hiIPPYlib: An Extensible Software Framework for Large-scale Inverse Problems
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Introduction hiPPYlib Software Framework

Motivation
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B The inverse problem seeks to extract knowledge from data via models, and is a critical
precursor to computational prediction with rigorously quantified uncertainties.
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B Bayesian inference provides a comprehensive and systematic framework for formulating
and solving inverse problems under uncertainty.
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B Bayesian inversion with conventional algorithms and software is prohibitive for complex
models and high dimensional parameter spaces.
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hiIPPylib Algorithms

Trace/Diagonal estimators

Evaluation

Posterior samples

g.0.i MCMC Kernels

B Intensive research efforts are creating advanced algorithms that exploit the structure of

Derivatives

the posterior, resulting in orders of magnitude speedups. Forward UQ
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B Provide reference implementations of advanced Bayesian inversion algorithms.

B Enable the solution of Bayesian inverse problems of unprecendented size and realism.

B Facilitate the wider adoption of Bayesian tools in simulation-driven science. Figure: Design of hIPPYIib (Inverse Problems Python library) [2]

B Any scientist interested in integrating data with models to quantify and reduce uncer-
tainties in model predictions is a potential user. . . -
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Here, we describe the inverse problem of estimating the posterior distribution of an un-

Bayesian Formulation of Inverse Problems known basal boundary condition 3 that characterizes ice sheet flow [1]. The parameter-
to-observable map v = f(3) involves the solution of a nonlinear Stokes system. We
B Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, infer assume a Gaussian additive noise model for the observed velocities:

model parameters and update model predictions. w = f(B)+e, &~ NO T,
B Solving the inverse problem then amounts to characterizing the posterior distribution: L , _ , o
drawing samples; estimating the mean, covariance, or higher moments; evaluating the If the prior is taken as Gaussian with mean 3, and covariance I, then the posterior is:

posterior probabilities of particular events or quantities of interest. Figure : Top row: Prior mean (left image), and three samples from the prior distribution.
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The maximum a posteriori (MAP) point can be shown to be:

Uncertain parameter m

Other applications in hIPPYlib

B Goal-oriented inference for reservoir models with complex features including faults (UT).
B Joint seismic-electromagnetic inversion (UT).

B Inference of constitutive laws in mechanics of nano-scale filaments (UC Merced)

B Inversion for coupled ice-ocean interaction (UT).
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| | | | This is an (appropriately weighted) deterministic inverse problem, which is solved with the

Trath inexact Newton-CG algorithm [1]. Each evaluation of f(3) requires solving a nonlinear
Stokes system:

posterior
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®Ey = %(VU + VUT) strain rate tensor : : - [2] Villa, U., Petra, N., and Ghattas, O. (2018). hIPPYlib: an Extensible Software Frame-
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Figure: The process of extracting knowledge from data by solving inverse problems e T = I — n ® n the tangential operator work for Large-scale Deterministic and Bayesian Inverse Problems. Journal of Open
Source Software, 3(30).
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where I, and I, are the top and bottom surfaces of the ice sheet (2, I'), is a periodic
boundary, and the variables are: References
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