
GPU-accelerated image processing in ImageJ macro
Robert Haase12, Loic A. Royer3, Deborah Schmidt12, Peter Steinbach12, Alexandr Dibrov12, Uwe Schmidt12, Martin Weigert12, 

Florian Jug12, Eugene W. Myers12

1 Max Planck Institute for Molecular Cell Biology and Genetics Dresden, 2 Center for Systems Biology Dresden, 3 Chan-Zuckerberg Biohub, San Francisco

[1] Schneider, C. A.; Rasband, W. S. & Eliceiri, K. W. (2012), NIH Image to ImageJ: 25 years of image analysis, Nature 

methods 9(7): 671-675 

[2] Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al. (2012), Fiji: an open-source platform for biological-image 

analysis, Nature methods 9(7): 676-682 

[3] The Khronos Group, The open standard for parallel programming of heterogeneous systems, 

https://www.khronos.org/opencl/ accessed 2018-12-09 

[4] Royer, L.A., Weigert, M., ClearCL - Multi-backend Java Object Oriented Facade API for OpenCL

https://github.com/ClearControl/clearcl accessed 2018-12-09

// initialize the GPU

String gpuName = "Vega";

CLIJ clij = CLIJ.getInstance(gpuName);

// push an image to the GPU and give me handle

ClearCLBuffer input = clij.push(imagePlus);

// create an image as large as input

ClearCLBuffer output = clij.create(input);

// add a constant to an image

clij.op().addImageAndScalar(input, output, value);

// apply Gaussian blur to image

clij.op().blurFast(input, output, sigma, sigma, sigma);

// crop a region

output = clij.create(new long[]{128,128, 64}, input.getNativeType());

clij.op().crop(input, output, 32, 32, 0);

// apply affine transform 

AffineTransform3D transform = new AffineTransform3D();

transform.rotate(2, 45);

transform.scale(2.0, 1.0, 1.0);

clij.op().affineTransform(input, output, transform);

// automatic thresholding

clij.op().automaticThreshold(input, output, "Default");

// apply a fixed a threshold

clij.op().threshold(input, output, threshold);

// get output image back and show it

clij.pull(output).show();

// empty GPU memory

input.close(); 

output.close();

// initialize GPU

gpuName = "Intel UHD";

run("CLIJ Macro Extensions", "cl_device=" + gpuName);

// push the current image to the GPU

input = getTitle();

Ext.CLIJ_push(input);

// define a name for the output image

output = "outputImage";

// add a constant to an image

Ext.CLIJ_addImageAndScalar(input, output, value);

// apply Gaussian blur to image

Ext.CLIJ_blur3DFast(input, output, sigma, sigma, sigma);

// crop a region

Ext.CLIJ_crop3D(input, output, 32, 32, 0, 128, 128, 64);

// apply affine transform 

transform = "rotate=45"; // degrees

transform = transform + " scaleX=2"; // zoom factor

Ext.CLIJ_affineTransform(input, output, transform);

// automatic thresholding

Ext.CLIJ_automaticThreshold(input, output, "Default");

// apply a fixed a threshold

Ext.CLIJ_thresholdIJ(input, output, threshold);

// get output image back and show it

Ext.CLIJ_pull(output);

// empty GPU memory

Ext.CLIJ_clear(); 

CLIJ-enriched macro JavaImageJ macro

https://clij.github.io/clij-docs/

Introduction

Modern graphics processing units (GPU) enable image processing at

unprecedented speed. We present CLIJ, an ImageJ[1]/Fiji[2] plugin that brings

GPU-accelerated image processing to the ImageJ macro language. It is based

on the Open Computing Language (OpenCL)[3], enabled through a multi-

backend Java facade named ClearCL[4].

Benchmarking

To demonstrate the benefits, we benchmarked a common workflow on

selected CPUs and GPUs to calculate the speedup compared to the consumer

notebook CPU Intel Core i7-8650U. Comparison of speedup and price shows

that huge speedup is possible without buying expensive GPUs.

Conclusions & Outlook

Using CLIJ it becomes feasible to speed up simple workflows by a factor of 10

on any computer which has a built-in Intel HD GPU. Higher performance can

be achieved with sophisticated workflows on high-end GPU hardware. More

detailed benchmarks comparing various hardware and operations follow soon.

Project goals for widespread availability

In order to make CLIJ available for everyone, goals of the CLIJ project were

• Usability: The ImageJ user is able to GPU-accelerate his workflows directly

from known programming interfaces such as ImageJ macro.

• Documentation: CLIJs reference guide documents all CLIJ operations and

is available in CLIJ plugin dialogs, the web and auto-completion help.

• Interoperability: CLIJ functionality can be used from ImageJ macro, from

ImageJs Jython and Groovy interfaces as well was from Java.

• Extensibility: OpenCL developers can extend CLIJ with basic knowledge

about Java and the SciJava/ImageJ2 eco system.

CLIJ currently supports common filtering tasks that can be used to replace

ImageJs built-in functionality. Furthermore, we provide macro functions that

seamlessly transfer images to and from the GPU for processing. With this

approach, users can exploit GPU acceleration without having to learn OpenCL-

based programming.

Overview

CLIJ currently offers 102 methods ranging from basic filtering, convolution,

deconvolution, spatial transforms, projections, thresholding, local maximum

detection, binary image processing and basic measurements. In order to

exploit GPU-acceleration optimally it is recommended to implement whole

____

Differences to ImageJ

When applying filters such as `Dilate' or `Maximum' to 2D and 3D images in

ImageJ/Fiji, differences in interpretation of neighborhoods become obvious.

CLIJ allows the user to explicitly choose the desired neighborhood.

whole workflows in CLIJ and thereby minimize image transfer between ImageJ

and GPU. Furthermore, iterative procedures are suited well because the first

execution of CLIJ operations is always slower compared to all following

executions.

// add a constant to an image

run("Add...", "value=" + value + " stack");

// apply Gaussian blur to image

run("Gaussian Blur 3D...", "x=" + sigma + " y=" + sigma + 

" z=" + sigma); 

// crop a region

makeRectangle(32, 32, 128, 128);

run("Duplicate...", "duplicate range=1-64");

// apply affine transform using ImageScience plugin

run("TransformJ Affine", "matrix=transform.mat“ +

"interpolation=Linear background=0.0 adjust");

// automatic thresholding

setOption("BlackBackground", true);

setAutoThreshold("Default dark stack");

run("Convert to Mask", "method=Default" +

"background=Dark black");

// apply a fixed a threshold

setThreshold(threshold, 65535);

setOption("BlackBackground", true);

run("Convert to Mask", "method=Default" +

"background=Light black");

Load 

image
Difference of Gaussian

Cylinder maximum 

projection
Spot detection

Save 

results

Processing time Speedup Hardware price


