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Materials and Methods 

Behavioral data 

All children (N = 622) who had full data on the critical component tasks (phonological 

awareness, orthographic choice, vocabulary) and who had scores on regular, irregular, and 

nonword reading were selected from a larger database (N = 1189) that was generously provided 

by Bruce Pennington, Richard Olson, and Robin Peterson. The database included all of the children 

documented in Peterson et al. (2013). Note that we did not use any other selection criteria than 

having complete data on all critical measures. Further information about the testing procedures 

and diagnostic criteria can be found in the original study. The critical component and reading tasks 

used were the following: 

Phonological processing. This was assessed with a phoneme deletion test. The phoneme 

deletion test consisted of six practice and 40 test trials presented in two blocks and required 

subjects to repeat a nonword, then remove a specific phoneme (when done correctly, a real word 

resulted—e.g., ‘Say ‘prot’. Now say ‘prot’ without the ‘/r/’). Note that the database included two 

other tasks that we could have used to parameterize phonological processing: phonological choice 
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(participants chose which of three nonwords sounds like a word) and Pig Latin (participants strip 

the first phoneme of a word, pronounce the word without the phoneme, and then use a second 

syllable with the onset of the first syllable plus the vowel /eɪ/). We did not use the phonological 

choice task because it taps whole-word phonological knowledge and it requires reading the 

nonwords aloud (prior to the phonological decision). Both phoneme deletion and Pig Latin tasks 

provide a purer measure of phonological processing, but the latter is more complex (it requires a 

bigger number of phonological operations) and it is far less commonly used than phoneme deletion 

when examining the development of reading and reading disorders (e.g., Landerl et al., 2013; 

Ziegler et al., 2010). 

Vocabulary. Vocabulary knowledge was measured with the Vocabulary subtest from the 

Wechsler Intelligence Scale for Children—Revised.   

Orthographic processing. This was assessed with an orthographic choice test (Olson, Forsberg, 

Wise, & Rack, 1994). The orthographic choice test included 80 real word/pseudohomophone pairs 

(e.g., easy–eazy, fue–few, salmon–sammon) presented in two blocks and required participants to 

select the real word. Note that the database included another task that we could have used to 

parametrize orthographic processing, that is, homophone choice (participants decide which of two 

possible homophones corresponds to a statement which details the meaning of only one of the 

homophones). However, homophone choice examines whether participants know which spelling 

corresponds to a given meaning, whereas orthographic choice only requires visual word 

recognition. Therefore, orthographic choice offers a purer measure of orthographic processing than 

homophone choice. Moreover, homophone choice relies on word meaning and is thus likely to 

have more overlap with vocabulary measures. 

Reading aloud measures. Nonword reading was assessed with a nonword reading test  (Olson 

et al., 1994). The nonword reading test was presented in two blocks and included 85 items of 

varying difficulty levels (e.g., strale, lobsel). Regular and irregular word reading was assessed with 

the set of words used by Castles and Coltheart (Castles and Coltheart, 1993) that included 30 

irregularly spelled words (e.g., island, choir) and 30 regular words of varying difficulty. 
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Program Availability 

A fully executable version of the model that runs under the Windows operating system as well 

as the data generated in this paper can be found at the following websites:  

https://sites.google.com/site/conradperryshome/ 

http://ccnl.psy.unipd.it/CDP.html 

 

Simulation Methods 

A brief description of the Connectionist Dual-Process Model 

The core architecture of the models is taken from the Connectionist Dual-Process (CDP) model 

(Perry, Ziegler, & Zorzi, 2007, 2010), as implemented in its latest version CDP++.parser (Perry, 

Ziegler, & Zorzi, 2013) which is depicted in Supplementary Figure 1. There are two relatively 

separate processing pathways (“routes”) in the model. One is a lexical route that includes the 

orthographic and phonological word forms. The other is a sublexical route that computes the 

phonology of words without knowledge of the whole-word form. Both of these routes share letter 

features and letter representations, as well as output nodes for phonemes and stress. 

The basic function of the lexical route is to allow the whole word form of words to be stored 

and recalled. In the orthographic lexicon, there is a single node for each spelling, and in the 

phonological lexicon, there is a single node for each phonological word. At the letter level, the 

orthographic form of words is simply represented as a contiguous set of letters, and at the letter 

feature level, the visual patterns of the letters are represented. At the phoneme level, the 

phonological form of words uses a representation that is structured in terms of its speech form, 

with phonemes being organized into a syllabic template. This template has slots for phonemes that 

are organized according to an onset-vowel-coda distinction. It allows three phonemes in the onset, 

one in the vowel, and four in the coda for each of two possible syllables. Stress information is also 

stored (i.e., whether the word has first or second syllable stress).  

https://sites.google.com/site/conradperryshome/
http://ccnl.psy.unipd.it/CDP.html
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Figure S1. The Connectionist Dual-Process Model of Reading Aloud (CDP++.parser version; 

Perry, Zielger, & Zorzi, 2013). Note: f = feature, l = letter, S = Stress, o = onset, v = vowel, c = 

coda. Numbers correspond to the overall slot number within the Feature, Letter, and Stress nodes, 

or the particular slot within an onset, vowel, or coda grouping for other representations. The thick 

divisor in the Phoneme Output Buffer represents a syllable boundary. The thick dotted lines 

represent how self-teaching occurs (i.e., letters→ sublexical decoding→ output nodes→

phonological lexicon→ orthographic lexicon). 

 

Processing dynamics of nodes in the feature and letter level, the orthographic and phonological 

lexicons, and the phoneme and stress output buffers is based on standard interactive-activation 

equations (McClelland & Rumelhart, 1981), where all inputs into a given node are first summed 

and then transformed using a sigmoid function. This includes input from other nodes, and, with 

the phonological and orthographic lexicons, inhibitory input from a frequency scaling parameter 
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that is proportional to the log frequency of the word. Injection of noise into these representations 

(as in our dyslexia simulations) is done at the summing stage (i.e., before the nonlinear 

transformation).  

The basic function of the sublexical route is to generate the phonology of letter strings without 

lexical information. This is important as it represents one way the model can read words without 

being previously exposed to their orthographic form. There are a number of steps in this process. 

The first involves the graphemic parser of the model. The graphemic parser is a simple two-layer 

network which learns to break letter strings into graphemes and then assign them to a slot in the 

input layer of the two-layer associative (TLA) network. This layer consists of a syllabically 

organized template where graphemes are organized according to an onset-vowel-coda structure 

that is largely homologous with the phoneme organization described above. Since the parser has 

no knowledge of the lexical form of a word, however, it can potentially parse words in ways that 

are not similar to how they might be represented lexically. The graphemic representation of the 

letter string is then propagated through the TLA network, where the activation of phoneme nodes 

is computed in the standard way by dot product of input and weight patterns followed by a 

nonlinear (sigmoid) transformation. Finally, these values are propagated to the phoneme output 

nodes, where they are pooled with activation coming from the lexical route.  

The model works differently depending on whether a word is in training mode or whether it is 

being read aloud. When reading a word aloud, a string of letter features is first activated, and the 

model iterates through the processes described above until activation criteria in the phoneme and 

stress output buffers are satisfied. In learning mode, the graphemes and phonemes in a word are 

aligned in the TLA network, and the TLA network is then trained. The training rule used by the 

TLA network is the delta rule (formally equivalent to the Rescorla-Wagner learning rule;  Sutton 

& Barto, 1981), and since the network only has two layers, this means only linear relationships 

between graphemes and phonemes can be learnt. 

One limitation of the graphemic parsing mechanism is that, in very rare circumstances, a 

disyllabic word may be parsed into three orthographic syllables. This happened in the present study 

for the word colonel (which was included in the Castles and Coltheart (1993) word set). This word 

was therefore removed from the lexicon of the model and it was not used to calculate the 

percentage of correct words in that set. Control simulations where this word was left in and could 

be learnt via direct instruction produced virtually identical results.  
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New mechanisms 

New learning dynamics and mechanisms were introduced to capture reading acquisition within 

a realistic learning environment. These include:  

1) The learning method described in Ziegler et al. (2014), where the model was first trained on 

a small set of grapheme-phoneme correspondences (listed in the Appendix) and then words were 

added to the orthographic lexicon if they were successfully decoded through the decoding network 

-- that is, when the phonemes derived from letters were able to activate the correct word in the 

phonological lexicon of the model. When a word was successfully decoded and added to the 

orthographic lexicon or if it was already in the orthographic lexicon, the decoding network was 

trained on that word.  

2) A novel lexicalization method reflecting the probabilistic nature of lexicalization and 

memory consolidation, as well as the fact that learning can occur via direct teaching and other 

methods that do not necessarily need self-generated decoding. 

2.1) Lexicalization was made probabilistic. In particular, rather than a word being lexicalized 

every time it passed the activation threshold in the phonological lexicon of the model via decoding, 

it was only lexicalized some proportion of the time. This proportion was linked to the orthographic 

choice parameter: the better a child was at orthographic learning, as estimated by his or her 

performance on the orthographic choice task, the higher the probability that the word entered the 

orthographic lexicon. This assumption allows inter-individual differences in orthographic learning 

to occur that do not depend on decoding. 

2.2) Words were given a chance of being lexicalized by direct instruction if they did not reach 

the threshold for decoding or were not lexicalized after decoding. The probability that a given 

word would become a candidate for lexicalization via direct learning was simply a function of its 

frequency (i.e., log [frequency of target word +2] / log [frequency of highest frequency word +2]). 

In practice, this means that words of a very low frequency have about a 5% chance of being 

selected for direct learning after not being successfully decoded.  

3) A child-specific vocabulary, which in its full version included all words (N = 9663) of the 

CELEX database (Baayen, Piepenbrock, & van Rijn, 1993) that had an age-of-acquisition rating 

of 10 years or less (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012) and only one or two 
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syllables. The word colonel was not included (see above). The number of word presentations (i.e., 

learning events) for a model with the full vocabulary was 57978, which is equivalent to 6 passes 

(i.e., training epochs) through the full database (9663 × 6). For models with a smaller vocabulary, 

the number of word presentations was reduced proportionately by keeping the number of training 

epochs the same as for the full vocabulary model. On average, there were 6423 words in the 

MDM’s simulations (across all 622 children), and thus the average number of word presentations 

was 38538. The three alternative models all used the same vocabulary parameter as the MDM, and 

thus the number of words used for each simulation of each child was very similar to the MDM. 

The order of presentation of the words was random in the first epoch and the same random order 

was used in successive epochs.  

4) The presence of noise during learning, which implies that the results are non-deterministic. 

Therefore, all simulations were run 10 times and the average of the results was taken for 

subsequent analyses. Overall, the simulations required around 240 million word presentations / 

learning events (i.e., 622 subjects × 38538 words × 10 repeats). Despite the systematic use of 

supercomputing facilities, the computational burden was too large to run the model with a full 

lexicon (the final simulations reported here took approximately 20,000 hours of computing time). 

During learning, a reduced “runtime” lexicon was therefore compiled by taking the word/nonword 

presented to the model and all words that were 1st or 2nd order phonological or orthographic 

neighbors (Coltheart, 1978). For words differing in length, each letter or phoneme different was 

counted as one neighbor different (i.e., dog and dogs were counted as 1 neighbor different). This 

meant that, for a full vocabulary model, the “runtime” phonological lexicon included on average 

71.28 (SD: 98.8) words (even when the orthographic lexicon had no words yet). During model 

testing (i.e., after the learning phase), the same restriction was used but the “runtime” lexicon also 

included all words that had the same first letter/phoneme as the word being tested, as well as any 

words that had the same phoneme as the regularized first grapheme of the word (i.e., the phoneme 

based on simple spelling-sound translation rules, see (Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001)). This was done because it meant that highly irregular words like whole /hɒl/ had lexical 

competitors that had the most common pronunciation of the grapheme used by the word (/w/, e.g., 

one, word, wart) as well as the phoneme used in the lexical form (i.e., /h/, e.g., hope). Thus, during 

testing, a stimulus could activate on average 796.2 (SD: 412.1) words in the phonological lexicon 

(for a full vocabulary model). 
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Parameter settings 

To set the parameter values, we used the method in Ziegler et al. (2008), whereby each 

individual started with the same parameter set and these values were modified based on individual 

performance in the subcomponent tasks. To get the distributions of parameters for each individual, 

a high and a low value was chosen based on the child who scored the worst on a particular task 

and the child who scored the best. All other children were then given a score between these two 

values based on simple linear interpolation. For example, if the parameter values varied between 

0 and 1 and the task scores went from 0 to 5, then the parameter value given for the child that 

scored 2.5 on a task would simply be .5. 

For each child, the individual set of model parameters was determined on the basis of 

performance in the subcomponent tasks in the following way:  

1) The orthographic choice task was used to index the level of noise in the orthographic lexicon. 

This was computed for each word by taking the parameter of each child (based on his or her 

performance in the orthographic choice task) and multiplying it with a number sampled from a Z-

distribution. This product was then added to the net input of the Interactive Activation equations 

(Perry et al., 2007) used for each lexical item.  

2) The orthographic choice task was also used to index the probability at which a child 

lexicalizes a word after either successfully decoding it or being successfully given it via direct 

learning. This was determined exactly the same way as the level of noise in the orthographic 

lexicon, with the child with the best score having a 100% chance of lexicalization and those with 

a lower score having a lower chance.  

3) The phoneme deletion task was used to set how much noise was generated in the decoding 

network during learning for each participant. Based on this parameter, for a given word presented 

to the model, phonemes that would be active in the output were turned off with a certain probability 

and another phoneme in the same syllabic position was turned on (i.e., if a phoneme was switched 

off in the first onset position, another phoneme was always turned on in the first onset position). 

The replacement phoneme was not chosen purely randomly but based on phonetic similarity (e.g., 

/p/ is more likely to be switched with /b/ than with /m/, see Ziegler et al. (2014)). 

4) The vocabulary score was used to set how many words were in the phonological lexicon of 

each participant. The function used to determine whether a word should be in-or-out of the lexicon 
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was weighted towards keeping high over low frequency words. This was done by first calculating 

a value for each word based on its frequency (log [frequency of target word +2] / log [frequency 

of highest frequency word +2]). For each word, a random number between one and zero was then 

generated and multiplied by the vocabulary parameter. If the value of this number was less than 

the value calculated from word frequency, the word was kept in the lexicon; otherwise it was not. 

On average (i.e., across the 622 individual models), this meant that 66.5% of the words were in 

the lexicon; the lexicon of the child with the smallest vocabulary contained only 36.1% of all 

possible words.  

The parameters that were manipulated in the MDM and in the alternative models (see below) 

to simulate individual differences across the children are listed in Table S1. The parameter values 

for the MDM were found by choosing an initial set by hand and then making minor modifications 

to them so that they produced similar overall means to the children. All other parameters were 

identical to those reported in Perry et al. (1) with two exceptions: the Letter-to-Orthography 

inhibition parameter was set lower (from -1.5 to -0.7, which meant incorrect lexical entries were 

more likely to get activated) and the lexicon frequency scaling parameter was also set slightly 

lower (from .15 to .10, which meant that the effect of word frequency on the resting activation 

levels of word nodes was smaller). The models also used an identical threshold to identify when 

successful decoding occurred (.15).  

 

Table S1. Parameters that varied across the models 

Parameter Model 

 Multi-deficit  Global Noise Phonological 

Deficit 

Visual Deficit 

Letter Noise  0 - 0.008   

Letter Switching    0 - .15 

Orthographic Noise 0 - .16 0 -  0.008   

Phonological Noise  0 -  0.008   

Phoneme Noise  0 – 0.008   

Phoneme Switching 0 - .78  0.0 - .92  

Lexicalization 

Threshold 

.01 – 1 .7 .6 .55 

Vocabulary 0 - .80 0 - .80 0 - .80 0 - .80 
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During learning, the following parameter changes were made to all models so that items in the 

phonological lexicon could be activated comparatively more easily: Phonological Lexicon to 

Phoneme Buffer inhibition: 0; Phonological Lexicon to Phoneme Buffer excitation: 0; 

Phonological Lexicon lateral inhibition: -.03; Phoneme Buffer to Phonological Lexicon Inhibition: 

-.02.  

Alternative Models 

The multi-deficit model was compared with three simpler models. Two implemented single-

deficit hypotheses (a phonological deficit and a visual deficit model), and the third a hypothesis 

examining the effect of using the same distribution of noise across all representations (a global 

noise model). These differed in how and where noise was applied, and all used the same vocabulary 

parameterization as the MDM. All three of the models used a fixed probability of lexicalization, 

and an attempt was made to try to find a parameter set that caused the models to show a pattern as 

close as possible to the overall means as the actual data. This was done by starting with the MDM 

parameter values and setting all of the parameters not associated with the specific model to zero. 

The parameters left were then set to a point that produced results as similar as possible to the 

overall means. These parameters were found using a hand search where the parameter that was 

modified for each model was changed in conjunction with the lexicalization threshold parameter. 

Vocabulary score was also used in all alternative models to set the size of the individual 

phonological lexicon (as for the MDM model). The specific processing assumptions of the models 

were: 

1. Phonological deficit model. The critical parameter was the probability of a phoneme being 

switched during learning, which was derived from the phoneme deletion scores of each child (in 

the same way as in the multi-deficit model).  

2. Visual deficit model. Letters at the letter level were switched with adjacent letters with a 

probability that was determined from the orthographic choice scores of each child. Switching was 

assessed for each letter in each position, starting from the first letter and excluding the last one. If 

switching occurred, the letter was switched with the letter to the right of it.  

3. Global noise model. Noise was added to each processing level (letter level, orthographic 

lexicon, phonological lexicon, and phoneme output buffer) whenever the model was run. The 
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amount of noise was determined by a parameter that was set for each individual based on the mean 

performance he or she had on the regular, irregular, and nonwords.  

Model Evaluation and Model Comparisons 

As mentioned above, the predicted reading scores for each child were computed by averaging 

10 simulation runs with the model (due to the non-deterministic nature of the learning process). 

The model scores were then compared with the actual child scores (i.e., individual dots in Fig. 5, 

S2 and S3). Note that there was no fitting procedure to minimize the prediction error on the 

distribution of reading scores (this would be computationally unfeasible given the stochastic nature 

of the model). The parameters described above (e.g., probability of lexicalization, size of 

phonological lexicon, etc. see Table 1) were simply set to vary within a range that allowed the 

model to produce mean scores similar to the mean across all participants (see also above). This 

implies that the model predictions on the full distribution of reading scores are not tied to the 

dataset and are not influenced by specific cases (i.e., overfitting is not possible). The same 

procedure was used for the alternative models, and, as can be seen in the results in the main text 

(Fig. 4) and Table S2, the mean results are very similar to the actual results found for all but the 

global noise model.  

 

Table S2. Mean overall percentage correct scores for the three word types and summed squared 

error differences between the model scores and the human data 

Dataset Percentage Correct Summed squared error (SSE) 

 Regular Irregular Nonword Regular Irregular Nonword Total SSE 

Human Data 88.66 72.75 67.09     

MDM 88.82 71.79 64.79 0.03 0.93 5.32 6.27 

Visual Def 86.01 70.02 66.66 7.00 7.45 0.19 14.63 

Phon Def 89.16 71.27 65.25 0.26 2.18 3.41 5.84 

Global Noise 86.60 54.69 77.66 4.24 326.15 111.71 442.11 

Note: Phon = Phonological; Def = Deficit 
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Despite the small differences in overall means, inspection of Figure 5, Figure S2, and Figure 

S3 shows that all of the single deficit models produce distributions of data that differ considerably 

to those found in the actual data. These cannot be fixed by any simple modifications to the 

parameters used. In particular, with the phonological deficit model, the distribution of irregular 

word scores is too tight compared to the actual data. This is because the phoneme switching 

parameter affects nonwords more than irregular words. Thus, if this parameter is increased to try 

to widen the distribution of irregular word scores, nonword performance drops below the overall 

mean results. There is also a less obvious difference with the nonwords, where the model produces 

a more sigmoidal function than the MDM when the correct function should look linear. This also 

cannot be simply fixed, because alternative values of the phoneme switching parameter decrease 

the fit to the overall means, whereas with the MDM, nonwords are also affected by orthographic 

noise and this makes the distribution of simulated scores more similar to the distribution observed 

in the human data.  

With the visual deficit model, the distribution is too restricted with all groups of words. This 

cannot be fixed by increasing the range of noise, because this causes the performance of the model 

to drop too low. With the global noise model, there appeared to be no set of parameters that can 

could be chosen to get the model to display a pattern of means similar to the means of the children. 

The reason for this is that injecting the same level of noise in all representations causes a much 

larger detriment to irregular word performance than nonword performance, a pattern also observed 

by Nickels, Biedermann, Coltheart, Saunders, and Tree (2008) in simulations with the Dual-Route 

cascaded model of Coltheart, Rastle, Perry, Langdon, and Ziegler (2001). With nonwords, noise 

increases the competition between alternative phonemes, but this does not necessarily cause poor 

performance – for example, both /zu:d/ or /zʊd/ are reasonable  pronunciations of zood. 

Alternatively, with irregular words, increased competition from (incorrect) phonemes may prevent 

the correct phoneme from becoming the most active (due to lateral inhibition), thereby leading to 

a word error.   

In terms of model comparisons, we provide r2 as well as BIC scores. The latter were computed 

as: BIC = n + n ln (2π) + n ln(RSS/n) + (ln n) (p + 1), where n is sample size, p is the number of 

free parameters, and RRS is the residual sum of squares (i.e., sum of the squared prediction errors). 

Note that this formula is often used without the two initial terms (though here it is identical to the 

one used in the base package of R software). The MDM was considered to have 4 free parameters 

https://en.wikipedia.org/wiki/Near-close_near-back_rounded_vowel
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(phoneme switching, orthographic noise, lexicalization threshold, vocabulary; see Table S1). The 

three alternative models were considered to have 2 free parameters based on vocabulary and one 

model-specific parameter.  
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Appendix. Grapheme-phoneme correspondences used for initial explicit teaching  

 

Grapheme Phoneme  Grapheme Phoneme 

A {  Nn n 

Ae 1  O Q 

Ai 1  Oa 5 

Au 9  Oe 5 

Augh $  Oi 4 

Ay 1  Oo u 

B b  Ou 6 

c       k  ow 6 

Ch J  Oy 4 

Ck k  P p 

D d  Ph f 

E E  Pp p 

Ea i  R r 

Ee i  Rr r 

Ei 1  S s 

Eigh 1  sh S 

Eu u  ss s 

Ew u  t t 

Ey 1  tch J 

F f  th T 

Ff f  tsch J 

G g  tt t 

Gn n  u V 

H h  ue u 

I I  ui u 

Ie 2  uy 2 

J _  v v 

K k  w w 

Kn n  wh w 

L l  wr r 

M m  y 2 

N n  z z 

Ng N    

 

Note: Phonemes are in the format of the CELEX database 
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Supplementary Figures 

 

 

 

Fig. S2. Predicted versus actual reading performance for all children (mean scores in the leftmost 

column) with the multi-deficit, global noise, phonological deficit, and visual deficit model. BIC 

= Bayesian Information Criterion. 
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Fig. S3. Predicted versus actual reading performance for the normally developing children (mean 

scores in the leftmost column) with the multi-deficit, global noise, phonological deficit, and 

visual deficit model. BIC = Bayesian Information Criterion. 
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