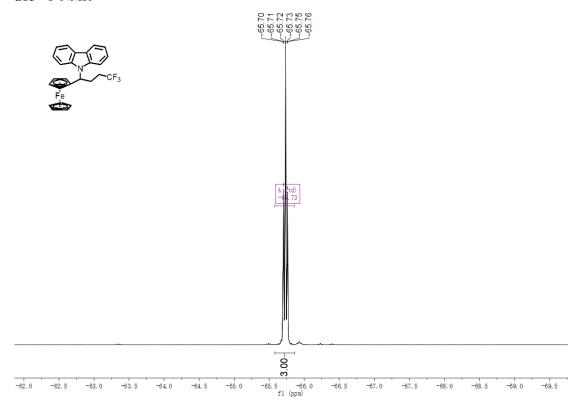


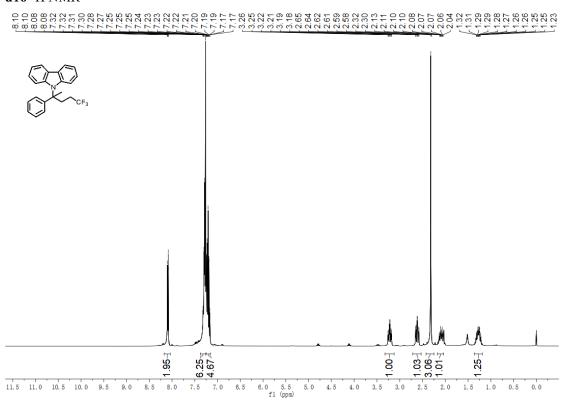

d14 ¹H NMR



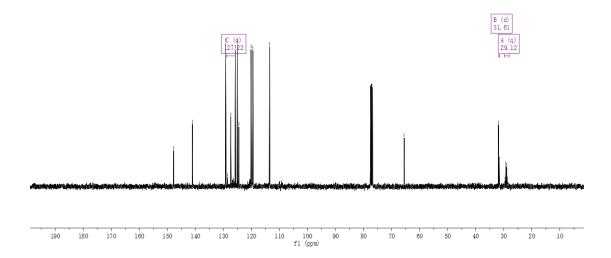


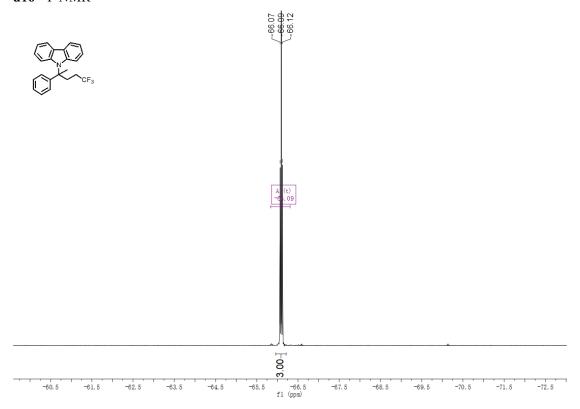

d14 ¹⁹F NMR

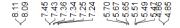


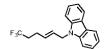


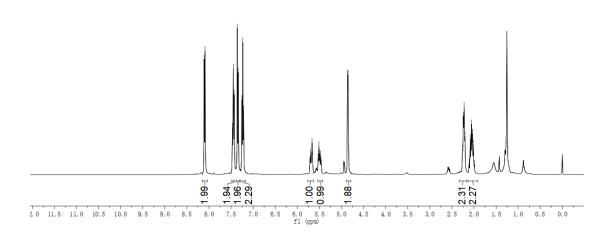
d15 ¹⁹F NMR


d16 ¹H NMR

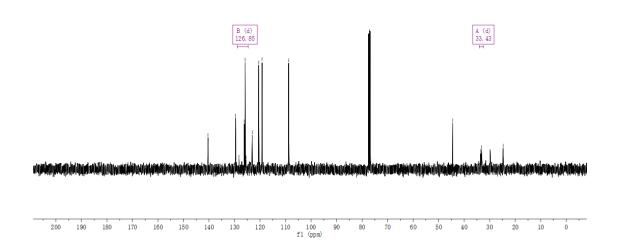


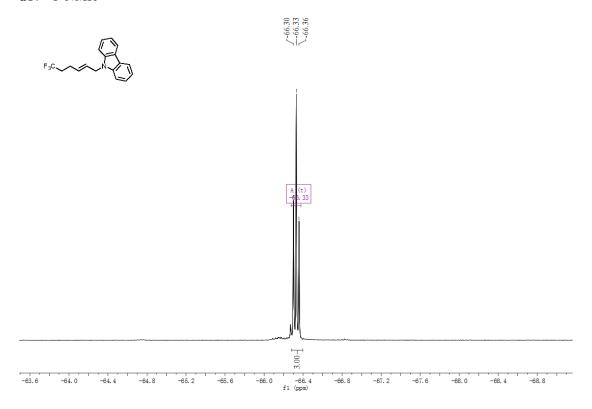




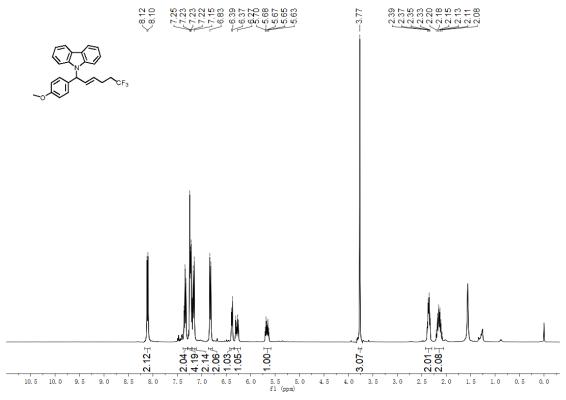

d16 ¹⁹F NMR

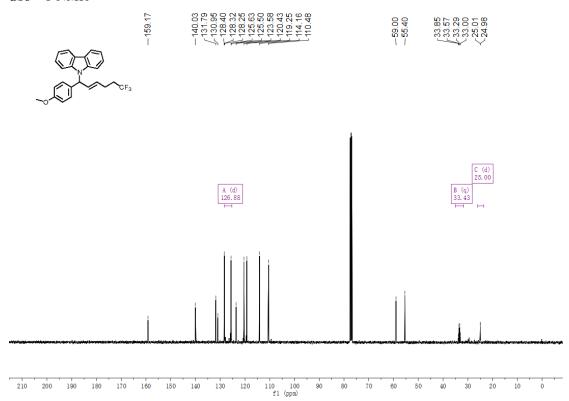
d17 ¹H NMR

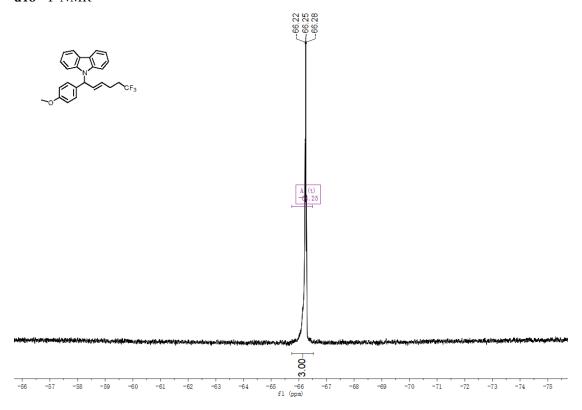


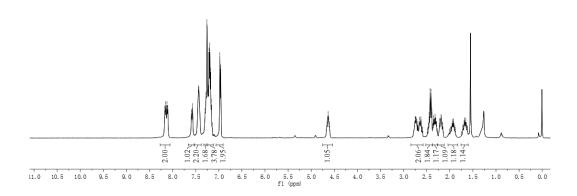

d17 ¹³C NMR

128.63 128.63 126.83 125.85 123.07 149.89

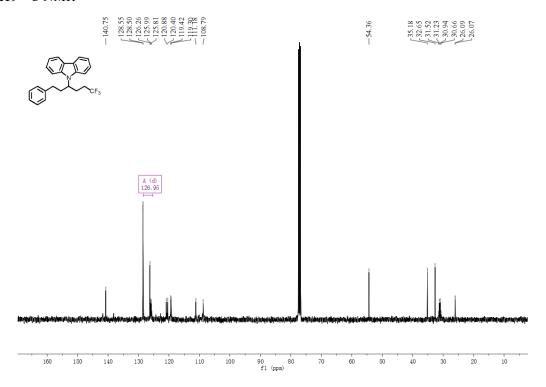

-44.46 \(\frac{33.57}{33.28}\)


d17 ¹⁹F NMR

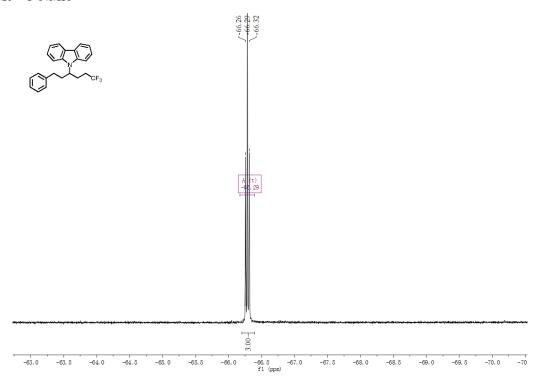


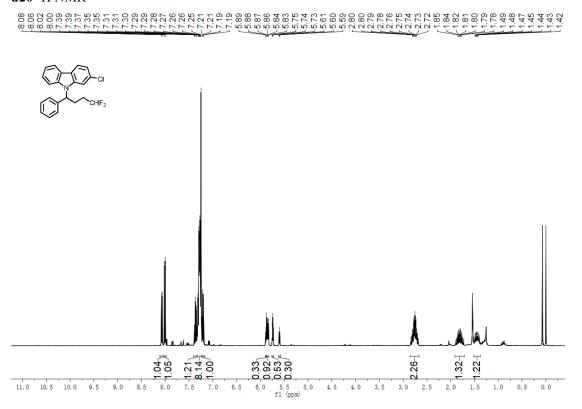


d18 ¹⁹F NMR

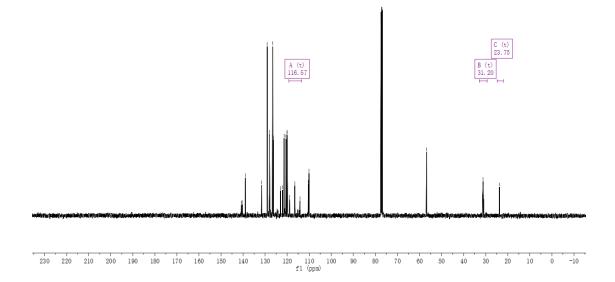


d19 ¹H NMR

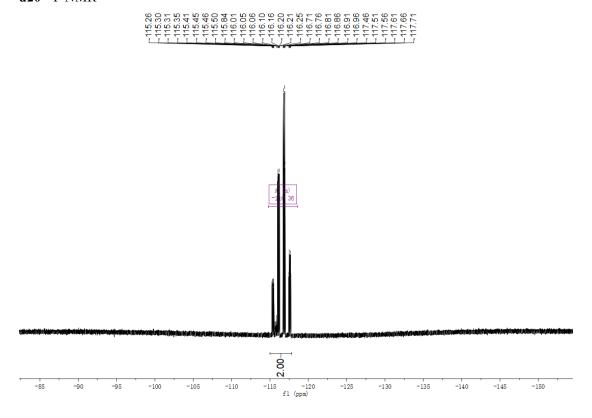


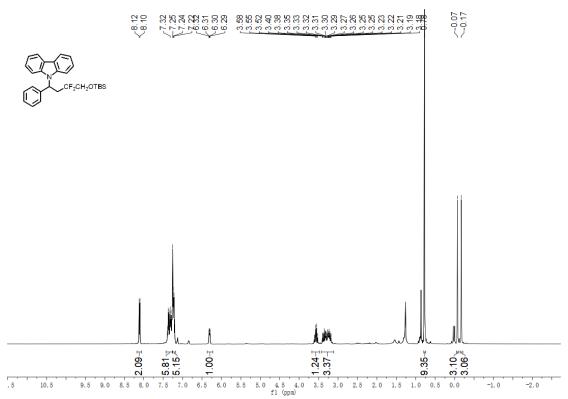

d19 ¹³C NMR

d19 ¹⁹F NMR

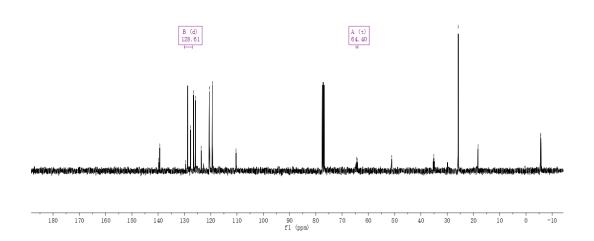


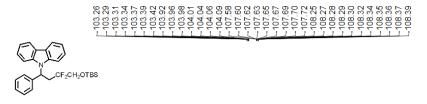
d20 ¹H NMR

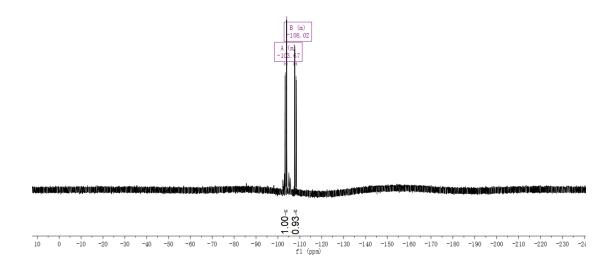




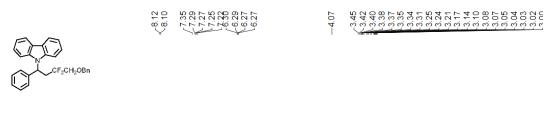
d20 ¹⁹F NMR

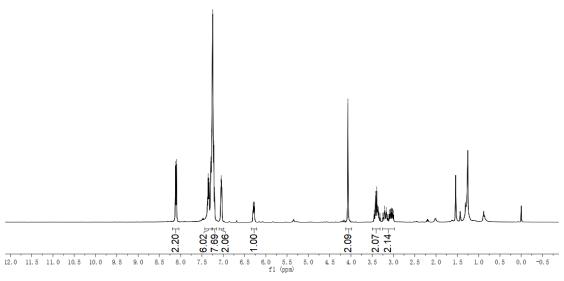


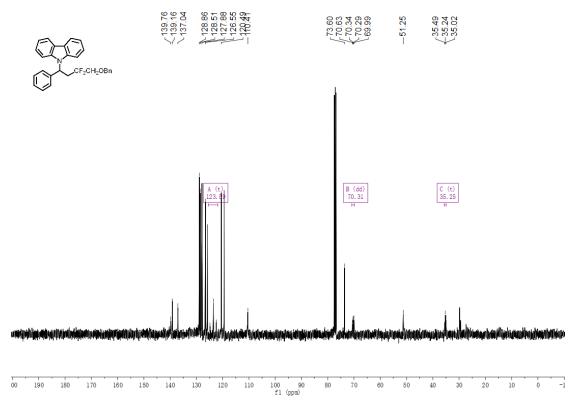

d21 ¹³C NMR


139.82 (139.40 127.68 126.55 126.57 123.61 1123.61 (64.65 (64.12 (6

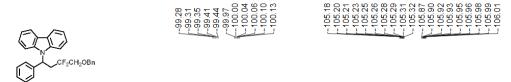
-5.58 -5.67

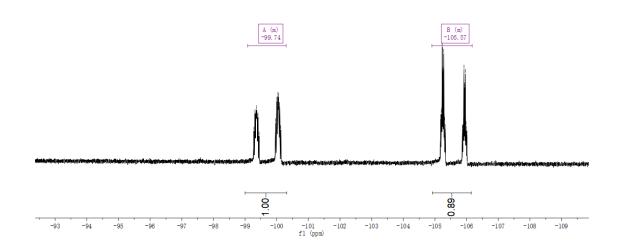


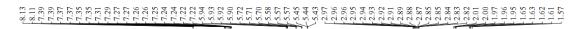

d21 ¹⁹F NMR



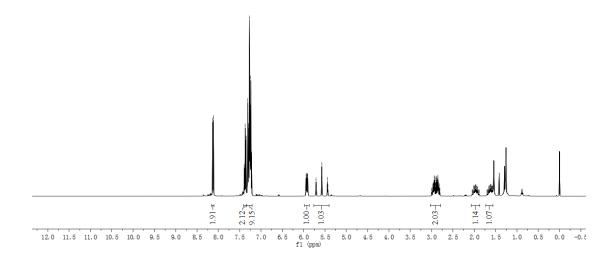
d22 ¹H NMR



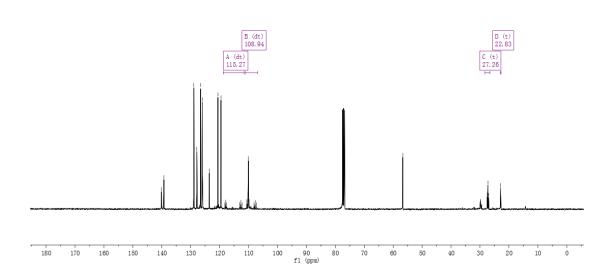


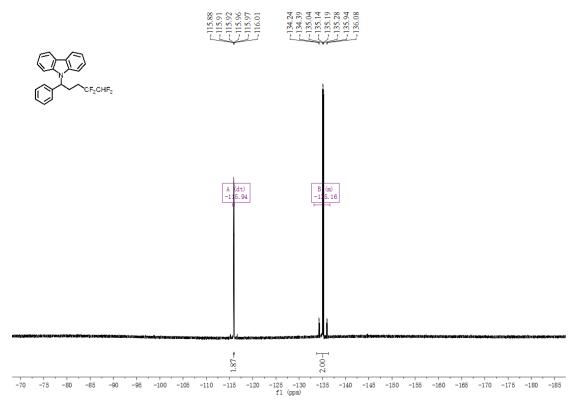


d22 ¹⁹F NMR

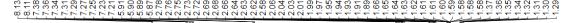


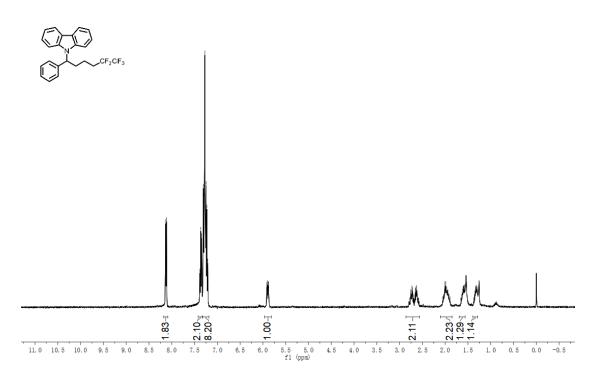
d23 ¹H NMR

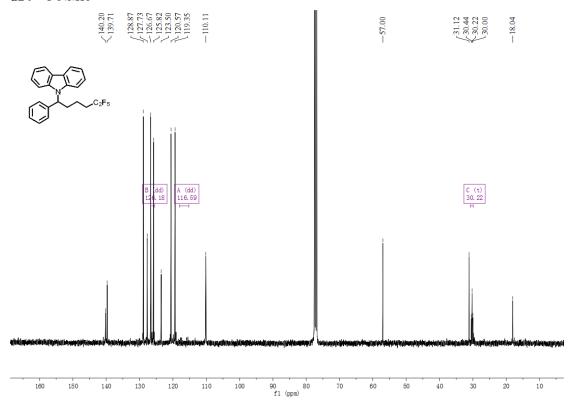




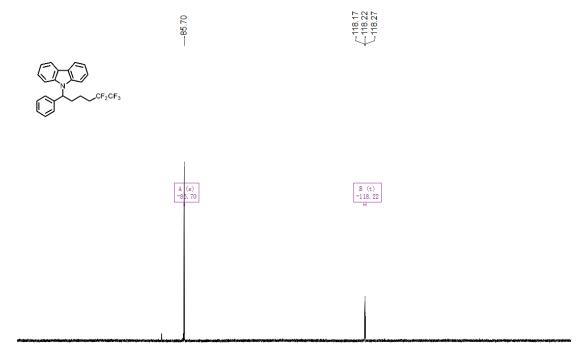
d23 ¹³C NMR







d24 ¹H NMR

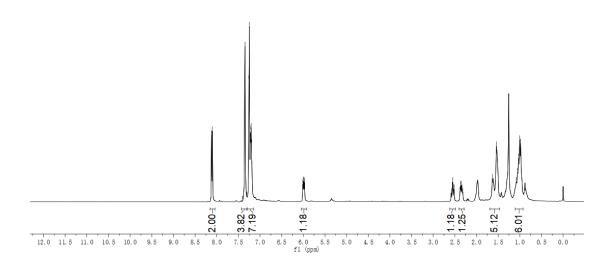


d24 ¹⁹F NMR

-105 -110 -115 fl (ppm)

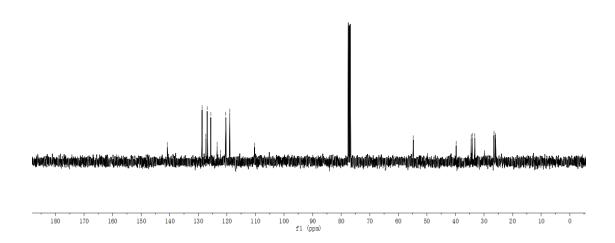
-125

-130

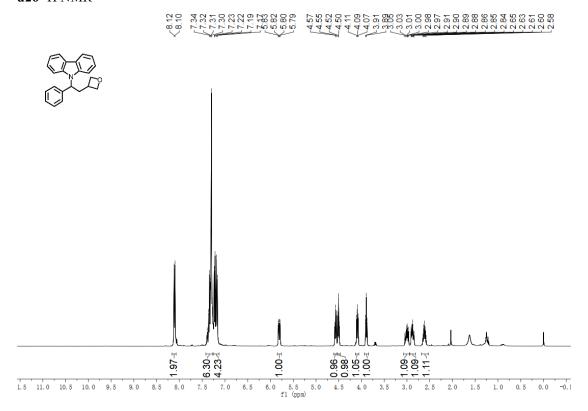

-135

-140

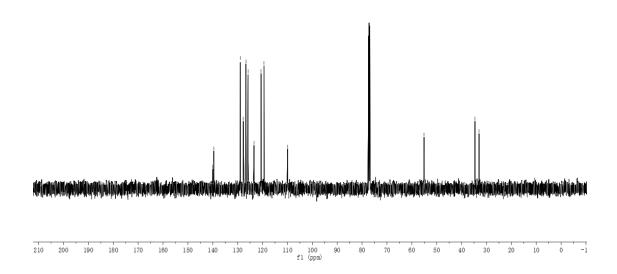
d25 ¹H NMR

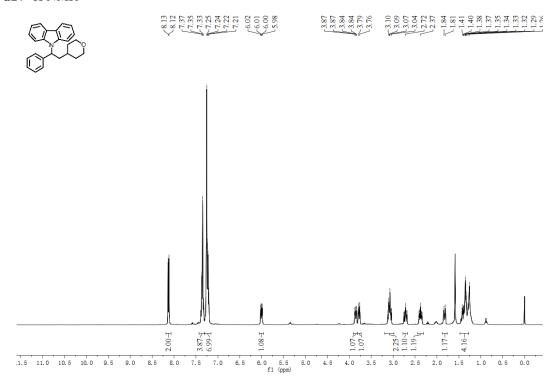


d25 ¹³C NMR

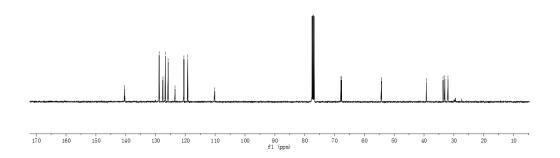

128.67 128.67 125.63 125.63 122.19 120.36 118.96

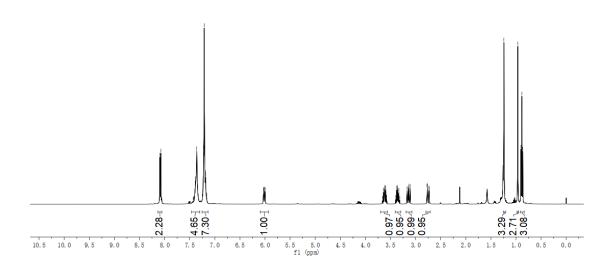
39.72 34.52 34.52 34.52 33.21 26.53 26.53 25.95



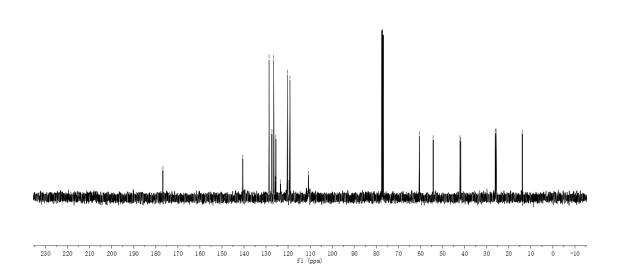


d26 ¹³C NMR

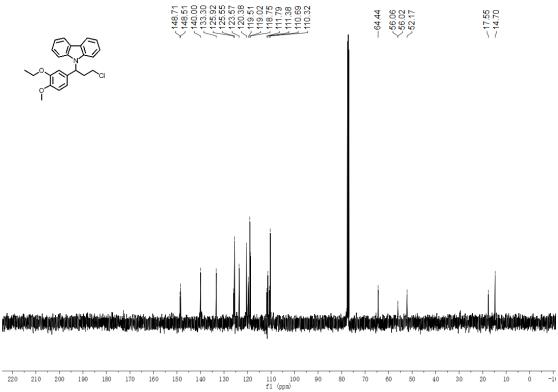

7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04 7.7.04

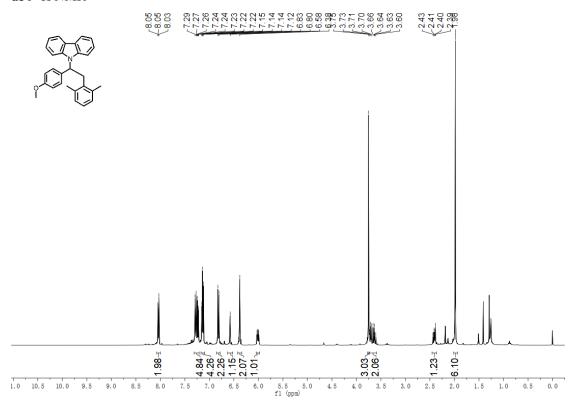


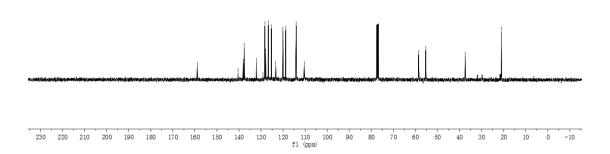
d27 ¹³C NMR

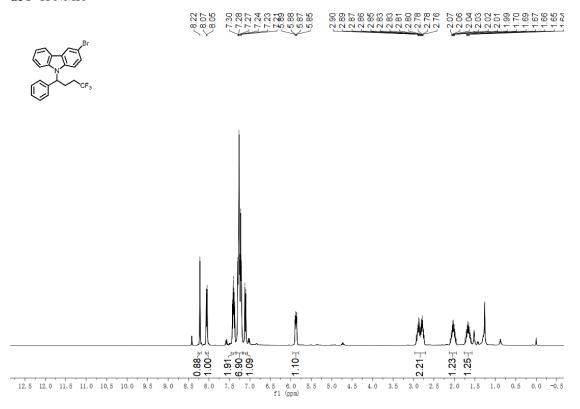


d28 ¹H NMR

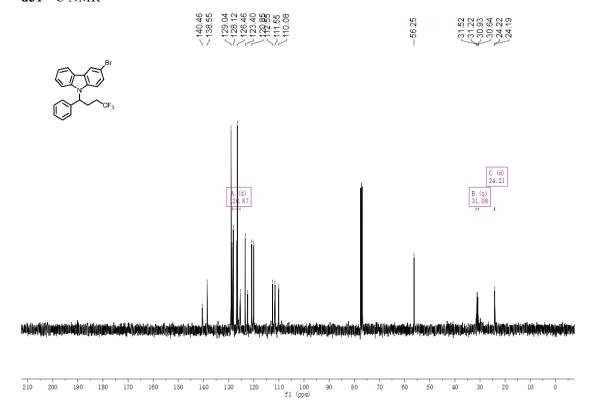

d28 13 C NMR

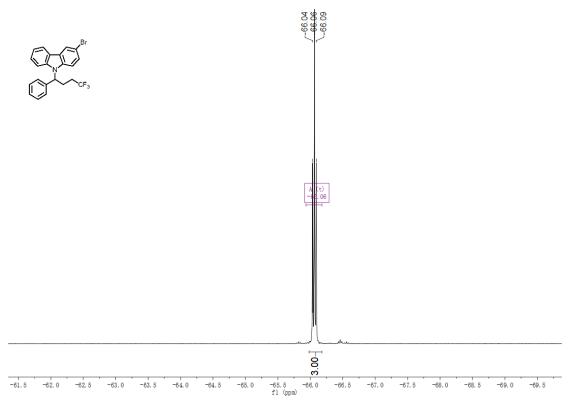


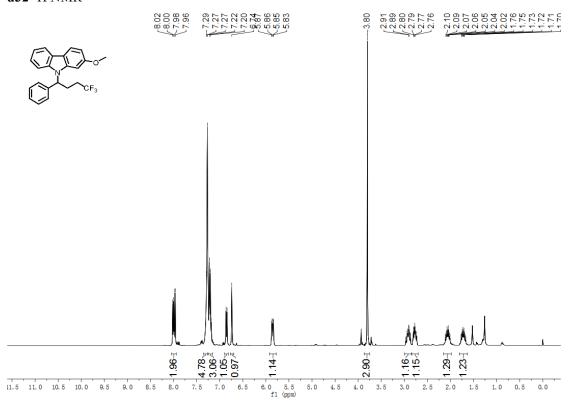


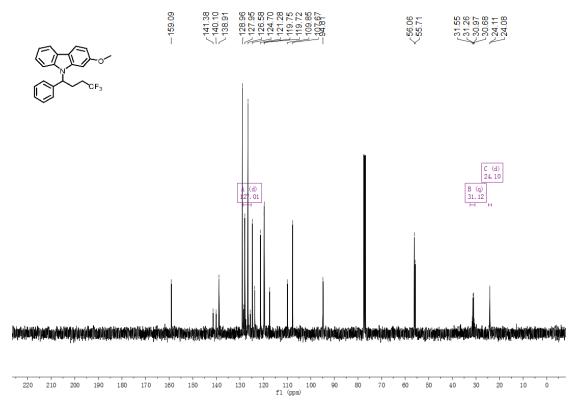

d30 13 C NMR

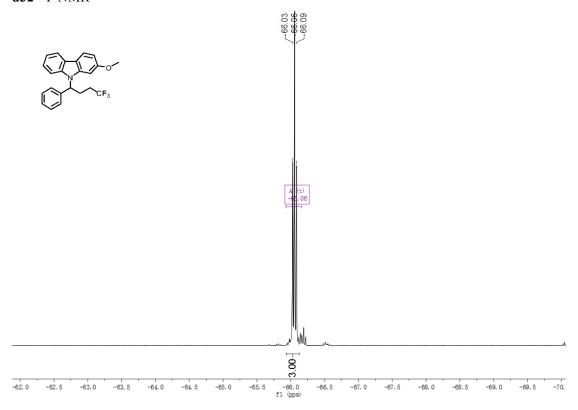
9	00 00 00 00 00 00 00 00 00 00 00 00 00			_
		4 0	40	2
∞	0849869869860	Ø (+)	4	9
9	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	∞ ∽	(-
$\overline{}$		ν v	~	~ ~
		\ /	1	- 1

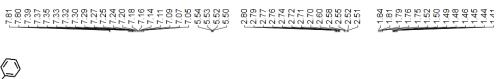


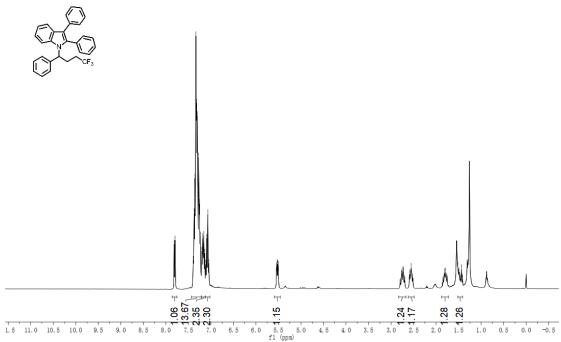




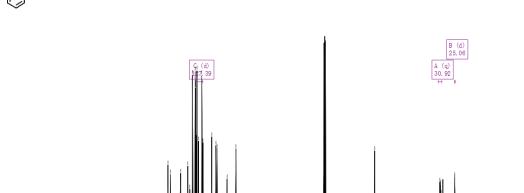


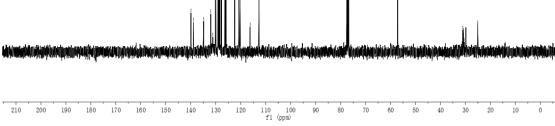

d32 ¹H NMR

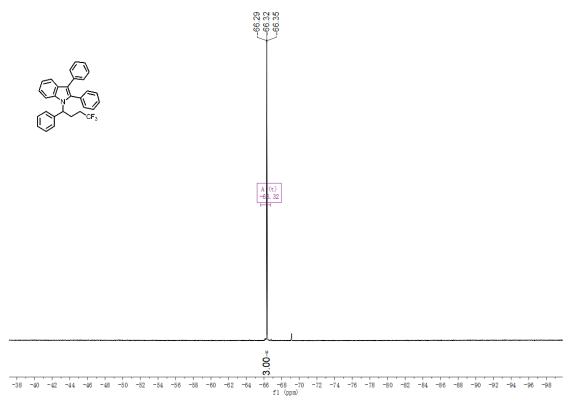


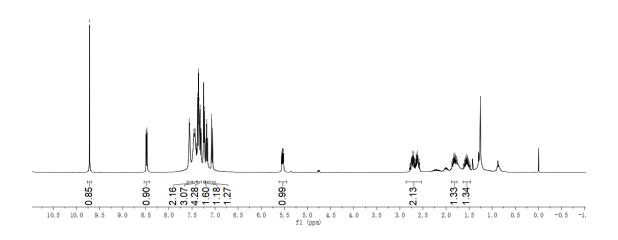


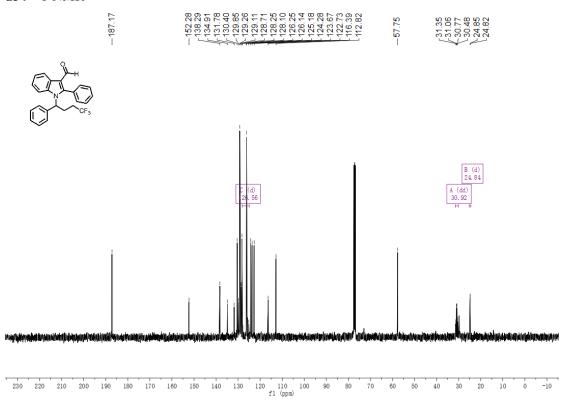
d32 ¹⁹F NMR


d33 ¹H NMR

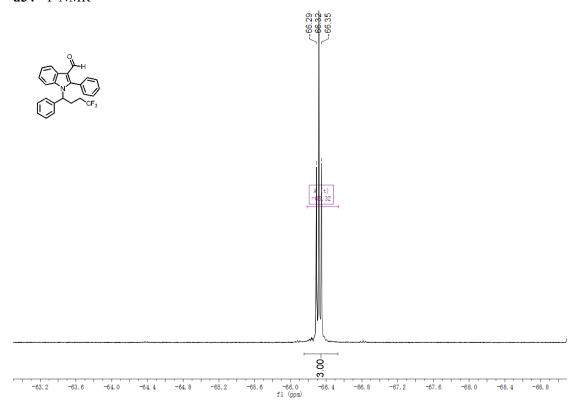


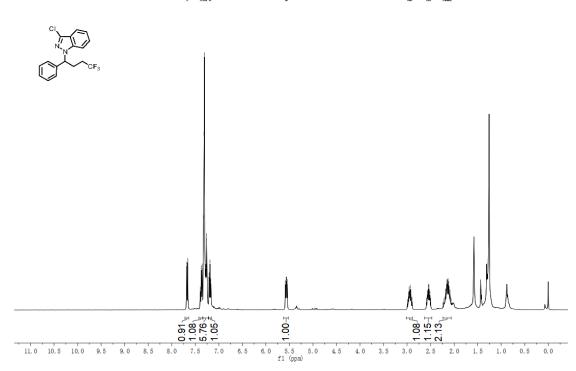

d33 ¹³C NMR



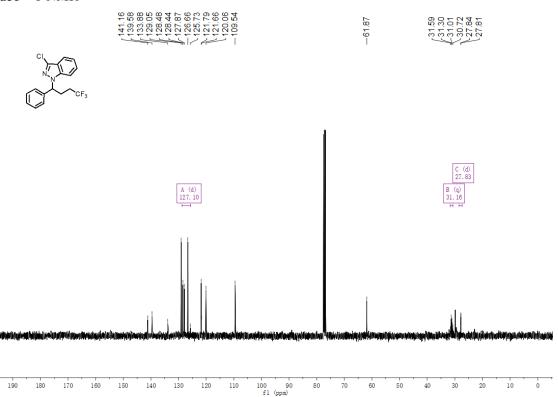


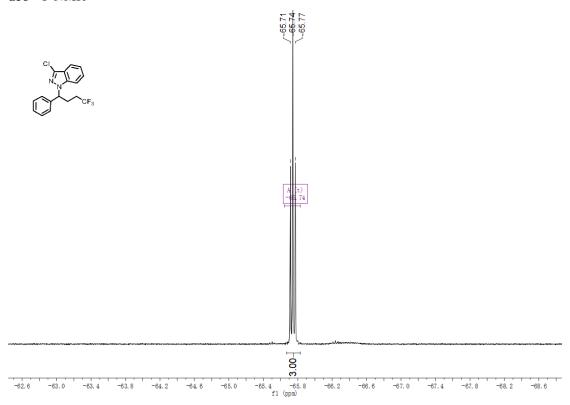
d34 ¹H NMR

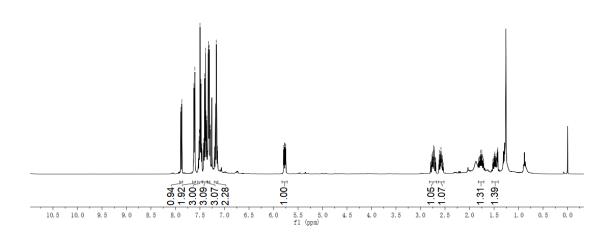


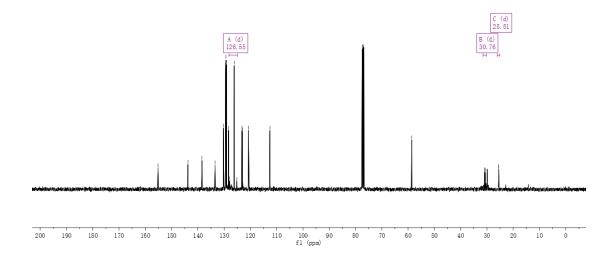


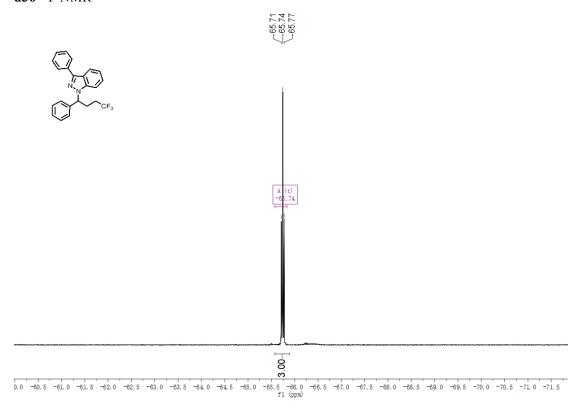
d34 ¹⁹F NMR

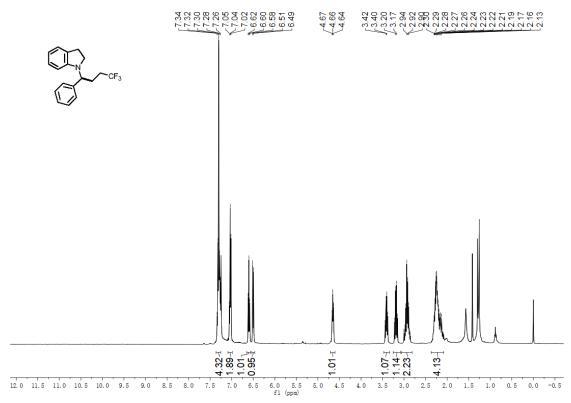




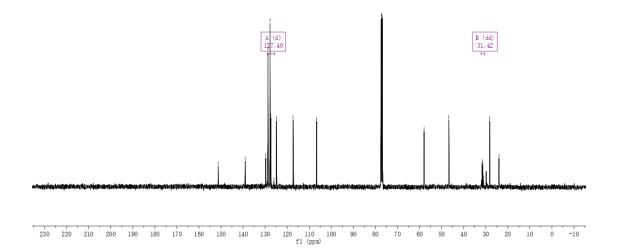


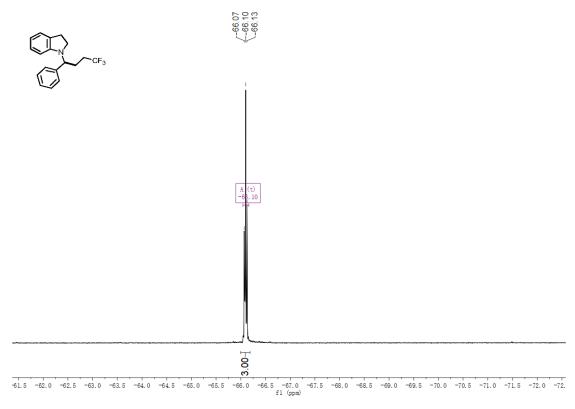

d36 ¹H NMR



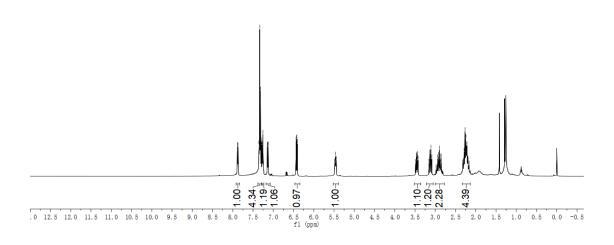


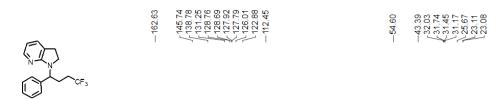
d36 ¹⁹F NMR

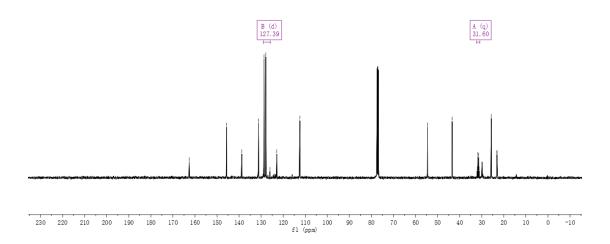


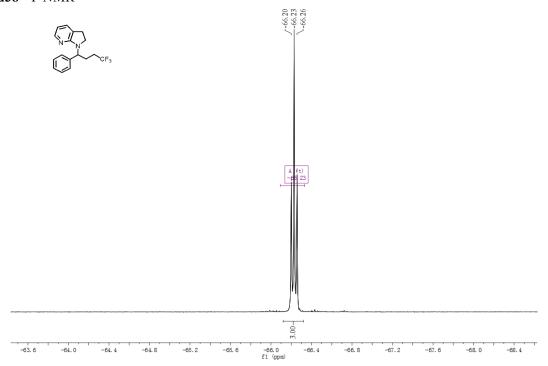


d37 ¹³C NMR

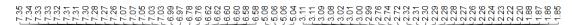


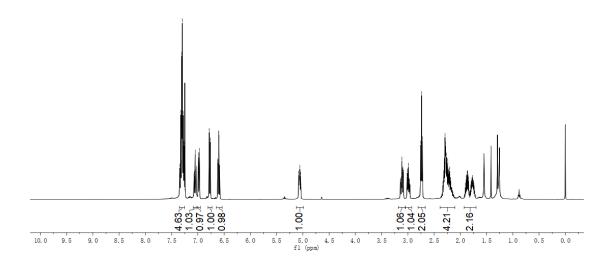


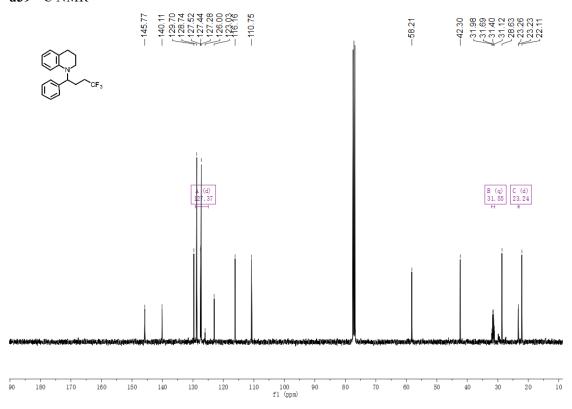

d38 ¹H NMR

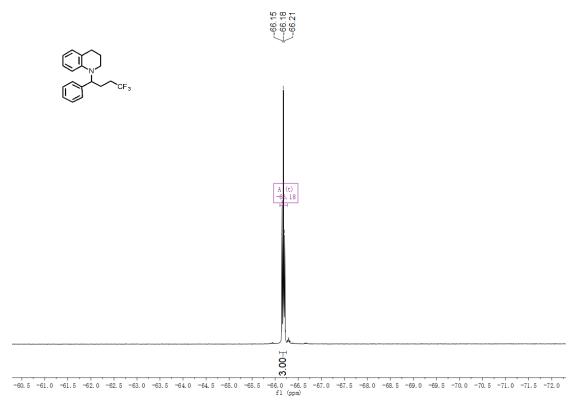


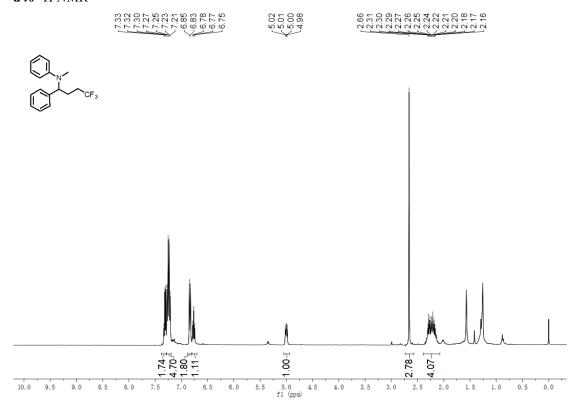
d38 13 C NMR

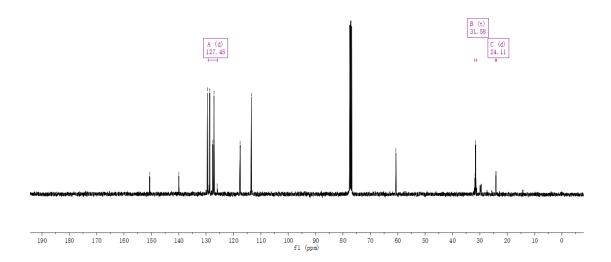



d38 ¹⁹F NMR

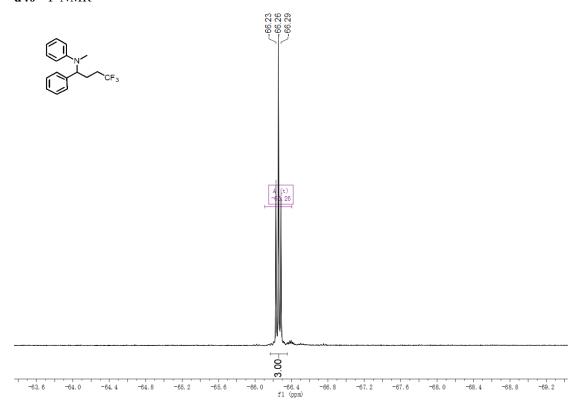

d39 ¹H NMR

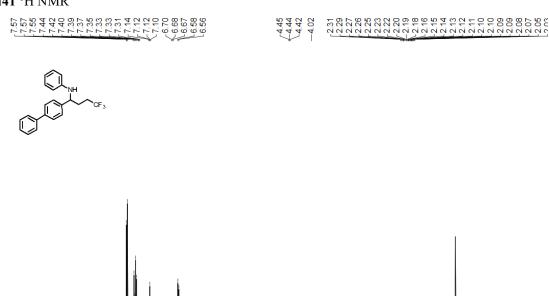



d39 ¹³C NMR

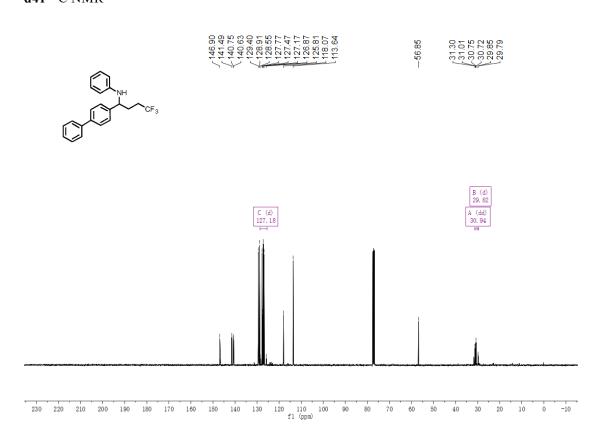


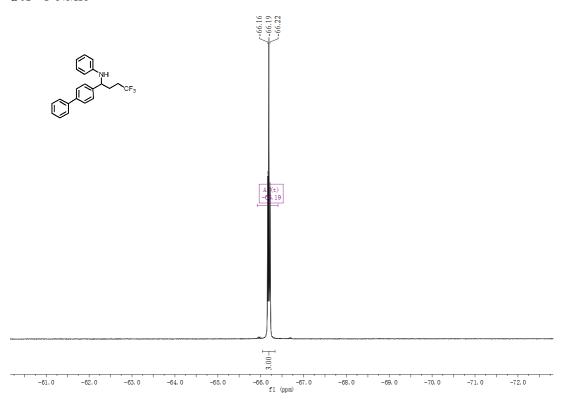
d40 ¹H NMR





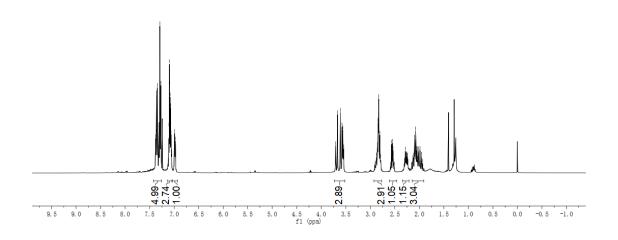
d40 ¹⁹F NMR



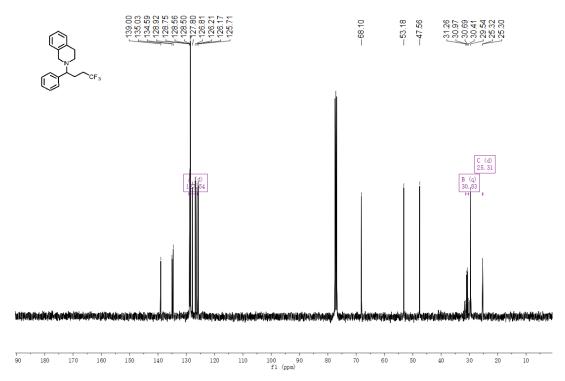

1.25 3.12

d41 ¹³C NMR

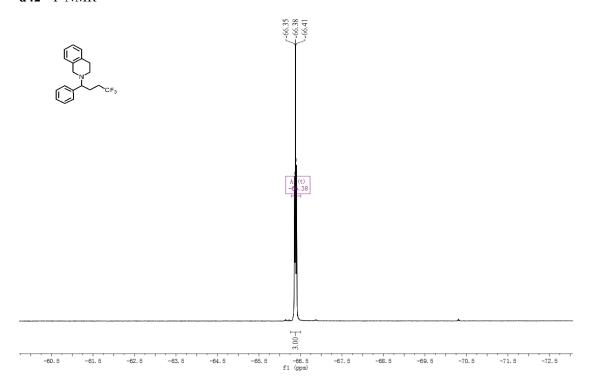
4.19 4.08 1.10 2.07 1.08 2.03 2.03

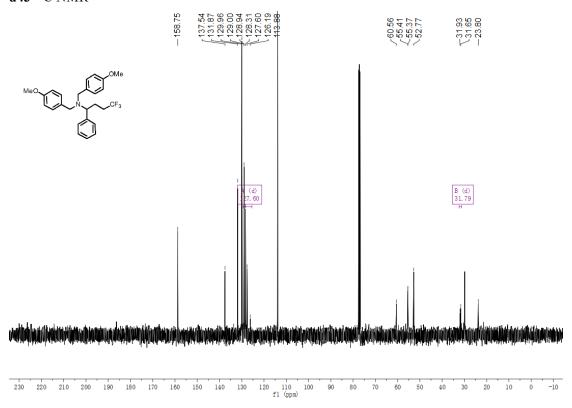


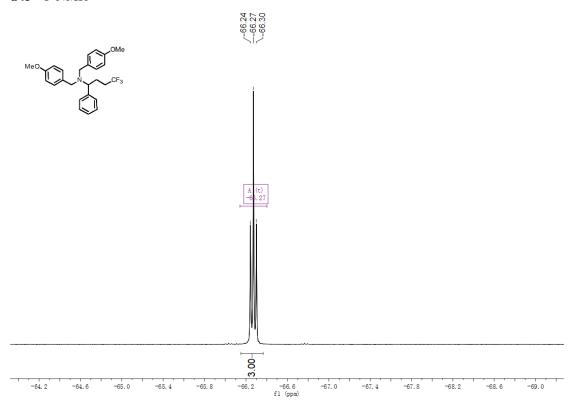
d41 ¹⁹F NMR

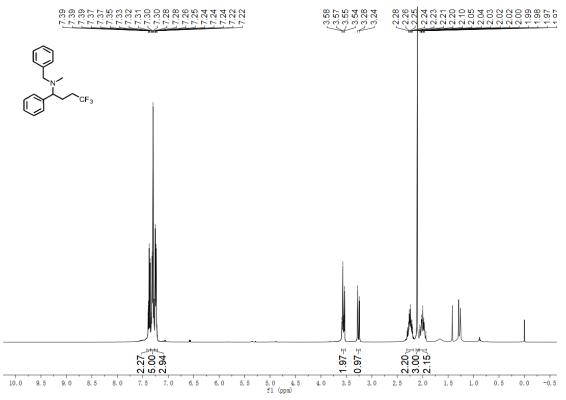


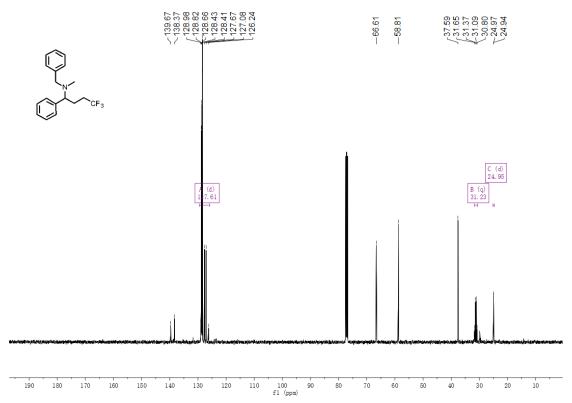
d42 ¹H NMR



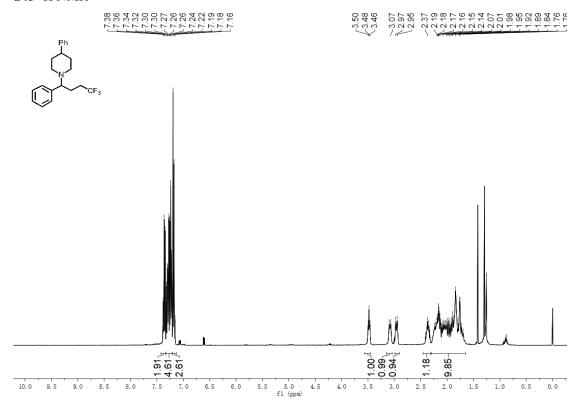

d42 ¹⁹F NMR

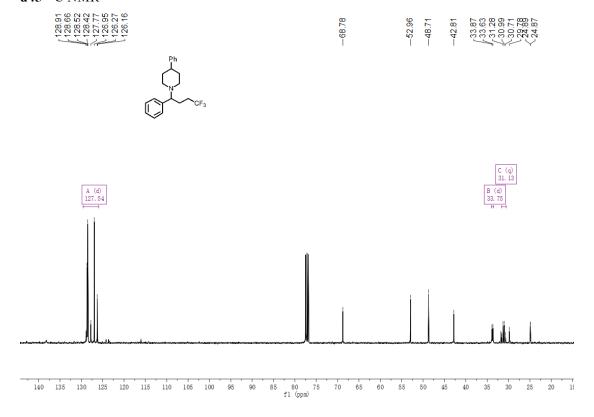


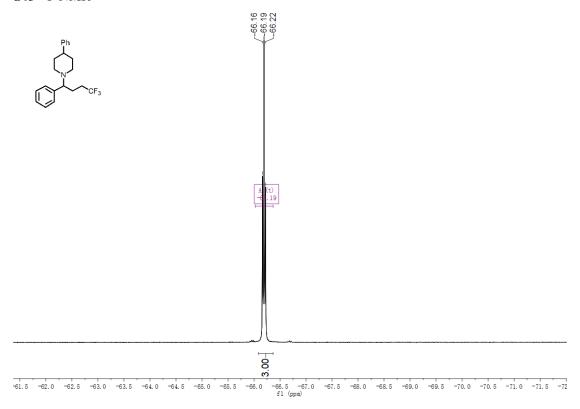


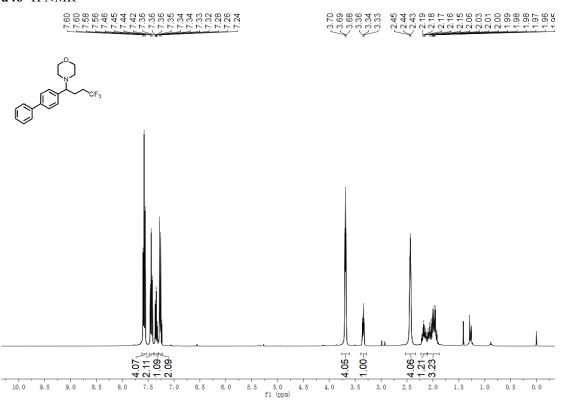

d43 ¹⁹F NMR

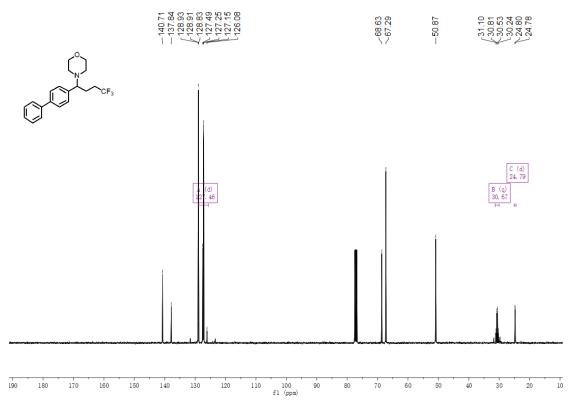
d44 ¹H NMR

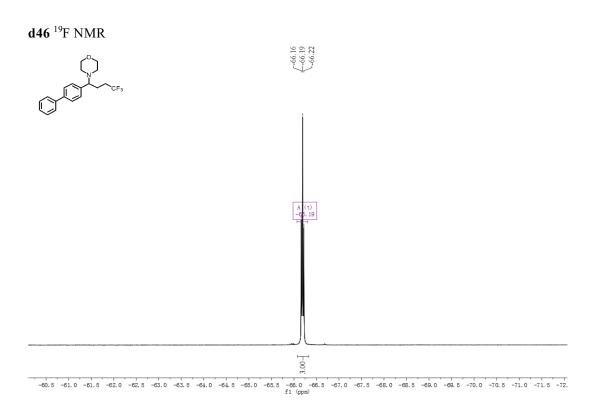



d44 ¹⁹F NMR

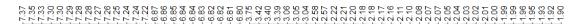


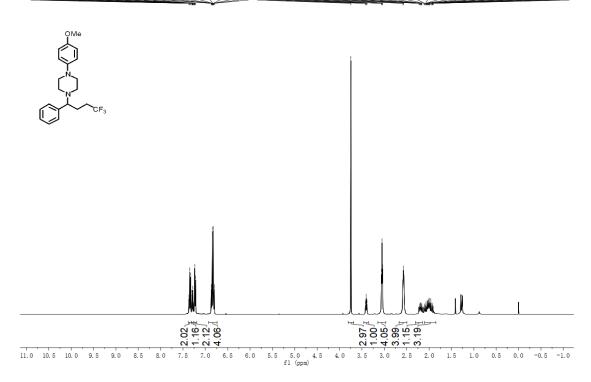


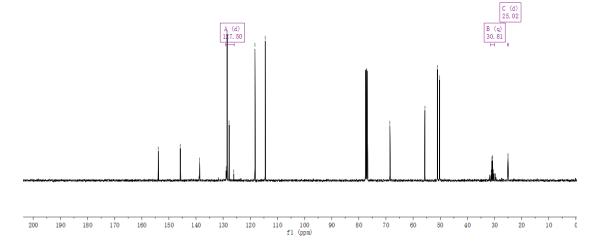


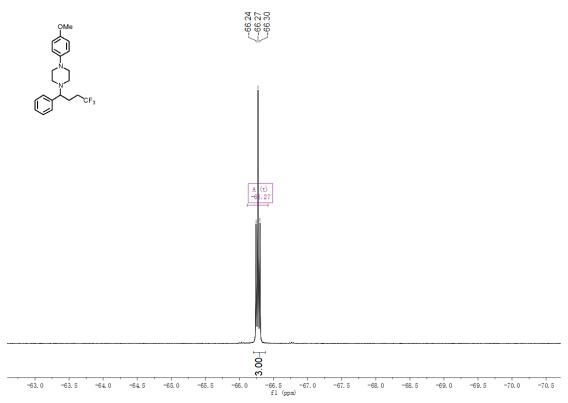


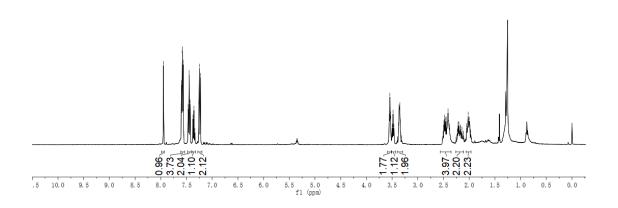
d46 ¹H NMR

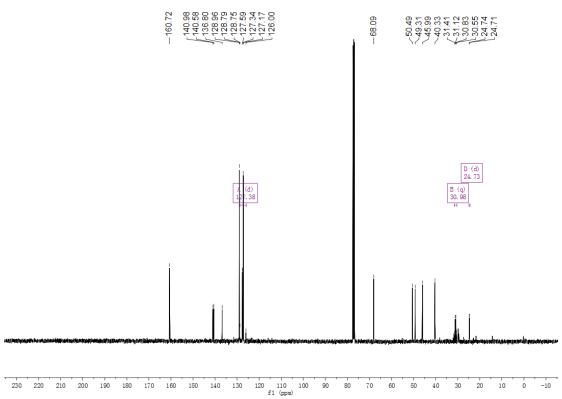




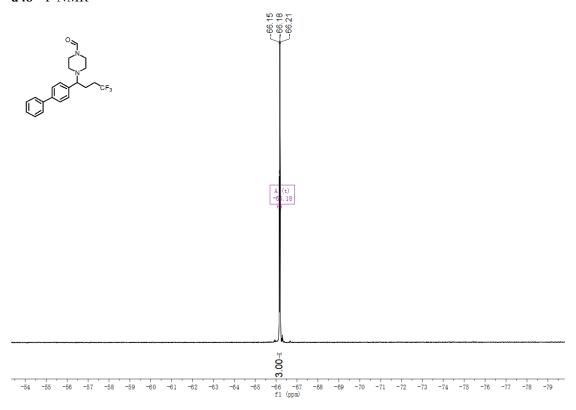

d47 ¹H NMR

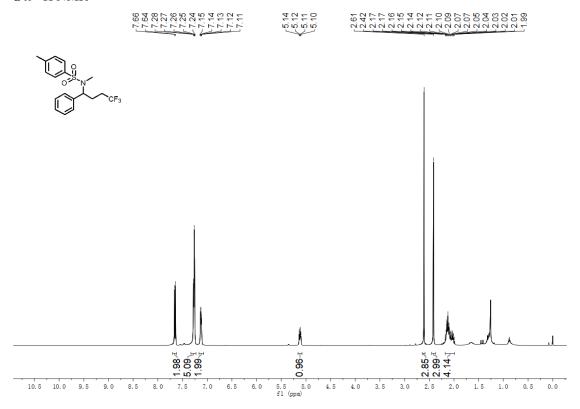




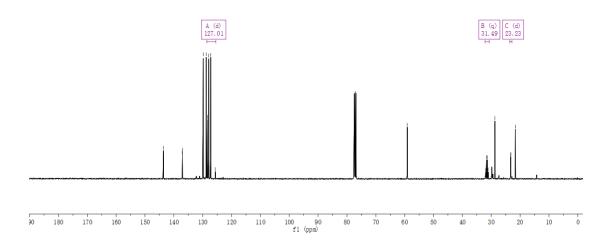


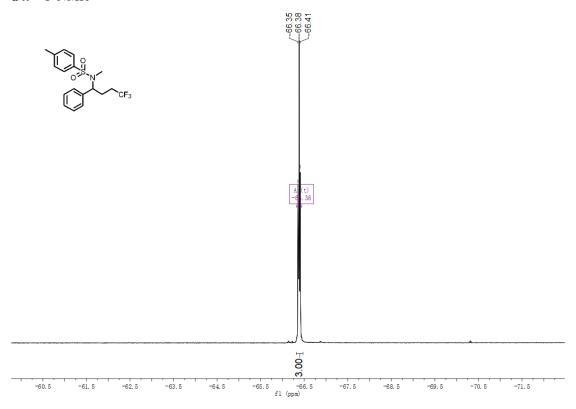
d48 ¹H NMR



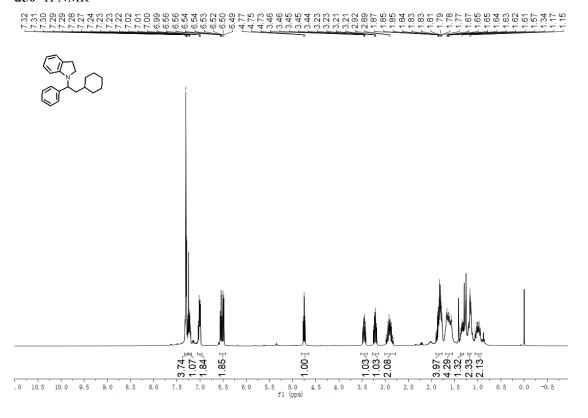


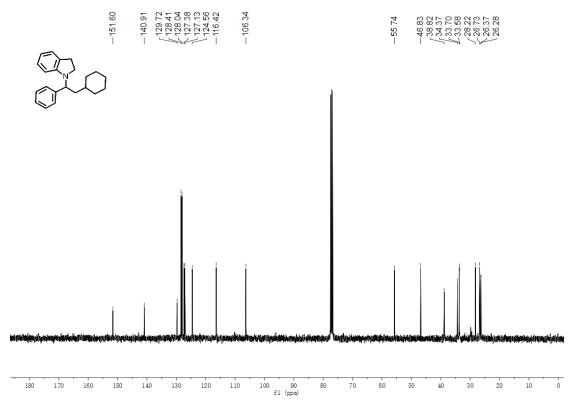
d48 ¹⁹F NMR

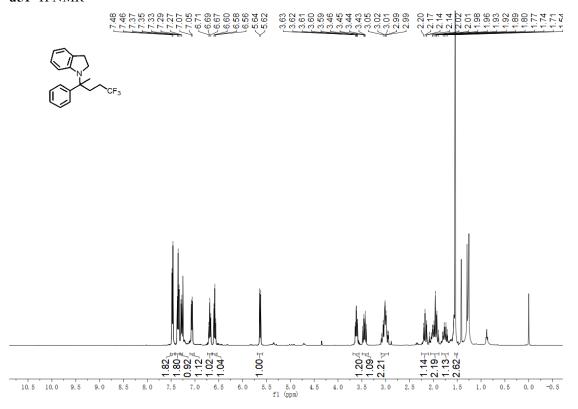


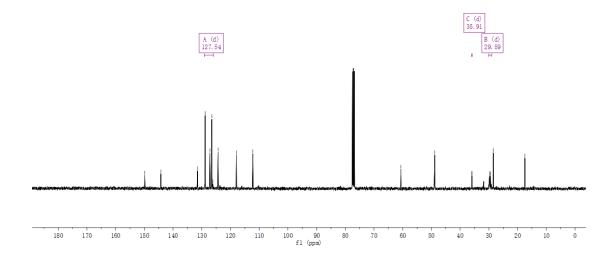


d49 ¹³C NMR

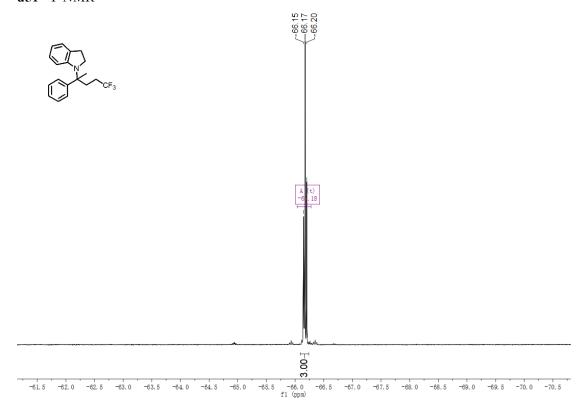

-143.57
-143.57
-143.57
-129.79
-129.79
-127.24
-127.24
-127.24
-127.24
-127.24
-127.24
-127.24
-127.24
-127.24
-127.24
-127.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25
-23.25

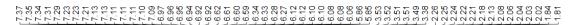

d49 ¹⁹F NMR

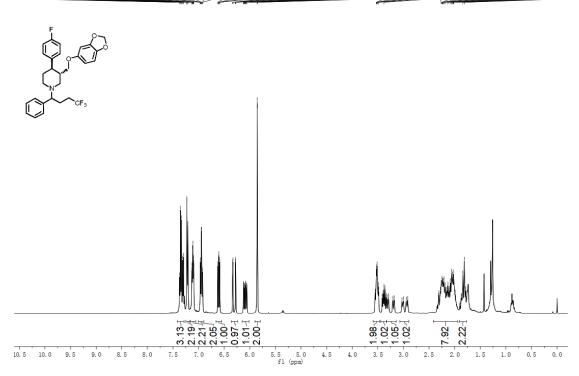

d50 ¹H NMR



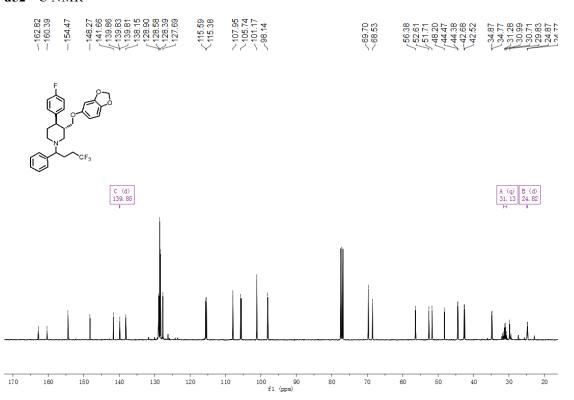
d51 ¹H NMR



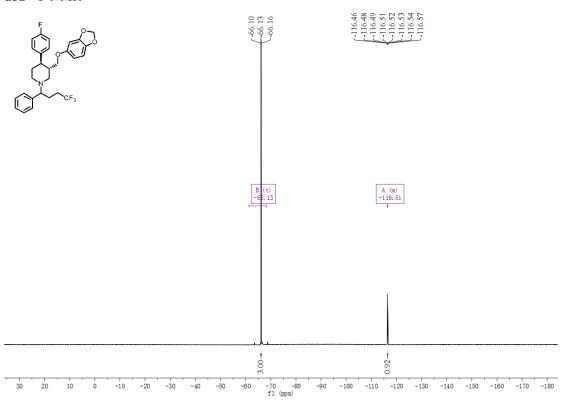




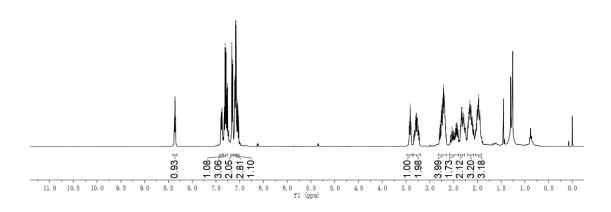
d51 ¹⁹F NMR

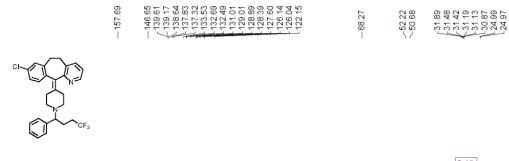


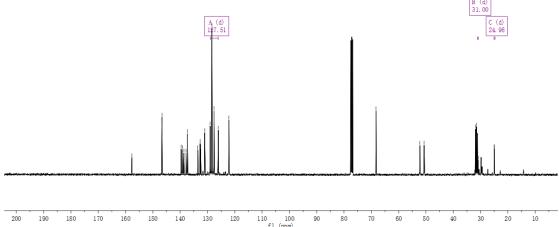
d52 ¹H NMR

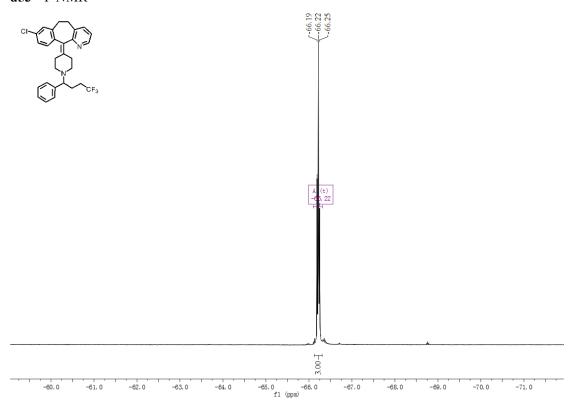


d52 ¹³C NMR






d53 ¹H NMR



d53 ¹⁹F NMR

