Organisms as modulators of ecosystem functioning in global drylands

Fernando T. Maestre

Universidad Rey Juan Carlos, Móstoles, Spain

How organisms influence affect ecosystem functioning has been a central tenet of Juan's research

Puigdefábregas et al. 1999. Earth-Sci Rev 48: 39-70

Boer & Puigdefábregas. 2005. ESP Landforms 30: 149–167

 \rightarrow 236 drylands from all continents except Antarctica (21 countries).

erc

- \rightarrow Standardized vegetation and soil surveys conducted in all the sites
- \rightarrow At each site, we quantified primary productivity and multiple soil variables related to C, N and P cycling ("functions").
- \rightarrow These variables are proxies of nutrient cycling, biological productivity, and buildup of nutrient pools, which are critical determinants of ecosystem functioning in drylands.

We captured the wide variety of vegetation found in global drylands

Maestre et al. 2012. Phil Trans R Soc B 367: 3062-3075

Plant species richness and multifunctionality

Species richness (sqrt-transformed)

Species richness	Abiotic		Climatic				Geographic			R^2	AIC _c	ΔAIC_{c}	Wi
	SL	SA	C1	C2	C3	C4	LA	LO	EL				
										0.564	282.750	0	0.217
										0.559	283.226	0.475	0.171
										0.554	283.595	0.845	0.143
										0.558	283.862	1.111	0.125
										0.565	284.502	1.751	0.091
										0.556	284.637	1.887	0.085
										0.561	284.677	1.927	0.083
										0.560	285.035	2.285	0.069

SA = sand content, SL = slope, A1 = axis 1 of climatic PCA (mean annual precipitation, r = 0.910), A2 = axis 2 of climatic PCA (mean temperature of the driest quarter, r = 0.901), A3 = axis 3 of climatic PCA (precipitation in the driest quarter, r = 0.946), A4 = axis 4 of climatic PCA (annual mean temperature [r = 0.682] and mean temperature of the wettest quarter, r = 0.884), LA = lattitude, LO = longitude, and EL = elevation.

 \rightarrow Best model without species richness: R² = 0.539, AIC_c = 293.236, and Δ AIC_c = 10.486

 \rightarrow Most parsimonious model without species richness: R² = 0.515, AIC_c = 300.078, and Δ AIC_c = 17.328

Plant trait diversity is a key multifunctionality driver

Gross et al. 2017. Nature Ecol. Evol. 1: 132

The role of plant diversity on ecosystem stability is as important as that of climate and soil factors

Parameter estimates

Climate mediates the biodiversity-ecosystem stability relationship globally

Low aridity sites 0.18 Mean H 0.01 0.10Ecosystem -0.17 Aridity Stability 0.37** 0.10 Richness 0.18* 0.11 Var SLA High aridity sites -0.36** 0.01 Mean H 0.15 -0.19 Ecosystem Aridity Stability -0.69*** 0.20* Richness ".45*** Var SLA

García-Palacios et al. 2018. PNAS 115: 8400-8405

Microbial diversity is a key driver of multifunctionality

Delgado-Baquerizo et al. 2016 Nature Commun 7: 10541

Effects of plant diversity on multifunctionality are mediated by microbial diversity

Delgado-Baquerizo et al. 2016 Nature Commun 7: 10541

Plant spatial patterns and ecosystem functioning

 \rightarrow The frequency distribution of patch sizes was typically hump-shaped (log scale), with abundant small patches and a fewer large patches.

 \rightarrow The type of patch-size distribution was significantly associated with the two multifunctionality states observed.

 \rightarrow Sites with patch-size distributions following a power law have enhanced multifunctionality.

 \rightarrow Cover smoothly decreased with aridity, but spatial pattern showed an abrupt change that matched the co-occurrence of the MF states observed.

 \rightarrow These results were not confounded by the effects of aridity.

Soil microbial respiration adapts to ambient temperature in global drylands

 \rightarrow Under excess substrate and controlled microbial biomass, lower respiratory rates were found in sites with higher mean annual temperatures.

 \rightarrow This effect was observed regardless the microsite considered (open vs. vegetated areas).

Do we have experimental evidence of these patterns?

Biocrusts regulate soil respiration responses to warming

García-Palacios et al. 2018. Global Change Biol 24:4645–4656

Cascading effects from plants to soil microorganisms explain how biodiversity and climate change affect ecosystem functioning

Fundación **BBVA**

Universidad Rey Juan Carlos

http://maestrelab.com

Y

@ftmaestre @maestrelab

f https://www.facebook.com/MaestreLab

