
Sustainable	Software	Development	in	the	Ginkgo	Library
Hartwig Anzt,	Terry	Cojean,	Goran	Flegar,	Thomas	Grützmacher,	Pratik	Nayak

Interactive	Performance	Analysis
The Ginkgo Performance Explorer5 (GPE) can be used to
retrieve the performance data from the repository, and
visualizes it in a web browser. GPE also implements an
interface that allows users to write scripts, archived in a git
repository, to extract particular data, compute particular
metrics, and visualize them in many different formats (as
specified by the script).

https://ginkgo-project.github.io/

CI	Test

Performance	Data	Repository

Continuous	Integration	(CI)

Developer
Code	Review

CI	BuildSource	Code
Repository

Push

Schedule	 in	
Batch	System

Web-Application

HPC	System

Trusted	Reviewer

Users

Merge	into
Master	Branch

CI	Benchmark	Tests

Code	Contributions
The source code of the Ginkgo library can be accessed in a
public git repository on GitHub. External developers are
encouraged to contribute via pull requests. To preserve
intellectual property of new developments, the public
repository is mirrored into a repository hosted on GitLab that
features private branches. To ensure high code quality, a list
of development guidelines and tools are employed:

• Contributor guidelines list the conventions for code
development.

• C++ concepts such as smart pointers, to prevent memory
leaks, runtime polymorphism to enhance modularity, and
RAII to enable efficient resource usage.

• The readability of the C++ code is enforced via
automatically-invoked scripts based on clang-format.

• All functionality has to be complementedwith unit tests.
• Doxygen-ready documentation of all new functionality is

mandatory.
• All code and dependencies are open source.

Continuous	Integration	and	Unit	Tests
After each commit to the GitLab repository (or
synchronization with the public repository), a GitLab runner is
invoked to test the compilation and execution of the Ginkgo
library (Continuous Integration, CI). The GitLab runner is
executed on a private server where a list of Docker images
generated via the NVIDIA HPC Container Maker4 is used to
simulate different execution environments in terms of
Compilers and Third-Party Libraries. To test the correct
execution, each functionality is complemented by unit tests.
The unit testing is realized using the Google Test framework.

Continuous	Benchmarking
Merging new functionality into the main branch of the Ginkgo
repository automatically invokes a Continuous Benchmarking
(CB) workflow. The CB system uses scripts to schedule pre-
defined jobs on a specified HPC cluster and collects the
results after the successful completion of the benchmark
jobs.

Review	Process
If a pull request passes all build tests and unit tests,
a manual review process is started. Two core
developers have to approve the pull request before
the new contribution is merged with the main
branch of the Gingko repository. The review
process ensures the code integrity, sufficient
documentation, and the coverage with unit tests.

Performance	Result	Database
The performance results of the benchmark runs are archived in a publicly accessible
performance data repository based on git. Furthermore, the state of the machine,
the environment, and even the compiled binaries are archived as GitLab artifacts.
The intention of the CB system is to not only provide the developer with feedback
about the performance of the new functionality, but also to monitor the
performance of central functionality over time to detect performance degradations.
Also full reproducibility of the runs is guaranteed. The raw data is accessible on
GitHub which enables hassle-free visualization via the Ginkgo Performance Explorer
(GPE).

Software	Interoperability
An important aspect of the Ginkgo development is the focus on software
interoperability. We heavily leverage the expertise, code of conduct, and community
guidelines offered by the Extreme-scale Scientific Software Development Kit
(xSDK1) and the Better Scientific Software (BSSw2) initiatives. At the current point,
we have full xSDK software compatibility, and expedite to soon become part of this
effort. Furthermore, we hope that Ginkgo's focus on single-node execution allows for
the smooth integration into larger software ecosystems like Trilinos3.

References
1xSDK: https://xsdk.info/
2BSSw: https://bssw.io/
3Trilinos: https://trilinos.github.io/
4NHPCCM: https://github.com/NVIDIA/hpc-container-maker
5GPE: https://ginkgo-project.github.io/gpe/


