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Hydrology Matters:

Advances in hydrological science improve the quality
of seasonal streamflow forecasts

Humans Matter:

Translation of research into national-scale impact
relies on commitment from a team of passionate
humans
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BOM seasonal streamflow forecasting service
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Provides 1-3 month ahead streamflow forecasts at sites around Australia
Used each month by water managers around Australia to inform decisions
Operational since about approx. 2010: Statistical Forecasting System (CSIRO)

Long-term partnership between UoA and BOM to develop dynamical
streamflow forecasting system

Bureau’s Strategic Objective (defined by users) : Provide high quality monthly
streamflow forecasts Australia-wide



Dynamic forecasting system
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Monthly Streamflow
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e Numerous sources of uncertainty in forecasting “chain”
e Rainfall forecast errors (downscaling, missing processes etc.)
e Rainfall-runoff model errors (data errors, structural errors etc.)

* Probabilistic forecasts aim to capture forecast uncertainty

e Key input to risk-based decision making for users



What makes a good probabilistic forecast?

e Water management is about “balancing risks” of high/low flow events (floods/droughts)
* “Good” probabilistic forecasts are:
Reliable: Forecast probabilities are reliable (i.e. consistent with observed data)

Sharp: Small uncertainty in forecast (aka forecast is “precise”)

Reliable, but not sharp Sharp, but not reliable Reliable, sharp, unbiased

© Observed
= 50% probability
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0 Observed
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“Conservative”: over-estimates “Over-confident”: under-
risks => missed opportunities estimate risks, can’t
Aka “Climatology” manage high/low flows

* Reliable and sharp forecasts of high/low flow events
=> Better management decisions

=> Greater industrv uptake and impact of streamflow forecasting products



e Bureau’s Strategic Objective: Provide high quality monthly streamflow
forecasts Australia-wide

Dynamic forecasting system
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Improving probabilistic predictions of daily streamflow




Residuals [m3/s] Discharge [m3/s]

Improving probabilistic predications of
daily streamflow: Motivation

* Predictions from hydrological models used to inform management decisions
* Hydrological model predictions are often highly uncertain

Cbserved
Simulated

Jun Jul Aug Sep Oct Nov

Source of Uncertainty:

Rain gauge missed rainfall?

Model missing a process?

Streamflow gauge problem

e Uncertainty analysis critical for reliable risk assessment

=> Risk = Probability x Consequence



Improving probabilistic predications of daily
streamflow: Outcomes

* Wide range of “residual error models” to quantify predictive uncertainty

e Comprehensive comparison with multiple catchments (Aus/USA) N 4
metrics, hydrological models ©

* Provided recommendations on simplified practical approaches to quantify predictive
uncertainty

* We bust the myth that uncertainty quantification is too hard!

Before: Poor reliability and Sharpness After: Improved Reliability and Sharpness
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Reduced predictive uncertainty by 50%!
[Mclnerney et al., 2017] [Mclnerney et al., 2018]

Water Resources Research
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e Bureau’s Strategic Objective: Provide high quality monthly streamflow
forecasts Australia-wide
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Improving post-processing of monthly streamflow
forecasts




streamflow

streamflow

Improved monthly streamflow forecasts

* Implemented recommendations of Mclnerney et al (2017) developed at daily scale to
monthly forecast post-processing
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Forecast period users
[Woldemeskel et al., 2018]

Evaluating post-processing approaches for monthly and seasonal streamflow
forecasts
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Monthly forecasts Australia-wide: Improved
reliability and sharpness

Before After

High Forecast Skill (Green): Higher reliability and sharpness

Low Forecast Skill (Red): Lower reliability and sharpness

Increased sites with high forecast skill from ~30% to >80%

[Woldemeskel et al., 2018]

Evaluating post-processing approaches for monthly and seasonal streamflow
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Seasonal Streamflow Forecasts:
Merging Statistical and Dynamical Forecasts: Best of Both Worlds

Statistical forecasting model
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Schepen and Q. J. Wang. Model averaging methods
to merge operational statistical and dynamic seasonal
streamflow forecasts in Australia. Water Resources
Research, 51(3):1797-1812, 2015



Evaluation of Merged Forecasts: Australia-wide

Reliability: Statistical and merged forecasts are similar
Sharpness: Merged forecasts improve sharpness by ~ 20%

Jul forecast Jul forecast Jul forecast
MERGED Diff MERGED-BJP

0.0 t0 0.8 a5 0.0t0 0.8 o 0.2t0-0.1 ,
0.8to 1.2 W 0.8t0 1.2 w 0.1t00.1 ‘,
12to15 12to15 0.1t00.2

>15 Low = good >15 >0.2

Incorporating hydrological knowledge and advances from dynamical
forecasts leads to reliable and sharper probabilistic monthly forecasts

Achieves Bureau’s strategic objective of operational high-quality
streamflow forecasts Australia-wide




Future Research: Subseasonal Streamflow Forecasting

Current capabilities: Seasonal Forecasts

e Seasonal streamflow forecasts at single site at monthly time step for multiple locations
in Australia

Required new capabilities (defined by industry/users needs) : Subseasonal Forecasts
e Sub-seasonal streamflow forecasts to provide river basin scale forecasts at multiple

sites at daily time step for 0-30 day lead time
e |deally suited for dynamical | [ cimote N8 / -
forecasting system o !
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Key Benefits

e B

* Enable integration of forecasts into real-time decision-making tools (e.g. Source)
* Enable basin managers to better forecast risks of extreme events (high/low flow periods)

* Improve the management of water allocations to enhance economic growth opportunities
for irrigated agriculture and reduce environmental risks.

Key Challenges
* Developing high quality daily probabilistic forecasts in both time and space



Key Messages

Hydrology Matters:

Advances in hydrological science impact on quality of
seasonal streamflow forecasts

Humans Matter:

Translation of research into national-scale impact
relies on commitment from a team of passionate
humans



Team of Passionate Humans

National Agency’s
(BoM) =

Researchers

Meaningful
societal impact
of research
AL R elbourne occurs when all
are working
together

AAAAAAAAAAAAAAAAAAAAAA

Water Industry /Users



e Strong Leadership

e Commitment and Persistence

e Shared Vision — Co-created

e Flexibity to Adapt to changes in Strategic Priorities
* Regular and Open Engagement

 Mutual Respect and Trust



e Advances in Dynamical Streamflow Forecasting System have
lead to reliable and sharper seasonal streamflow forecasts
e Achieve Bureau’s strategic objective of high-quality seasonal
streamflow forecasts Australia-wide

e Future Research Focus: Sub-seasonal streamflow forecasts
at 0-30 day lead time at river basin scale.

e Addressing a key user need for river basin management

e Achieving societal impact from research advances relies on
a committed team of passionate people:

e Researchers, govt agencies, water industry and users working
together

Connect with Mark Thyer:

THE UNIVERSITY m
SADELAIDE


https://researchers.adelaide.edu.au/profile/mark.thyer
mailto:mark.thyer@adelaide.edu.au
https://twitter.com/drmarkthyer
https://au.linkedin.com/pub/mark-thyer/83/20a/969
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