
No Need for Excuses: Applying
Software Engineering Principles to

Facilitate Scientific Software
Documentation

Spencer Smith, Malavika Srinivasan and Sumanth Shankar∗

Computing and Software Department, McMaster University
∗Mechanical Engineering Department, McMaster University

smiths@mcmaster.ca

SOFTWARE documentation improves qualities such as maintainability,
reusability, verifiability and usability. So why do scientific software devel-

opers underemphasize documentation? Reasons include: i) requirements are
not known up-front (they emerge over time), ii) change is frequent, iii) rigid
processes hamper creativity, iv) the software is too complex; and, v) there is
no test oracle. These are reasons that documentation is challenging, not ex-
cuses for avoiding it entirely. Complexity and frequent change are not unique
to scientific software. So how do other domains deal with these challenges –
by applying Software Engineering (SE) principles, techniques and tools. Spe-
cific SE ideas helpful to scientific software include: faking a rational design
process, documentation templates, abstraction, anticipation of change, gener-
ality, replicability, separation of concerns, information hiding, and tool support.
Many developers are familiar with these ideas, but examples of adapting them
to scientific software are rare. An example is shown here to illustrate SE ideas
applied to software to analyze the solidification of a molten metal alloy.

1. Software For Solidification (SFS)

The output of SFS is the frac-
tion solid (fS), either as a func-
tion of time, temperature or cool-
ing rate.fS is obtained by solving
an Ordinary Differential Equa-
tion (ODE) based on the experi-
mental temperature data (shown
above), material properties and
processing conditions [6].

2. Faking a Rational Design Process

A rational design process, with up-front requirements flowing into successive
design stages, is not usually feasible, but the best way to write documentation
is still to “fake” a rational process [2]. SFS was developed using a V-model,
where a testing phase is associated with each step in the typical waterfall pro-
cess. The documents include a Software Requirements Specification (SRS),
a software architecture in a Module Guide (MG), and a detailed design in a
Module Interface Specification (MIS) [3].

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan

3. Documentation Templates

A template tailored to scientific software [5] was adopted for the SRS. The
template was designed to use SE principles, like abstraction, separation of
concerns, anticipation of change and generalization.

1. Reference Material: a) Table of Units b) Table of Symbols c) Abbreviations
and Acronyms

2. Introduction: a) Purpose of Document b) Scope of Requirements c) In-
tended Audience d) Organization of Document

3. Background

4. General System Description: a) System Context b) User Characteristics
c) System Constraints

5. Specific System Description:
a) Problem Description: i) Terminology and Definitions ii) Physical System
Description iii) Goal Statements
b) Solution Characteristics Specification: i) Assumptions ii) Theoretical
Models iii) General Definitions iv) Data Definitions v) Instance Models
vi) Data Constraints vii) Properties of a Correct Solution

6. Requirements:
a) Functional Requirements: i) Configuration Mode ii) Calibration Mode
iii) Calculation Mode
b) Non-Functional Requirements: i) Look and Feel Requirements ii) Us-
ability and Humanity Requirements iii) Installability Requirements iv) Per-
formance Requirements v) Operating and Environmental Requirements
vi) Maintainability and Support Requirements vii) Security Requirements
viii) Cultural Requirements ix) Compliance Requirements

7. Likely Changes

8. Unlikely Changes

9. Supporting Information

Templates designed using SE principles were also used for the Module Guide,
Module Interface Specification, and the Verification and Validation plans and
reports. The Python code mostly followed the PEP8 standard. Doxygen was
used to generate documentation for the Application Program Interface (API).

SIAM CSE 2019, Conference on Computational Science and Engineering, February 26, 2019, Spokane, Washington

4. Abstraction

The SRS for SFS starts with an abstract overall goal, which is later refined via
general definitions to an instanced model, which is itself refined into a design
and subsequently code.

For a given experiment with a metal alloy, using the thermocouple locations,
temperature readings, material properties and initial conditions, SFS:

GS1: Computes the solid fraction (fs) as a function of temperature (T) and
cooling rate (fs(T, dTdt)).

The requirements for the SRS for SFS were stable throughout this development
project because changeable design decisions were postponed via abstract re-
quirements. For instance, the SRS does not specify whether the fit will use
regression, interpolation, polynomials or some other basis functions.

Number GD4

Equation T (y, t) = fit(Tdata, yTC, dt) where fit : Rm×n → Rn → R → (R →
R→ R)

Descript. Experimental temperature history data (Tdata) at the thermocou-
ples is used to determine the function T (y, t), where the inputs are
y (m), the position as measured from the bottom of the cylinder,
and t (second), the time. The output is the temperature (◦C). fit() is
a function that takes the thermocouple data Tdata, the locations
of the thermocouples yTC and the time step dt, and returns the
appropriate function T (y, t). m is the number of instants of time
where the thermocouple data is measured and n is the number of
thermocouples.

5. Anticipation of Change

The SRS is designed with change in mind. The figure below shows the rela-
tionship between different parts of the requirements model. Cross-references
are bi-directional. The traceability information is also summarized in a trace-
ability matrix. A summary of likely changes is included in the SRS. Most likely
changes are related to assumptions that may be modified in the future. Antici-
pation of change allows for creation of a family of related physical models.

refined

may ref

may ref

Theoretical Models
may ref

refined

may ref

may ref

General Definitions
may ref

may ref

may ref

may ref

Instanced Models

may ref may ref may ref

may ref

Data Definitions

Assumptions
may ref

may ref

Likely Changes

6. Generality

The instance model for solving fS is written in the general ODE form, to take
advantage of existing ODE solvers. Other research on solidification creates
an unnecessary challenge by neglecting generality and instead developing its
own ad hoc algorithms.

Number IM4

Input T (y, t) (see DD4), from which ∂T
∂t and ∂2T

∂y2 can be derived, as
required

Material properties CL
v (T), CS

v (T), ρL(T), ρS(T), αb (from IM2),
αe (from IM3), and L

y∗, (tL, TL) from DD6 and (tS, TS) from DD7

Output Solve fs(t) at location y∗ such that the following ODE is satisfied
with fs(tL) = 0:

ḟs(fs, t) = Cv(fs)
Lρ(fs)

[
∂T (t)
∂t − α(fs)

∂2T (t)
∂y2

]
where ... (derivation invokes simplifying assumptions)

7. Replicability

Although reproducibility is the cornerstone of the scientific method, until re-
cently it has not been treated seriously in software [1]. To replicate the work of
another, starting from the theory, requires full documentation of all relevant as-
sumptions. Future change is anticipated via traceability to theories (T), unlikely
changes (UC), likely changes (LC), general definitions (GD), data definitions
(DD) and instance models (IM).

A1: The only form of energy that is relevant for this problem is thermal energy.
All other forms of energy, such as mechanical energy, are assumed to be
negligible [T1, UC1].

A2: The heat removal is assumed to be unidirectional and the heat conduction
in axial direction is assumed to be 0 [GD1, UC2].

A3: Heat transfer through the cylinder takes place by conduction only, not
advection. [DD5].

A4: We assume that Cv(T) can be expressed as a linear combination of the
values at the beginning and at the end of solidification [IM4, DD1, GD2].

A5: We assume that α(T) can be expressed as a linear combination of the
values at the beginning and at the end of solidification [IM4, DD2, GD2].

A6: We assume that ρ(T) can be expressed as a linear combination of the
values at the beginning and at the end of solidification [IM4, DD3, GD2].

A7: Thermal conductivity through the liquid and solid metal is isotropic.

A8: Newton’s law of convective cooling applies between the water and the
cast alloy [GD3, DD8].

A9: The heat transfer coefficient at the bottom of the cylinder is assumed to
be independent of temperature [GD3, LC1].

A10: The thermal resistance due to the thermocouples is assumed to be neg-
ligible [GD4].

A11: The cast metal is perfectly insulated by the sand mold so that there is
no heat loss from the sand mold [GD1].

A12: The density of the solidifying material is assumed to be constant for the
derivation of ḟs [IM4].

A13: The data collected from the thermocouples starts at time 0 and there is
a constant time step between each data point [GD4, LC2].

8. Separation of Concerns

Properties of a correct solution can be brainstormed before a single line of code
is written. The following property states that for any fixed time the temperature
will be non-decreasing through the height of the cylinder.

Number PC1

Equation For any t, t > 0, (∀y1, y2 : R|0 ≤ y1 ≤ H ∧ 0 ≤ y2 ≤ H ∧ y1 < y2 :
Tt(y2) ≥ Tt(y1)) where Tt = λy : T (y, t)

Descript. Tt(y) is non-decreasing with increasing y (the temperature rises
(or remains the same) with increasing height in the cylinder).

The design is divided into modules, as shown in the following uses relationship.

Control Module

ODE Solver Module fs ODE Definition
Module

Output Format
Module

Output Verification
Module Plotting Module

Input Parameters
Module

Contours ADT
Module

FunctT ADT Module

Specification
Parameters Module

Regression/
Interpolation/ Splines

Module

Sequence Data
Structure Module

Hardware Hiding
Module

9. Information Hiding

The interface provides a constructor (new FunctT) that takes two vectors of
data and returns a FunctT object. Accessors include minD and maxD for find-
ing the extreme limits of the independent data variable. The accessor eval
returns the value of the dependent variable (x), given a value for the indepen-
dent variable (y). The syntax of FuncT shows exceptions if the data for the
independent variable is not in ascending order, of if the number of data points
in the two sequences do not match, or if a function evaluation is sought outside
of the domain of the given data.

Routine In Out Exceptions
new FunctT Xin:Rn, Yin: Rn FunctT IndepVarNotAscend,

SeqSizeMismatch
minD R
maxD R
eval x : R R OutOfDomain

SIAM CSE 2019, Conference on Computational Science and Engineering, February 26, 2019, Spokane, Washington

The corresponding semantics for FunctT are given below.

State Variables
f: R→ R
minX: R
maxX: R

new FunctT(Xin, Yin):

• transition: minX,maxX, f := X0, X|X|−1, (λv : interp(X, Y, v))

• output: out := self

• exception: exc := (¬isAscending(Xin) ⇒ IndepVarNotAscend| |Xin| 6=
|Yin| ⇒ SeqSizeMismatch)

minD():

• output: out := minX

• exception: None

...
eval(x):

• output: out := f (x)

• exception: exc := (¬(minX ≤ x ≤ maxX)⇒ OutOfDomain)

Local Functions
interp: Rn × Rn × R→ R
interp(X, Y , v)

≡ interpQuad(Xi−1, Yi−1, Xi, Yi, Xi+1, Yi+1, v) where i = index(X, v)

interpQuad: R× R× R× R× R× R× R→ R
interpQuad(x0, y0, x1, y1, x2, y2, x)

≡ y1 +
y2 − y0

x2 − x0
(x− x1) +

y2 − 2y1 + y0

2(x2 − x1)2
(x− x1)2

index: Rn × R→ N # constructor test ensures sequence is ascending
index(X, x) ≡ i such that Xi ≤ x < Xi+1

Below we show the syntax and semantics for the MIS for ContourADT. The
full data set is built up by adding each successive thermocouple’s data. The
accessors, eval, dydx and d2ydx2 are used to calculate the values of T (y, t),
∂T
∂t and ∂2T

∂y2 , respectively. The access program slice returns a new FuncT that
would hold the temperature values through the height of the cylinder for a given
value of the dependent variable t. The interfaces for FunctT and ContoursT are
stable with respect to changes in the fitting algorithm or basis functions.

Syntax: Exported Access Programs

Routine In Out Exceptions
ContoursT
add s: FunctT,

z : R
IndepVarNotAscend

getC i : N InvalidIndex
eval x : R, z : R OutOfDomain
dydx x : R, z : R OutOfDomain
d2ydx2 x : R, z : R OutOfDomain
slice x : R FunctT

Semantics: State Variables

S: sequence of FunctT
Z: sequence of R

new ContoursT(i):

• transition: S,Z :=<>,<>

• exception: none

add(s, z):

• transition: S,Z := S|| < s >,Z|| < z >

• exception: exc := (|Z| > 0 ∧ z < Z|Z|−1 ⇒ IndepVarNotAscend)

getC(i):

• output: out := S[i]

• exception: exc := (¬(0 ≤ i < |S|)⇒ InvalidIndex)

eval(x, z):

• output: out := self.slice(x).eval(z)

• exception: none

dydx(x, z):

• output: out := eval(x+∆x,z)−eval(x,z)
∆x # ∆x is a defined constant

• exception: exc := (¬Z0 ≤ z ≤ Z|Z|−1 ⇒ OutOfDomain)

...
slice(x):

• output: out := FunctT(Z, 〈S0.eval(x), ..., S|S|−1.eval(x)〉)
• exception: None

10. Tool Support

Ideally, the documentation can be generated as different views of the scientific,
computing and documentation knowledge [7].

11. Conclusions

NO more excuses! Documentation of requirements, design, code and tests
cases is not easy, but it is feasible. The long-term reliability, replicability,

reusability and maintainability of scientific software depends on documenta-
tion. The following ideas from SE facilitate high quality documentation that is
flexible to change:

• Faking a rational design process • Documentation templates
• Abstraction • Anticipation of change
• Generality • Replicability
• Separation of concerns • Information hiding

In the future, increasing tool support will enable documentation that is com-
plete, consistent and traceable by construction [4].

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Coun-
cil (NSERC), Automotive Partnership Grant, APC 435504-12 is gratefully ac-
knowledged.

References

[1] F. Benureau and N. Rougier. Re-run, Repeat, Reproduce, Reuse, Repli-
cate: Transforming Code into Scientific Contributions. ArXiv e-prints, August
2017.

[2] David L. Parnas and P.C. Clements. A rational design process: How and
why to fake it. IEEE Transactions on Software Engineering, 12(2):251–257,
February 1986.

[3] W. Spencer Smith. A rational document driven design process for sci-
entific computing software. In Jeffrey C. Carver, Neil Chue Hong, and
George Thiruvathukal, editors, Software Engineering for Science, Chapman
& Hall/CRC Computational Science, chapter Examples of the Application of
Traditional Software Engineering Practices to Science, pages 33–63. Taylor
& Francis, Boca Raton, FL, 2016.

[4] W. Spencer Smith. Beyond software carpentry. In 2018 International
Workshop on Software Engineering for Science (held in conjunction with
ICSE’18), pages 1–8, 2018.

[5] W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for
engineering computation: A systematic approach for improving software re-
liability. Reliable Computing, Special Issue on Reliable Engineering Com-
putation, 13(1):83–107, February 2007.

[6] Malavika Srinivasan. Investigating common perceptions of software engi-
neering methods applied to scientific computing software. Master’s thesis,
McMaster University, Hamilton, Ontario, Canada, 2018.

[7] Daniel Szymczak, W. Spencer Smith, and Jacques Carette. Position pa-
per: A knowledge-based approach to scientific software development. In
Proceedings of SE4Science’16 in conjunction with the International Confer-
ence on Software Engineering (ICSE), Austin, Texas, United States, May
2016. In conjunction with ICSE 2016. 4 pp.

SIAM CSE 2019, Conference on Computational Science and Engineering, February 26, 2019, Spokane, Washington

