
Automated Performance Analysis with PETSc

Matthew G. Knepley
Computer Science & Engineering, University at Buffalo

knepley@gmail.edu

Albert Cowie
Computer Science & Engineering, University at Buffalo

arcowie@buffalo.edu

Justin Chang
National Renewable Energy Laboratory

justin.chang@nrel.gov
We acknowledge support from DOE Applied Math Research, Contract DE-AC02-06CH11357, NSF SI2-SSI: 1450339, and the UB Center for Computational Research.

Traditional performance analysis treats all work (flops, memory references, etc.) as
equally effective. Hpwever, work done in service of an algorithm with faster convergence
rate is worth more than normal work, if we use the metric of marginal decrease in error
per flop. Thus flops done for multigrid are different than those done for CG/ILU, and flops
done for Newton are different than those done for Richardson.

Metrics such as flop rate and bandwidth achieved are excellent for understanding hard-
ware utilization, which accounts for the popularity of Roofline analysis, tools such as
STREAM, PAPI, OpenSpeedShop and HPCToolKit. However they do not shed much light
on algorithmic tradeoffs For that, we also need to understand how different algorithms
make progress toward the solution.

Why do we need new performance analysis?

PETSc provides an extensible logging framework, where users can add custom events
and choose arbitrary aggregation stages for results. We have added the ability to report
both problem sizes and solution errors for multiple fields inside any logging event. This
means the structure is also extensible to different error measures, such as divergence
norms, dispersion measures, and hypernorms. We plan to explore the consequences for
algorithm choices in future work.

In order to input data, we have added:

PetscErrorCode PetscLogEvent SetDof (PetscLogEvent event , Pe tsc In t n , PetscLogDouble dof) ;
PetscErrorCode PetscLogEvent SetEr ror (PetscLogEvent event , Pe tsc In t n , PetscLogDouble e r r o r) ;

The user may output the performance data using options:

-log_view :log.out Human-readable ASCII
-log_view :log.out:ascii_info_detail Python module source
-log_view :log.out:ascii_csv CSV file

PETSc API (www.mcs.anl.gov/petsc)

Automation

Primary Data
d Spatial dimension
T Runtime
N Problem size
E Solution error

Derived Quantities
Resolution h N = Dh−d

Digits of Accuracy (DoA) − log10E

Digits of Size (DoS) log10N

Digits of Efficacy (DoE) − log10(ET)

Strong Scaling: Problem Size Fixed Concurrency Increased
Weak Scaling: Problem Size Increased Concurrency Increased
Static Scaling: Problem Size Increased Concurrency Fixed

Metrics

The Time-Accuracy-Size (TAS) performance analysis uses measures of the execution
time, solution accuracy, and problem size or work, to examine algorithmic tradeoffs. It is
detalied in (Chang, Fabien, Knepley, Mills, 2018. arxiv:1802.07832). For example, the
traditional mesh convergence diagram plots accuracy against size. The static scaling
analysis introduced by Brown and Adams for the HPGMG Benchmark (hpgmg.org) plot
computation rate against runtime for fixed parallelism. We introduce a new analysis
comparing accuracy-time against runtime, again at fixed parallelism. The diagram below
shows the relation between these analyses.

T
im

e
to

so
lu
ti
on

In
ten

sit
y Rate

Op
er
at
ion

s p
er
by
te
tra

ns
fer
re
d Degrees-of-freedom

per second

O
p
tim

a
l

perfo
rm

a
n

ce

(1)

(3)(2)

A
lgorithm

ic
effi

ciency

Hard
ware

effi
cie

ncy

W
a
ll
-c
lo
ck

ti
m
e

In
st
ru
ct
ion

s p
er
clo

ck
cy
cle

M
em

or
y
ba
nd
wi
dt
h

Seconds per solver iteration

Operations per second

S
o
lv
er

it
er
a
ti
o
n
s

Chang et. al., A performance spectrum for parallel
computational frameworks that solve PDEs,

Concurrency and Computation, 30(11), 2017.

Chang et. al., Comparative study of finite element methods
using the Time-Accuracy-Size (TAS) spectrum analysis,

SIAM J. Sci. Comput., 40(6), 2018.

A convergent discretization satisfies E ≤ Ch−α, thus our mesh convergence slope is

DoA

DoS
= − log10 (Ch

α)

log10
(
Dh−d

) ≈ α

d

Optimal solvers do linear work, so the static scaling curve should be flat, until strong
scaling effects take over at the left, or algorithmic inefficiencies dominate at the right.

The marginal production of accuracy declines as problem sizes increases, which
makes it a poor measure for performance across problem scales. Instead, we define the
efficacy, or E · T , as the quantity to be minimized by the solver. For an optimal solver,

− log10(E · T) = − log10

(
Chα ·Wh−d

)
= (d− α) log10 h− log10(CW).

so that the optimal slope of our efficacy graph is d − α. Note also that higher DoE
indicates a more efficient algorithm. Thus efficacy can be likened to an algorithmic
action, in analogy with the mechanical action Energy × Time, and minimzation of the
efficacy should be an algorithmic design goal.

Optimal Solvers

What is TAS analysis?

0 1 2 3 4 5 6 7
DoS

0

1

2

3

4

5

6

7

Do
A

CG1
CG2
DG1
DG2

Mesh Convergence

10 1 100 101 102

Time (s)
104

105

106

Do
F/

s

CG1
CG2
DG1
DG2

Static Scaling

10 1 100 101 102

Time (s)
0

1

2

3

4

5

6

Do
E

CG1
CG2
DG1
DG2

Efficacy

3D Poisson Problem: CG vs. DG, 1 PE

SNES ex62 run on 1152 PE of the Knepley/Jadamec Geosolver Cluster at UB CCR.
Both velocity and pressure fields are shown on graphs.

2D Stokes Problem: Comparing Q2 −Q1 vs. Q2 −Q−1 vs P2 − P1

•TAS Analysis can evaluate algorithmic tradeoffs more precisely (arxiv:1802.07832)
•PETSc now (extensibly) automates the information gathering for TAS
•The next release of PETSc will automate vizualization of TAS
•See also poster on Composable Block Solvers, Joshaghani et.al. (arxiv:1808.08328) for

a TAS analysis of multilevel block preconditioners.

Summary

http://www.mcs.anl.gov/petsc
https://arxiv.org/abs/1802.07832
https://hpgmg.org/
https://arxiv.org/abs/1802.07832
https://arxiv.org/abs/1808.08328

