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Introduction

Motivation

� The inverse problem seeks to extract knowledge from data via models, and is a critical
precursor to computational prediction with rigorously quantified uncertainties.

� Bayesian inference provides a comprehensive and systematic framework for formulating
and solving inverse problems under uncertainty.

� Bayesian inversion with conventional algorithms and software is prohibitive for complex
models and high dimensional parameter spaces.

� Intensive research efforts are creating advanced algorithms that exploit the structure of
the posterior, resulting in orders of magnitude speedups.

� However, these new algorithms have not been made accessible to a broad community
of scientists and engineers interested in solving inverse problems.

Goals

� Develop, deploy, & support robust, scalable, high-performance, open-source software.

� Provide reference implementations of advanced Bayesian inversion algorithms.

� Enable the solution of Bayesian inverse problems of unprecendented size and realism.

� Facilitate the wider adoption of Bayesian tools in simulation-driven science.

� Any scientist interested in integrating data with models to quantify and reduce uncer-
tainties in model predictions is a potential user.

Bayesian Formulation of Inverse Problems

� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, infer
model parameters and update model predictions.

� Solving the inverse problem then amounts to characterizing the posterior distribution:
drawing samples; estimating the mean, covariance, or higher moments; evaluating the
posterior probabilities of particular events or quantities of interest.
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Figure: The process of extracting knowledge from data by solving inverse problems
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Figure: Design of hIPPYlib (Inverse Problems Python library) [2].

Application: Inverse Ice Sheet Problem Formulation
Here, we describe the inverse problem of estimating the posterior distribution of an un-
known basal boundary condition β that characterizes ice sheet flow [1]. The parameter-
to-observable map u = f (β) involves the solution of a nonlinear Stokes system. We
assume a Gaussian additive noise model for the observed velocities:

uobs = f (β) + ε, ε ∼ N(0,Γnoise)

If the prior is taken as Gaussian with mean βpr and covariance Γpr, then the posterior is:

πpost(β) ∝ exp

(
−1

2 ‖ f (β)− uobs ‖2
Γ−1noise
−1

2 ‖ β − βpr ‖2Γ−1pr

)
The maximum a posteriori (MAP) point can be shown to be:

βMAP = arg min
β

1
2 ‖ f (β)− uobs ‖2

Γ−1noise
+1

2 ‖ β − βpr ‖2Γ−1pr

This is an (appropriately weighted) deterministic inverse problem, which is solved with the
inexact Newton-CG algorithm [1]. Each evaluation of f (β) requires solving a nonlinear
Stokes system:

∇ · u = 0 in Ω

−∇ · σu = ρg in Ω

u|Γl = u|Γr and σun|Γl = σun|Γr on Γp
σun = 0 on Γtop

u · n = 0, Tσun + βTu = 0 on Γbase,

Ω

Γl

Γr

Γbase

Γtop

viscosity η = A0ε̇II
1−n
2n

basal condition Tσun+ βTu = 0

periodic boundaries

measurements

where Γtop and Γbase are the top and bottom surfaces of the ice sheet Ω, Γp is a periodic
boundary, and the variables are:

• u velocity, p pressure
• σu = −Ip + 2η(u, n)ε̇u stress tensor
• η(u, n) viscosity
• ε̇u = 1

2(∇u +∇uT ) strain rate tensor
• T = I− n⊗ n the tangential operator

• ρ density
• g gravitational acceleration vector
• n the unit normal vector
• β the slipperiness coefficient.

Application: Inverse Ice Sheet Problem Results

Figure : Top: True parameter field (left), true velocity (center left), prior variance (center
right), and observations (right). Bottom: Reconstructed parameter field (left), recovered
velocity (center left), posterior variance (center right), and spectrum of the prior precondi-
tioned Hessian of the negative log posterior misfit term (right).

Figure : Top row: Prior mean (left image), and three samples from the prior distribution.
Bottom row: Posterior mean (left image), and three samples from the posterior distribu-
tion.

Other applications in hIPPYlib
� Goal-oriented inference for reservoir models with complex features including faults (UT).
� Joint seismic-electromagnetic inversion (UT).
� Inference of constitutive laws in mechanics of nano-scale filaments (UC Merced)
� Inversion for coupled ice-ocean interaction (UT).

Code repository
� http://hippylib.github.io
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