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TRANSP is a valued code in the fusion community...
● TRANSP is a time-dependent 2D MHD equilibrium and 1D 

plasma transport solver for modeling tokamak fusion plasma 
discharges

● Used by hundreds of physicists and engineers at several 
research centers world-wide

● The physics capabilities of TRANSP has grown significantly over 
30+ years of development

● Originally used for interpretation of experimental results but now 
includes predictive modeling capabilities

● Advanced usage:
○ Campaign planning and experiment design
○ BEAST mode - rapid between experimental shot analysis
○ TRANSP as a flight simulator for plasma control systems
○ Whole Device Model, including predict first

● TRANSP is under continuous development to provide users with 
new physics models and improved performance

TRANSP usage: over 62k simulations performed since 2010

TRANSP also used to model plasma discharges for other tokamaks including: ARIES, DEMO, FNSF, Hl2A/HL2M, IGTR, JT60, 
KDMO, LTX, MST, RXFM, STEP, TCV, TFTR, WRK

…but the software approach needs a reboot
● Lack of attention to best software practices has lagged the 

advancements in physics models
● Result is a non-modular code making the implementation of new 

physics models challenging, particularly models that require 
extensive HPC capabilities

● 30+ years of development has led to significant repo clutter
○ Not used and unusable sections of code
○ Deprecated physics models not removed from repo or docs

● Homegrown build system based on csh and gmake
○ Very powerful but difficult to port to other computing facilities

● Homegrown regression testing suite instead of tools widely used 
and accepted by the community

● Versioning of subsections of code but not entire code
● Development done directly in trunk by multiple developers

Our mission
Update the software approach and restructure TRANSP to improve 
code flexibility while maintaining ability to couple physics modules 
that involve a wide range of spatial and temporal scales

TRANSP dependency graph
● Repo organized in sub-directories with each compiled as its own 

library (278) or test programs (259)
● Dependency graph✝ shows 

significant directory 
interlinking including many 
reciprocal links

● Hairball graph useful for
quickly finding code not 
linked with executable and
are candidates for removal

● Attempts to reorganize
graph shown some parts of the repo are more modular than 
expected (e.g., MHD equilibrium tools)

● Directory reorganization will lead to a more levelized graph
✝Architecture dependency graph generated using the Understand software from SciTools

Modernizing our scientific software approach
● Must continue physics model development; performing 

modernization with a step-by-step careful approach
● Adding regression tests to ensure no code breakage
● Objective is to restructure the code to result in a hierarchical 

dependency graph and improve modularity and portability

Code repository and versioning
● Moved from SVN to a private GitHub repository ✔
● Will open source TRANSP code after code restructuring is 

complete (as per DOE requirements)
● Development team adopting proper branch management with 

development in branches and pull requests for merges ✔
● Quarterly releases with version numbers and release notes for 

an update-to-date public release ✔

Code restructuring and clean-up
● Removed multiple deprecated physics models and not used 

sections of code ✔ (but ongoing) 
● Over 100k lines of unneeded code removed from repo so far
● Restructuring code based on physics and streamlining the 

interface between the modules and core TRANSP code
● Remove 3rd party code from repo, pull latest version link to libs

Productivity
● Adopt a modern continuous integration approach for builds and 

regression testing (likely Jenkins)
● Eventually rework the build system

Portability
● Containerization of TRANSP for quick deployment to other 

computing facilities including cloud-based HPC ✔
● Using a recipe-based Singularity container (www.sylabs.io) ✔
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