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What is Spack?

• Spack1 is a package manager spawned out of Lawrence
Livermore National Laboratory

•Designed for use on supercomputers

•Original focus on combinatorial building of software

Spack
• Spack is a knowledgebase for automating building of sci-

entific applications

• Spack is also a domain specific language (DSL) for build-
ing and managing software

•Due to its popularity, we can leverage this to assemble
testing environments much easier than previously possible

–Currently contains more than 3000 built-in packages

Fig. 1: Spack lines of code over time.2

Nalu-Wind Example

•Nalu-Wind3 is an application developed under the Exascale
Computing Project (ECP) for modeling wind farms with
blade-resolved wind turbines

Fig. 2: Nalu-Wind simulation for blade-resolved wind turbine.

•Nalu-Wind is tested against multiple machines, operating
systems, compilers, code branches, and optional features
by exploiting Spack to prepare each testing environment

The Spack Spec Syntax

• Spack provides a powerful command line interface

•Customize installs on the command line

spack install mpileaks

spack install mpileaks@3.3

spack install mpileaks@3.3 %gcc@7.3.0

spack install mpileaks@3.3 %gcc@7.3.0 +threads

spack install mpileaks@3.3 cppflags=’-O3 -g3’

spack install mpileaks@3.3 os=CNL10 target=haswell

spack install mpileaks@3.3 ^mpich@3.2

spack <command > /a4947f

# unconstrained

# @custom version

# % custom compiler

# +/~ option AKA variant

# custom compiler flags

# cross compile

# ^ custom dependencies

# use spec hash

Fig. 3: Examples of specs defined on the command line.2

•Each expression resolves to a unique spec

–Each clause adds a constraint

–Constraints are optional

• Spec syntax is recursive

•Concretization fills in implicit details

•Concretized specs reduce to a unique hash

Spack Advantages

•Portable Python framework for fulfilling dependencies

•Easily affect the entire stack by building everything with:

–Particular compiler, particular flags, different library ver-
sions, specified application options

Testing Harness

gcc@7.3.0

zlib@1.2.11

...

openmpi@3.1.3

...

trilinos@develop

nalu-wind +hypre

clang@6.0.1

zlib@1.2.11

...

mpich@3.3

...

trilinos@master

nalu-wind +hypre

intel@18.0.4

zlib@1.2.11

...

intel-mpi@18.0.4

...

trilinos@master

nalu-wind nalu-wind +hypre

Fig. 4: Example dependency tree of environments generated for testing.

•Automatic rpath means binaries work despite environment

•Easily automate and isolate the environment

•Easily test/track/update dependencies

•Easily query Spack’s database for dependency locations

• Spack operations able to execute concurrently

– Single package building is parallel by default

Nalu-Wind Stack

•Nalu-Wind depends on a large software stack

–Trilinos, YAML-CPP, HDF5, NetCDF, Boost, MPI, Su-
perLU, OpenFAST, FFTW, TIOGA, HYPRE, Paraview
Catalyst, etc...

nalu-wind

cmake

fftw

openmpi

hypre

openfast

yaml-cpp tioga

trilinos

trilinos-catalyst-ioss-adapter

hwloc

zlib

libxml2

pkg-config

libiconv xz

netlib-lapack

hdf5

boost

glm matio netcdf

parallel-netcdf

superlu

bzip2

diffutils

m4

libsigsegv

bison

flex

paraview

py-numpy

help2man

perl

gettext

ncurses

tar

gdbm

readline

expat

freetype

libpnglibjpeg-turbo

libtiff

mesa

python

py-matplotlib

nasm

glproto

icu4c

libpthread-stubs

libx11

libxcb

xproto

libxdamage

libxfixeslibxext

libxshmfence

libxv

libxvmc

openssl

presentproto

py-argparse

py-mako

util-macros

inputprotokbproto

xextproto

xtrans

libxau libxdmcpxcb-proto

libbsd damageproto

fixesprotovideoproto

py-setuptools

py-markupsafepy-cycler

py-six

py-dateutil

py-functools32

py-kiwisolverpy-pillow

py-pyparsing

py-pytz

py-subprocess32qhull tk

tcl

Fig. 5: Nalu-Wind dependency graph with all optional libraries.

•We rely on existing knowledge in Spack for fulfilling our
application’s dependencies

•Developing the recipe for building our Nalu-Wind appli-
cation using Spack’s DSL can be quite succinct as shown
below

The Spack DSL

•Nalu-Wind uses CMake as its low-level build system

from spack import *

class NaluWind(CMakePackage ):

"""Nalu -Wind: Wind energy focused variant of Nalu."""

homepage = "https :// github.com/exawind/nalu -wind"

git = https :// github.com/exawind/nalu -wind.git

version(’master ’, branch=’master ’)

variant(’hypre ’, default=False ,

description=’Compile with Hypre support ’)

depends_on(’mpi’)

depends_on(’trilinos@master ,develop ’)

depends_on(’hypre+mpi+int64 ’, when=’+hypre’)

def cmake_args(self):

options = []

options.extend ([

’-DTrilinos_DIR:PATH=%s’ % self.spec[’trilinos ’].prefix ,

’-DCMAKE_CXX_COMPILER =%s’ % self.spec[’mpi’].mpicxx ,

])

if ’+hypre ’ in self.spec:

options.extend ([

’-DENABLE_HYPRE:BOOL=ON’,

’-DHYPRE_DIR:PATH=%s’ % self.spec[’hypre’]. prefix

])

return options

Listing 1: An abbreviated Spack recipe (package.py) for Nalu-Wind.

•Recipe development is easiest if your application uses
CMake, Autotools, or GNU Make build system

Nalu-Wind Testing Harness

•Easy to use nested loop for entire configuration matrix

•Probably don’t want to test every configuration

•Better to parse a list of configurations

declare -a CONFIGURATIONS

# CONFIGURATION: COMPILER_ID , TRILINOS_BRANCH , MPI_ID , NALU_OPTS

CONFIGURATIONS [0]=’ gcc@7 .3.0: develop:openmpi@3 .1.3:+ hypre ’

CONFIGURATIONS [1]=’ clang@6 .0.1: master:mpich@3 .3:+ hypre ’

CONFIGURATIONS [2]=’ intel@18 .0.4: master:intel -mpi@18 .0.4:’

Listing 2: Example list of test configurations in bash script.

• Spack can create independent software stack environ-
ments concurrently

# Test Nalu -Wind for the list of configurations asynchronously

for CONFIGURATION in "${CONFIGURATIONS[@]}"; do

CONFIG =(${CONFIGURATION //:/ })

COMPILER_ID=${CONFIG [0]}

TRILINOS_BRANCH=${CONFIG [1]}

MPI_ID=${CONFIG [2]}

NALU_OPTS=${CONFIG [3]}

(test_configuration) &

done

Listing 3: Main loop in bash for testing configurations concurrently.

• Spack has many lower level commands we are able to
exploit to orchestrate each step of the creation of our
testing environment

test_configuration () {

# Uninstall any dependencies we are tracking

spack uninstall -a -y trilinos@${TRILINOS_BRANCH} %${COMPILER_ID}

# Stage unique nalu -wind repo for this configuration

spack stage nalu -wind ${NALU_OPTS} %${COMPILER_ID} ^${MPI_ID}

# Update git repos of nalu -wind and dependencies we are tracking

spack cd trilinos@${TRILINOS_BRANCH} %${COMPILER_ID} ^${MPI_ID} && \

git fetch --all && git reset --hard origin/${TRILINOS_BRANCH} && \

git clean -df

spack cd nalu -wind ${NALU_OPTS} %${COMPILER_ID} ^${MPI_ID} && \

git fetch --all && git reset --hard origin/master && \

git clean -df

# Install all dependencies for our application for this configuration

spack install --dont -restage --keep -stage --only dependencies nalu -wind \

${NALU_OPTS} %${COMPILER_ID} ^trilinos@${TRILINOS_BRANCH} ^${MPI_ID}

# Load the required executable dependencies into our environment

spack load ${MPI_ID} %{ COMPILER_ID}

# Query locations of libraries to pass to our application

TRILINOS_DIR=$(spack location -i trilinos@${TRILINOS_BRANCH} \

%${COMPILER_ID} ^${MPI_ID })

# Run test script that builds , tests , and reports results

ctest -S CTestNightlyScript.cmake -DTRILINOS_DIR=${TRILINOS_DIR} \

-DNALU_OPTS=${NALU_OPTS}

# Unload executable dependencies from our environment

spack unload ${MPI_ID} %{ COMPILER_ID}

}

Listing 4: Function in bash for testing a single configuration.

Nalu-Wind Results

•Using Spack we are able to test our Nalu-Wind appli-
cation, which has a large software stack, portably and
efficiently, with much more coverage across environments
than previously possible without Spack

Fig. 6: Test results generated nightly for Nalu-Wind using CDash.

• In the future we would like to:

–Parallelize building of independent packages in the DAG

–Parallelize building of packages and testing across nodes

–Extend test coverage to GPU architectures
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