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Note 1: Conductance and optical band gap

Conductive atomic force microscopy (cAFM) maps are recorded in forward bias (positive DC

bias voltage applied to the tip) using an Pt-coated probe tip (ANSCM-Pt). The respective

I(V ) curve is presented in Fig. S.1a, which is recorded at room temperature with the tip

placed within a domain, i.e., away from the walls. The I(V ) data re�ects the presence of a

Schottky-like barrier between tip and sample as addressed in the main text.

In order to determine the optical band gap in Er0.99Ca0.01MnO3 (x = 0.01), we per-

formed temperature-dependent linear transmission spectroscopy measurements with light

incident along the crystallographic surface normal. The measurements were conducted on a

micro-spectrometer Jasco MSV-3701 with a continuous �ow micro-cryostat Janis SVT-500.

Figure S.1b shows the linear spectroscopy data in the ultra-violet (620nm ∼ 2 eV) to the

near-infrared (2500nm ∼ 0.5 eV) range (each temperature is separated by 15% for better vis-

ibility). Di�erent absorption lines are observed between 0.80− 0.85 eV and around 1.28 eV,

which can be assigned to 4f transitions of the Er3+ ions, corresponding to transitions between

the ground state of the Er3+ (4I15/2) to
4I13/2 and

4I11/2.
2

In addition, the spectra show the d � d interband transition of the Mn3+ ions, which

de�nes the band gap in hexagonal manganites.3 The d � d transition is visible as a step-like

change in intensity, shifting to higher frequencies with decreasing temperature as indicated

by the dotted line (Fig. S.1b). We �nd that the band gap varies from ≈ 1.4 eV at 300 K to

≈ 1.7 eV at 5 K, which is in agreement with previous measurements reporting a band gap

of 1.6 eV for undoped ErMnO3.
4

The observed decrease in d � d transition energy with increasing temperatures (shown in

the inset to Fig. 1f in the main text) can be described based on the semi-empirical Varshni

relation for semiconductors:5

Edd(T ) = Edd(0)− αT, (S.1)

yielding Edd(0) = 1.68 ± 0.02 eV as the d � d transition energy at 0K, and α = 0.92 ±
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0.09meV/K as material-dependent constant.
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Figure S.1: (a) I(V ) characteristic of Er0.99Ca0.01MnO3 (x = 0.01) at room temperature. (b)
Linear transmission spectroscopy measurements from the ultra-violet (620nm ∼ 2 eV) to the
near-infrared (2500nm ∼ 0.5 eV) for a 44µm thick Er0.99Ca0.01MnO3 sample. Transmission
spectra for temperatures between 300K and 5K. Spectra are o�set by 15% with respect to
each other for better visibility.

Note 2: Topography

Figure S.2 show the topographic images taken at room temperature of Fig. 1 and Fig. 2 of

the main text. Both images have a roughness below 0.3 nm with an almost uniformly �at
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surface. This shows that the topography will not give additional contributions to the EFM

signal at lower temperatures.
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Figure S.2: Topography images in (a) and (b) corresponding AFM measurements in Fig. 1
and Fig. 2 of the main text, respectively.

Note 3: Numerical modeling of the EFM response

In order to simulate the temperature evolution of the EFM response shown in Fig. 3 of the

manuscript, we developed a numerical model implementing the �nite-element method. The

modeling is done in two steps.

First, we calculate the band structure (Fig. 4(a) of the main text) and the distribu-

tion of charges around the domain walls in a p-type semiconductor, assuming electrostatic

equilibrium in the sample, that is, full screening of charges. This scenario corresponds to

the domain-wall high-temperature regime with T > T ∗. We consider a pair of tail-to-tail

and head-to-head domain walls, separated by L = 500 nm, which corresponds to a realistic

distance as seen from the cAFM and EFM images in Fig. 2. The equations governing the
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variations of the potential φ(x) around the walls are:

−εd
2φ

dx2
= enh(φ, T )− ene(φ, T )− eN−A (φ, T ) + ρb, (S.2)

nh(φ, T ) = NV (T )F1/2

(
−EF + eφ

kT

)
, (S.3)

ne(φ, T ) = NC(T )F1/2

(
−Eg − EF − eφ

kT

)
, (S.4)

N−A (φ, T ) = NA/

(
1 + 4 exp

[
∆A − EF − eφ

kT

])
, (S.5)

ρb =
PS
ξ6

(
− 1

cosh2[(x+ L/2)/ξ6]
+

1

cosh2[(x− L/2)/ξ6]

)
, (S.6)

where nh(φ, T ) and ne(φ, T ) are the hole and electron densities, N−A (φ, T ) is the density of

the ionized acceptors, ∆A is the acceptor energy level above the valence band maximum,

ρb is the bound charge at the tail-to-tail (x = −L/2) and head-to-head (x = L/2) walls,

F1/2(z) = (2/
√
π)
∫∞
0
t1/2dt/(1+exp(t−z)) is the complete Fermi-Dirac integral, ξ6 ∼ 0.5 nm

is the correlation length determining the width of the domain wall6 and PS = 7.1 µCcm−2 is

the polarization at room temperature.7 In our calculations, non-degenerate and degenerate

regimes are both taken into account by considering the complete Fermi-Dirac integral in

Eqs. (S.3�S.4), which is implemented as

F1/2(z) ≈ exp(z), z < −4 (non-degenerate regime) (S.7)

F1/2(z) ≈ 4

3
√
π
z3/2, z > 4 (degenerate regime) (S.8)

F1/2(z) ≈ exp

(
3∑
i=0

aiz
i

)
, −4 < z < 4 (interpolation in between) (S.9)

in our calculations. After numerically solving Eq. (S.2), using the material constants given

in the main text along with NV (T ) = NC(T ) = 2.415 × 1015 (cm−3K−3/2) · T 3/2, we obtain

the band structure as shown in Fig. 4(a) of the main text for NA = 2×1018 cm−3. The band

diagram is in agreement with previous analytical and DFT-based calculations,8,9 showing

that the tail-to-tail domain wall is screened by mobile holes within the wall, and that the
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head-to-head wall is screened partially by the inversion electron layer within the domain wall

as well as a hole depletion layer of the width 2w =
√

8εEg/e2NA. The charge screened by

the hole depletion layer is 2weNA.

σ = -2PSp(T*-T)

ρ = -eNA

σ = 2PSp(T*-T)+2weNA

P
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Figure S.3: (a) Schematics of the 2D numerical model, with sheet charge densities σ at the
domain walls (dark-blue and red lines) and volume charge density ρ in the hole-depletion
layer (light-blue area). (b-d) Results of numerical calculations of the attraction force gradient
(dots), �tted with ∇FTT and ∇FHH (solid lines, see Eq. (S.14)).

Using the information about the charge distribution obtained from the �rst step, we

develop a 2D model for the material in the low-temperature insulating regime (T < T ∗). We

consider a 200 nm thick dielectric slab (representing Er1�xCaxMnO3) with charges derived

from the calculated band diagram as well as additional uncompensated pyroelectric bound

charges that arise at lower temperatures (Fig. S.3(a)). The pyroelectric constant is taken as
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p = 1.5 nC/cm2·K, lying between the experimentally extracted value for HoMnO3 at 100 K

(0.6 nC/cm2·K)10 and the theoretical value for YMnO3 (3 nC/cm2·K) obtained using the

theory of Ref. 11.

We place a circular-shaped metallic EFM tip at distance h ∼ 30 nm from the sample

surface above the head-to-head or the tail-to-tail wall (see Fig. S.3(a)), and calculate the

electrostatic potential distribution φ(x, y) (y is perpendicular to the surface). The force F(h)

of the electrostatic attraction of the tip to the dielectric slab is

F(h) =

∮
tip@h

ε0(∇φ)2

2
dS. (S.10)

The force gradient acting as the EFM contrast is calculated as dFy/dh ≈ [Fy(30 nm) −

Fy(29 nm)]/1 nm.

The evolution of the resulting force gradient with temperature is obtained for several

acceptor densities and surface potentials. For NA = 2 × 1018 cm−3, the calculations are

performed for a grounded tip (VS = 0). For NA = 1 × 1019 cm−3 and NA = 2 × 1019 cm−3,

we perform calculations with di�erent voltages at the tip simulating a surface potential (a

surface potential induces mirror charges on the tip), ranging from VS = 0 V to VS = −0.3 V.

All calculations are done at eight di�erent temperatures, with T ∗ − T ranging from 0 K to

70 K.

The calculated data points are then �tted to analytical curves. In order to do it, we �rst

separately consider the scaling behavior of F (h,NA, T, VS) for each of the three main mech-

anisms of attraction described in the manuscript: Fdeplet is the force from the depletion layer

surrounding the head-to-head walls; Funcomp accounts for the uncompensated pyroelectric

bound charges at the wall at T < T ∗; and Fsurf results from the sample surface due to the

surface potential VS. First of all, we note that the electric �eld generated by the uncompen-

sated charges is proportional to (T ∗ − T ), and so Funcomp ∝ (T ∗ − T )2; likewise, Fsurf ∝ V 2
S .

The electric �eld generated by the depletion layer can be estimated by setting ε = ε0 inside
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the sample, and calculating the electric potential from the quadrupole-like distribution of

charges surrounding the wall:

φ(x, y) =

0∫
−∞

dy0

2weNAφλ(x, y − y0)− eNA

w∫
−w

dx0φλ(x− x0, y − y0)

 ≈ eNA

6πε0

w3

y
∝ 1√

NAy
,

(S.11)

where φλ = log(x2 +y2)/2πε0 is the potential from a unit line charge. Thus, the electric �eld

Edeplet = −∂φ
∂y
∝ 1√

NAy2
, (S.12)

and Fdeplet ∝ N−1A .

The scaling F (h) of each of the three forces is extracted by performing another set of

�nite-elements simulations at varying distances h of the tip from the �lm surface. We obtain:

Funcomp ∝ (T ∗ − T )2h−1.56, Fdeplet ∝ N−1A h−2.94, Fsurf ∝ V 2
S h
−1.48. (S.13)

Note that Fdeplet ∝ h−2.94 in Eq. (S.13) is di�erent from Fdeplet ∝ E2 ∝ h−4 estimated in

Eq. (S.12) � this di�erence is due to the large dielectric constant of the material (ε = 13ε0)

and the distortions of the electric �eld around the metallic EFM tip, not taken into account

for the estimate.

Combining the expressions in Eq. (S.13) together, we obtain the analytical �tting curves

for the force gradients ∇FTT at the tail-to-tail and ∇FHH at the head-to-head walls:

∇FTT =
ε0
2

dE2
TT

dh
, ∇FHH =

ε0
2

dE2
HH

dh
, (S.14)

ETT = −Cuncomp(T ∗ − T )h−0.78 + CsurfVSh
−0.74, (S.15)

EHH = Cuncomp(T ∗ − T )h−0.78 + CdepletN
−1/2
A h−1.47 + CsurfVSh

−0.74, (S.16)

where ETT and EHH are e�ective electric �elds from tail-to-tail and head-to-head walls acting
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on the EFM tip. Constants Cuncomp, Cdeplet and Csurf are extracted from our numerical

simulations by �tting Eq. (S.14) to four data points: gradients of the attraction force at head-

to-head and tail-to-tail domain walls calculated at two di�erent surface potentials VS = 0.3 V

and VS = 0 V, withNA = 2×1019 cm−3, T ∗−T = 70 K.With the three C constants extracted,

Eqs. (S.14�S.16) give the analytic approximation of the force gradients at both domain

walls at a wide range of parameters (NA, VS, T ), reproducing the results of our numerical

simulations with a remarkably good accuracy � see Fig. S.3(b-d) for some examples.
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