Fostering scientific collaboration for improved space weather forecasting Sophie A. Murray and the FLARECAST and HELCATS teams

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

The University of Dublin

State of the art

Lots of parallel or at least similar efforts...how do we promote collaboration and avoid replication to improve state of the art operational tools?

'...no one method clearly outperformed all others.'

'For M-class flares and above... with no participating method proving substantially better than climatological forecasts.'

> Barnes et al 2016, Leka et al in prep

HELCATS helcats-fp7.eu

HeLiospheric Cataloguing, Analysis and Techniques Service, the definitive catalogue of CMEs imaged by STEREO/SECCHI Heliospheric Imagers.

FLARECAST flarecast.eu

Flare Likelihood And Region Eruption foreCASTing, a flare forecasting system with ML and real-time verification and large database of AR photospheric magnetic field properties

Ran	RandomForest predicts a 45% probability for a M-class flare (in active region 12253 ^[2]) between 2015-01-02 00:00 UTC and 2015-01-03 00:00 UTC.						
	12246 🖸	12248 🖸	12251 🖸	12252 🖸	12253 🖸	12254 🖸	
	1.1		1.1				
	2%	9%	3%	0%	45%	0%	
	G	e	e	e	e	e	

Data Source	Property Group	
SWPC	NOAA Solar Region Summary properties	
catalogues	GOES soft X-ray flare events	
	SMART-derived properties (area, flux, field strength, R value, WLsg, etc.)	
	Effective connected magnetic field strength, B _{eff}	
	Fractal and multifractal parameters	
Line-of-sight	Fourier and CWT power spectral indices	
magnetograms	Decay index	
	Magnetic polarity inversion line properties	
	3D magnetic null point	
	Ising energy	
	Magnetic helicity injection rate proxy	
	SHARP properties	
	Magnetic helicity injection rate	
Vector magnetograms	Magnetic energy injection rate	
	Non-neutralized currents	
	Diverging/converging/shear flows	
Intensity images	Flow field properties	

Research to operations

But how is this useful for forecasters?!

Research to operations

But how is this useful for forecasters?!

Sharing science

FLARECAST Work Package 6: Explorative Research

Murray et al, 2018, Solar Physics (bit.ly/helcats-flarecast)

Open data

All catalogues freely available online with release notes...and friendly colleagues!

CME "quality" : Good

Angu & cent

HCME_A__20100214_01 Background subtracted (1-day background)

	~
80	/
100 - 100	/
20 8 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¥

Earth PA: 95.17° rent Image: 20100214_232901_14h1A.fts vious Image: 20100214_224901_14h1A.fts

Types of Fitting	HEEQ Longitude [deg]	HEEQ Latitude [deg]	Speed [kms- 1]	Carrington Longitude [deg]	Phi [deg]	Launch [UTC]
Fixed-Phi	35	3	517±3	208	30±0	2010-02-14 00:27
Self- Similiar Expansion	45	0	549±3	217	20±1	2010-02-14 02:01
Harmonic- Mean	55	-2	575±3	226	10±2	2010-02-14 02:46

HCME_A__20100214_01 2010-02-13 21:13:00.000 - 2010-02-15 23:34:20.000 (speed: 549kr

(W/m²/Hz)

ر 10⁻¹⁹

1.0

(2H/₂m/10⁻¹⁸

2

1600

figshare doi.org/10.6084/m9.figshare.4970222.v2

Entire FLARECAST codebase available- back-end infrastructure to property algorithms!

Project	Description Bitbucket
	Download scripts, Access layer for HMI files and staging area
⅔ Feature Extraction	Algorithms for Feature Extraction, Read and write access layer for Property Database
✤ Flare Prediction	Algorithms for Flare prediction, Read and write access layer for Prediction Config and Prediction Database
FLARECAST Datamodel	Definition and implementation of FC data model
FLARECAST Infrastructure	Computing Infrastructure for the FLARECAST project
I Sandbox	Sandbox for various experiments.
	dev.flarecast.eu/stash/projects

R2O

Community embracing benchmarking activities to compare predictions, e.g.,

NASA CCMC scoreboards for

- CMEs
- SEPs
- Flares
- IMF Bz

and ILWS teams

ccmc.gsfc.nasa.gov/challenges

Application Usability Levels

AULS developed specifically for space weather to track development progress

- Assessing viability
- Best practices for communicating and working with users

Halford et al- see poster session!

The times they are a changing

- Community benchmarking efforts are helping us identify what is state-of-the-art.
- Embracing open science encourages interdisciplinary collaborations to improve state-of-the-art.
- bit.ly/helcats-flarecast

sophie.murray@tcd.ie @drsophiemurray