
Jamie M Finney Gerald Ragghianti
Jakub Kurzak Mark Gates
Piotr Luszczek Asim Yarkhan
Jack Dongarra
Innovative Computing Laboratory
University of Tennessee, Knoxville

SLATE: Developing Sustainable Linear Algebra Software for Exascale
SOFTWARE DEVELOPMENT PRACTICES FOR THE NEXT GENERATION OF SUPERCOMPUTERS

SPONSORED BY
SLATE: Developing Sustainable Linear Algebra Software for Exascale
SOFTWARE DEVELOPMENT PRACTICES FOR THE NEXT GENERATION OF SUPERCOMPUTERS

SLATE will be a modern replacement
for ScaLAPACK.
The SLATE software package will be a replacement for the
LAPACK and ScaLAPACK numerical libraries, which over the
last two decades set the bar for quality, sustainability, and
community engagement. Improving upon the
accomplishments of these legacy packages in those capacities
is one of the major objectives of the SLATE project.

SLATE will accomplish these improvements by applying
contemporary software engineering techniques in hosting,
development, documentation, automated testing, and
continuous integration, creating communication channels with
academic and commercial application teams to actively engage
the larger HPC community, and using modern tools that enable
these practices and techniques.

SLATE IN THE ECP SOFTWARE STACK SLATE TESTING TRENDS

AGILE METHODOLOGY

The SLATE team uses an extended scrum style
methodology. Planning sessions are typically held over
the first week of each milestone, as a team and in pairs.
Features are planned as function groups, such as parallel
BLAS operations, linear systems, or least squares.

These are broken into tasks which are tracked on a Trello
board, where To Do, Doing, Ongoing, and Done items are
held. Over the course of the milestones, smaller iterations
are used to break down larger tasks, i.e., into individual
functions. Weekly meetings are used in place of the daily
scrum meeting to minimize distractions.

SLATE TOOLS

COMPATIBILITY APIS

LAPACK COMPATIBILITY API

LAPACK function signatures, "slate_" prefix, e.g.,
slate_dgetrf(M, N, A, LDA, IPIV, INFO).
Additional settings through environment variables, e.g.,
"export LAPACK_NB=256".

SCALAPACK COMPATIBILITY API

ScaLAPACK function names and signatures, i.e., no
changes to the source code required (link time
replacement).

SLATE TEST REPORTING EXAMPLE

DOWNLOAD SOFTWARE AT
https://bitbucket.org/icl/blaspp

DOWNLOAD SOFTWARE AT
https://bitbucket.org/icl/lapackpp

SLATE OBJECTIVES

AGILITY Weekly meetings, open doors, Slack
channels

CONTINUOUS INTEGRATION Jenkins builds all libraries for every
check-in

CONTINUOUS DELIVERY Code repository is public on Bitbucket

AUTOMATED TESTING Jenkins tests run after every build

MONITORING Build and test results delivered via email
and Slack

CORRECTNESS Test against ScaLAPACK, LAPACKE,
CBLAS

COMMUNICATION Public user group, Slack channel, Twitter

@SLATE_ICL_UTK

slate-user@icl.utk.edu

https://goo.gl/forms/dsMt4zl10xAP4wsm1

slate_suite.gbtrf

45 tests failed

Standard Output

input: ./test gbtrf --nb 10,100 --ref n --type s,d,c,z --lookahead 1 --dim 100:500:100 --kl 20,100 --ku 20,100
MPI size 1, OpenMP threads 4
 look panel SLATE

target type m n kl ku nrhs nb ib p q ahead threads error time (s) status
 t s 100 100 20 20 10 10 16 1 1 1 1 3.21e-10 0.01088 pass
 t s 200 200 20 20 10 100 16 1 1 1 1 1.81e-10 0.008226 pass
 t s 200 200 100 20 10 10 16 1 1 1 1 1.72e-05 0.01176 FAILED
 t s 200 200 100 20 10 100 16 1 1 1 1 2.38e-10 0.008649 pass
 t s 300 300 20 100 10 10 16 1 1 1 1 4.38e-05 0.007928 FAILED
 t s 300 300 20 100 10 100 16 1 1 1 1 7.27e-11 0.008942 pass
 t s 300 300 100 100 10 10 16 1 1 1 1 6.22e-05 0.04409 FAILED
 t s 300 300 100 100 10 100 16 1 1 1 1 2.03e-10 0.008178 pass
 t s 400 400 20 20 10 10 16 1 1 1 1 8.06e-11 0.008256 pass
 t s 400 400 20 20 10 100 16 1 1 1 1 9.06e-11 0.01394 pass
 t s 400 400 20 100 10 10 16 1 1 1 1 4.19e-05 0.01065 FAILED
 ...
 t z 100 100 20 20 10 10 16 1 1 1 1 1.81e-04 0.007638 FAILED
 t z 100 100 20 20 10 100 16 1 1 1 1 8.63e-19 0.008050 pass
 t z 100 100 20 100 10 10 16 1 1 1 1 4.23e-19 0.001097 pass
 t z 100 100 20 100 10 100 16 1 1 1 1 6.84e-19 0.001431 pass
 t z 100 100 100 20 10 10 16 1 1 1 1 1.33e-18 0.005349 pass

BLAS++
Basic linear algebra subprograms (BLAS) have been around
for many decades and serve as the de facto standard for a
performance-portable and numerically robust
implementation of essential linear algebra functionality.
BLAS++ provides a convenient, performance-oriented API
for development in the C++ language and preserves
established conventions while taking advantage of modern
C++ features.

HIGHLIGHTS
● Covers the entire BLAS (~120 routines)
● Multiple precisions using C++ templates
● Error handling with C++ exceptions
● Covered with a testing suite
● Documented with Doxygen

Mark Gates et al.
C++ API for BLAS and LAPACK
SLATE Working Note #2
http://www.icl.utk.edu/publications/swan-002

Batched BLAS++
Many scientific and engineering computing applications
solve large numbers of small and independent linear algebra
problems. Such workloads can be executed much more
efficiently on modern hardware if they are issued in large
batches rather than one by one. To standardize the API, the
HPC community is developing an extension to the BLAS
standard called Batched BLAS. The objective of Batched
BLAS++ (BBLAS++) is to provide a convenient,
performance-oriented API for development in the C++
language that preserves established conventions while
taking advantage of modern C++ features.

Ahmad Abdelfattah et al.
C++ API for Batch BLAS
SLATE Working Note #4
http://www.icl.utk.edu/publications/swan-004

LAPACK++
The Linear Algebra PACKage (LAPACK) is a standard
software library for numerical linear algebra that provides
routines for solving systems of linear equations and linear
least squares problems, eigenvalue problems, and singular-
value decomposition problems. LAPACK++ provides a
convenient, performance-oriented API for development in
the C++ language and preserves established conventions
while taking advantage of modern C++ features.

HIGHLIGHTS
● Covers majority of LAPACK (~1,200 routines)
● Multiple precisions using C++ templates
● Error handling with C++ exceptions
● Covered with a testing suite
● Documented with Doxygen

Mark Gates et al.
C++ API for BLAS and LAPACK
SLATE Working Note #2
http://www.icl.utk.edu/publications/swan-002

 CHECK OUT
http://www.icl.utk.edu/publications/series/swans

https://bitbucket.org/icl/blaspp
https://bitbucket.org/icl/lapackpp
http://www.icl.utk.edu/publications/swan-002
http://www.icl.utk.edu/publications/swan-004
http://www.icl.utk.edu/publications/swan-002
http://www.icl.utk.edu/publications/series/swans

