
Increasing Software Testing Coverage and Portability with Spack

Jon Rood and Shreyas Ananthan

National Renewable Energy Laboratory

Increasing Software Testing Coverage and Portability with Spack

Jon Rood and Shreyas Ananthan

National Renewable Energy Laboratory

What is Spack?

• Spack1 is a package manager spawned out of Lawrence
Livermore National Laboratory

•Designed for use on supercomputers

•Original focus on combinatorial building of software

Spack
• Spack is a knowledgebase for automating building of sci-

entific applications

• Spack is also a domain specific language (DSL) for build-
ing and managing software

•Due to its popularity, we can leverage this to assemble
testing environments much easier than previously possible

–Currently contains more than 3000 built-in packages

Fig. 1: Spack lines of code over time.2

Nalu-Wind Example

•Nalu-Wind3 is an application developed under the Exascale
Computing Project (ECP) for modeling wind farms with
blade-resolved wind turbines

Fig. 2: Nalu-Wind simulation for blade-resolved wind turbine.

•Nalu-Wind is tested against multiple machines, operating
systems, compilers, code branches, and optional features
by exploiting Spack to prepare each testing environment

The Spack Spec Syntax

• Spack provides a powerful command line interface

•Customize installs on the command line

spack install mpileaks

spack install mpileaks@3.3

spack install mpileaks@3.3 %gcc@7.3.0

spack install mpileaks@3.3 %gcc@7.3.0 +threads

spack install mpileaks@3.3 cppflags=’-O3 -g3’

spack install mpileaks@3.3 os=CNL10 target=haswell

spack install mpileaks@3.3 ^mpich@3.2

spack <command > /a4947f

unconstrained

@custom version

% custom compiler

+/~ option AKA variant

custom compiler flags

cross compile

^ custom dependencies

use spec hash

Fig. 3: Examples of specs defined on the command line.2

•Each expression resolves to a unique spec

–Each clause adds a constraint

–Constraints are optional

• Spec syntax is recursive

•Concretization fills in implicit details

•Concretized specs reduce to a unique hash

Spack Advantages

•Portable Python framework for fulfilling dependencies

•Easily affect the entire stack by building everything with:

–Particular compiler, particular flags, different library ver-
sions, specified application options

Testing Harness

gcc@7.3.0

zlib@1.2.11

...

openmpi@3.1.3

...

trilinos@develop

nalu-wind +hypre

clang@6.0.1

zlib@1.2.11

...

mpich@3.3

...

trilinos@master

nalu-wind +hypre

intel@18.0.4

zlib@1.2.11

...

intel-mpi@18.0.4

...

trilinos@master

nalu-wind nalu-wind +hypre

Fig. 4: Example dependency tree of environments generated for testing.

•Automatic rpath means binaries work despite environment

•Easily automate and isolate the environment

•Easily test/track/update dependencies

•Easily query Spack’s database for dependency locations

• Spack operations able to execute concurrently

– Single package building is parallel by default

Nalu-Wind Stack

•Nalu-Wind depends on a large software stack

–Trilinos, YAML-CPP, HDF5, NetCDF, Boost, MPI, Su-
perLU, OpenFAST, FFTW, TIOGA, HYPRE, Paraview
Catalyst, etc...

nalu-wind

cmake

fftw

openmpi

hypre

openfast

yaml-cpp tioga

trilinos

trilinos-catalyst-ioss-adapter

hwloc

zlib

libxml2

pkg-config

libiconv xz

netlib-lapack

hdf5

boost

glm matio netcdf

parallel-netcdf

superlu

bzip2

diffutils

m4

libsigsegv

bison

flex

paraview

py-numpy

help2man

perl

gettext

ncurses

tar

gdbm

readline

expat

freetype

libpnglibjpeg-turbo

libtiff

mesa

python

py-matplotlib

nasm

glproto

icu4c

libpthread-stubs

libx11

libxcb

xproto

libxdamage

libxfixeslibxext

libxshmfence

libxv

libxvmc

openssl

presentproto

py-argparse

py-mako

util-macros

inputprotokbproto

xextproto

xtrans

libxau libxdmcpxcb-proto

libbsd damageproto

fixesprotovideoproto

py-setuptools

py-markupsafepy-cycler

py-six

py-dateutil

py-functools32

py-kiwisolverpy-pillow

py-pyparsing

py-pytz

py-subprocess32qhull tk

tcl

Fig. 5: Nalu-Wind dependency graph with all optional libraries.

•We rely on existing knowledge in Spack for fulfilling our
application’s dependencies

•Developing the recipe for building our Nalu-Wind appli-
cation using Spack’s DSL can be quite succinct as shown
below

The Spack DSL

•Nalu-Wind uses CMake as its low-level build system

from spack import *

class NaluWind(CMakePackage):

"""Nalu -Wind: Wind energy focused variant of Nalu."""

homepage = "https :// github.com/exawind/nalu -wind"

git = https :// github.com/exawind/nalu -wind.git

version(’master ’, branch=’master ’)

variant(’hypre ’, default=False ,

description=’Compile with Hypre support ’)

depends_on(’mpi’)

depends_on(’trilinos@master ,develop ’)

depends_on(’hypre+mpi+int64 ’, when=’+hypre’)

def cmake_args(self):

options = []

options.extend ([

’-DTrilinos_DIR:PATH=%s’ % self.spec[’trilinos ’].prefix ,

’-DCMAKE_CXX_COMPILER =%s’ % self.spec[’mpi’].mpicxx ,

])

if ’+hypre ’ in self.spec:

options.extend ([

’-DENABLE_HYPRE:BOOL=ON’,

’-DHYPRE_DIR:PATH=%s’ % self.spec[’hypre’]. prefix

])

return options

Listing 1: An abbreviated Spack recipe (package.py) for Nalu-Wind.

•Recipe development is easiest if your application uses
CMake, Autotools, or GNU Make build system

Nalu-Wind Testing Harness

•Easy to use nested loop for entire configuration matrix

•Probably don’t want to test every configuration

•Better to parse a list of configurations

declare -a CONFIGURATIONS

CONFIGURATION: COMPILER_ID , TRILINOS_BRANCH , MPI_ID , NALU_OPTS

CONFIGURATIONS [0]=’ gcc@7 .3.0: develop:openmpi@3 .1.3:+ hypre ’

CONFIGURATIONS [1]=’ clang@6 .0.1: master:mpich@3 .3:+ hypre ’

CONFIGURATIONS [2]=’ intel@18 .0.4: master:intel -mpi@18 .0.4:’

Listing 2: Example list of test configurations in bash script.

• Spack can create independent software stack environ-
ments concurrently

Test Nalu -Wind for the list of configurations asynchronously

for CONFIGURATION in "${CONFIGURATIONS[@]}"; do

CONFIG =(${CONFIGURATION //:/ })

COMPILER_ID=${CONFIG [0]}

TRILINOS_BRANCH=${CONFIG [1]}

MPI_ID=${CONFIG [2]}

NALU_OPTS=${CONFIG [3]}

(test_configuration) &

done

Listing 3: Main loop in bash for testing configurations concurrently.

• Spack has many lower level commands we are able to
exploit to orchestrate each step of the creation of our
testing environment

test_configuration () {

Uninstall any dependencies we are tracking

spack uninstall -a -y trilinos@${TRILINOS_BRANCH} %${COMPILER_ID}

Stage unique nalu -wind repo for this configuration

spack stage nalu -wind ${NALU_OPTS} %${COMPILER_ID} ^${MPI_ID}

Update git repos of nalu -wind and dependencies we are tracking

spack cd trilinos@${TRILINOS_BRANCH} %${COMPILER_ID} ^${MPI_ID} && \

git fetch --all && git reset --hard origin/${TRILINOS_BRANCH} && \

git clean -df

spack cd nalu -wind ${NALU_OPTS} %${COMPILER_ID} ^${MPI_ID} && \

git fetch --all && git reset --hard origin/master && \

git clean -df

Install all dependencies for our application for this configuration

spack install --dont -restage --keep -stage --only dependencies nalu -wind \

${NALU_OPTS} %${COMPILER_ID} ^trilinos@${TRILINOS_BRANCH} ^${MPI_ID}

Load the required executable dependencies into our environment

spack load ${MPI_ID} %{ COMPILER_ID}

Query locations of libraries to pass to our application

TRILINOS_DIR=$(spack location -i trilinos@${TRILINOS_BRANCH} \

%${COMPILER_ID} ^${MPI_ID })

Run test script that builds , tests , and reports results

ctest -S CTestNightlyScript.cmake -DTRILINOS_DIR=${TRILINOS_DIR} \

-DNALU_OPTS=${NALU_OPTS}

Unload executable dependencies from our environment

spack unload ${MPI_ID} %{ COMPILER_ID}

}

Listing 4: Function in bash for testing a single configuration.

Nalu-Wind Results

•Using Spack we are able to test our Nalu-Wind appli-
cation, which has a large software stack, portably and
efficiently, with much more coverage across environments
than previously possible without Spack

Fig. 6: Test results generated nightly for Nalu-Wind using CDash.

• In the future we would like to:

–Parallelize building of independent packages in the DAG

–Parallelize building of packages and testing across nodes

–Extend test coverage to GPU architectures

References

[1] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and W. S. Futral, “The spack package man-
ager: Bringing order to hpc software chaos,”in Supercomputing 2015
(SC’15), Austin, Texas, LLNL-CONF-669890, November 2015.

[2] T. Gamblin, G. Becker, M. Legendre, M. Melara, and P. Scheibel,
“Spack tutorial,”in ECP Annual Meeting 2019, (Houston, TX, USA),
January 2019.

[3] Nalu-Wind.
https://github.com/exawind/nalu-wind, 2019.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hard-

ware, advanced system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Gov-

ernment. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PO-2C00-73335 SIAM-CSE-2019

