
,

Improving the Development Workflow of the SETSM
Photogrammetry Software
Samuel Khuvis1, Judith Gardiner1, Myoung-Jong Noh2, Caleb Lehman1, Ian Howat2,3, Karen Tomko1

1Ohio Supercomputer Center
2Byrd Polar and Climate Research Center, The Ohio State University
3School of Earth Sciences, The Ohio State University

,

Introduction

The Surface Extraction by TIN-based Search-space Minimization (SETSM)
software is used to produce digital elevation maps (DEMs) from satellite imagery
[1, 4]. The goal of SETSM is to automatically extract a stereo-photogrammetric
DEM from pairs of images without any user-defined or a-priori information and
using only the sensor Rational Polynomial Coefficients for geometric constraints.
The software is written entirely in C/C++ and is only dependent on the libtiff
and libgeotiff libraries. The SETSM algorithm constructs a Triangular Irregular
Network (TIN) in object-space domain to minimize the necessary search space
and it employs the coarse-to-fine and vertical line locus strategies.

Nepal DEM

The challenges in development are:

IConcurrent optimization for performance [3] and development by domain
scientists.

IDevelopers working on optimization do not have domain expertise and
cannot easily determine whether a modification to the code that changes the
output DEM is acceptable or not.

I SETSM has high numerical sensitivity so we would like to verify that it
produces consistent results for the same inputs.

This poster presents a workflow to deal with these challenges.

Test Workflow

A Continuous Integration-like workflow is used to verify that changes to the
code do not have any unintended effects. Traditional CI consists of a number
of unit tests that can be built and run on a virtual machine. Scientific codes
cannot always be fully tested with unit tests. A SETSM run can take hours to
run and multiple test cases are necessary to fully test for errors. So, we must
queue jobs to an HPC system to run the full suite of tests. Also, input/output
data sizes can be large, so we must carefully store results of runs.

Traditional CI workflow OSC test workflow

The SETSM code is hosted in a Gitlab repository configured with webhook
integration. When a commit or comment is pushed to the repository, a webhook
posted at OSC [5] is run. This webhook launches a Python script that parses
the message and launches appropriate tests. Tests are managed using the
ReFrame framework from CSCS [2]. If the test fails, output is stored in a
unique subdirectory of the project directory. An e-mail with the results of the
tests and the path to output is sent to appropriate developers.

Available Tests

IConsistency Test: run the same executable multiple times and verify that
the output is the same each time.

IVersion Test: run the code with different versions of a compiler and verify
that the output is the same.

IReference Comparison Test: compare the output of the code to a
previous version of the code that has been verified as correct.

Results

This test workflow has been able to identify errors introduced to
the code. For example, by running the Consistency Test, which
runs the same executable three times and compares the outputs, we
were able to find that changes to the code were no longer pro-
ducing consistent results. Two of the resulting image files were:

Reference DEM New DEM

These tests are run after every major change to the code, so we know which
version of the code still produced consistent results. By comparing the two
versions of the code, we were able to find that this issue was caused by the
addition of an OpenMP pragma to a loop with dependencies.

Future Work

Current limitations:

I If we expect DEMs to match exactly we can check that outputs match
exactly, otherwise we must send DEM to domain scientist for verification.

I Long runtimes for benchmarks.

I Large output files.

Planned Development:

ICheck that DEM is within acceptable tolerance of a reference DEM.

IDetermine appropriate tests in script instead of explicitly specifying them in
commit/comment.

IReduce test durations by splitting runs into separate submissions.

IReduce size of stored outputs of tests.

References

[1] https://mjremotesensing.wordpress.com/setsm.

[2] https://github.com/eth-cscs/reframe.

[3] J. D. Gardiner, K. A. Tomko, M.-J. Noh, and I. M. Howat. Code optimization and stabilization for a

high-resolution terrain generation application.

In Proceedings of the Practice and Experience on Advanced Research Computing, PEARC ’18, pages 82:1–82:3,

New York, NY, USA, 2018. ACM.

[4] M.-J. Noh and I. M. Howat. The surface extraction from tin based search-space minimization (setsm) algorithm.

ISPRS Journal of Photogrammetry and Remote Sensing, 129:55 – 76, 2017.

[5] Ohio Supercomputer Center. Ohio Supercomputer Center.

http://osc.edu/ark:/19495/f5s1ph73, 1987.

Acknowledgments

This research is supported in part by National Science Foundation awards
1559691 and 1543501. DEMs produced using data from DigitalGlobe, Inc.

www.osc.edu

http://osc.edu/ark:/19495/f5s1ph73
www.osc.edu

