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Where innovation starts






Where are the abnormalities?

e,

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095



Training data we want

.ase courtesy of Radswiki, Radiopaedia.org, rID: 11384



Training data we get

.ase courtesy of Radswiki, Radiopaedia.org, rID: 11384



Training data not representative
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Overfitting

Error

——————— Training error

Test error
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Number of features / complexity of classifier



Solution 1: Multiple instance learning

Learn with global information — Carolyn is in both pictures

n =




Solution 1: Multiple instance learning

Learn with global information

Cheplygina, V., Sorensen, L., Tax, D. M. J., Pedersen, J. H., Loog, M., & de Bruijne, M. (2014). Classification of COPD
with multiple instance learning. In International Conference on Pattern Recognition (pp. 1508-1513).



Solution 2: Transfer learning

Not learning “from scratch”




. even from entirely different tasks

Medical target

Feature extraction /
Fine-tuning

Pretfraining

Medical source

Cats or CAT scans: transfer learning from natural or
medical image source datasets?

Veronika Cheplygina

https://www.sciencedirect.com/science/article/pii/S52468451118300527



https://www.sciencedirect.com/science/article/pii/S2468451118300527

Solution 2: Transfer learning

Not learning “from scratch”

Not-so-supervised:
a survey of semi-supervised, multi-instance, and
transfer learning in medical image analysis

Veronika Cheplygina, Marleen de Bruijne, Josien P. W. Pluim

https://arxiv.org/abs/1804.06353
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https://arxiv.org/abs/1804.06353

Solution 3: Crowdsourcing
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tvst DOI: 10.1167/tvst.5.5.6

The Accuracy and Reliability of Crowdsource Annotations of
Digital Retinal Images

Danny Mitry', Kris Zutis?, Baljean Dhillon®, Tunde Peto', Shabina Hayat®, Kay-Tee

Khaw>, James E. Morgan®, Wendy Moncur’, Emanuele Trucco?, and Paul J. Foster' for
the UK Biobank Eye and Vision Consortium

[EEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016 1313

AggNet: Deep Learning From Crowds for Mitosis
Detection 1n Breast Cancer Histology Images

Shadi Albarqouni*, Student Member, IEEE, Christoph Baur, Felix Achilles, Student Member, IEEL,

Vasileios Belagiannis, Student Member; IEEE, Stefanie Demirci, and Nassir Navab, Member; IEEE
Can Masses of Non-Experts Train
Highly Accurate Image Classifiers?

A Crowdsourcing Approach to
Instrument Segmentation in Laparoscopic Images

Lena Maier-Hein"*** Sven Mersmann', Daniel Kondermann?,
Sebastian Bodenstedt?, Alexandro Sanchez?, Christian Stock?,
Hannes Gotz Kenngott®, Mathias Eisenmann?, and Stefanie Speidel®



Crowdsourcing airway annotations

Outer airway r=0.75
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Cheplygina, V et al. (2016). Early Experiences with Crowdsourcing Airway Annotations MICCAI LABELS 2016






Image analysis project for 15t year students TU / S oo

1. Measure features with algorlthms
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2. Measure features yourself
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Grafiek 1. De frequenties van de verschilwaardes tussen de metingen in Matlab en de metingen op
het oog
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Analyzing 100 annotated images

TU/e

Predict healthy vs melanoma without any image daita

o 5 features: asymmetry etc
e 6 annotators
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Work by Elif Kubra
Contar

Multi-task approach
outperforms
classification-only
approach
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Not-so-supervised
academics




2011-2014 PhD

“Publish papers”
e Science vs prestige

“Good for your CV”
e EXxperience vstime




Maybe academic career?

The
(1 Economist World politics Business & finance Economics Science & technology Culture
 “You have to go

ab ro ad 7 Doctoral deg.rees .
The disposable academic

Why doing a PhD is often a waste of time

 Not good enough?
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Too many PhDs, not enough tenured positions

European study reveals stress suffered by doctoral holders over insecurity of academic careers
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2015 - 2016

* “Publish, develop own research + get funding for it”

e Social media
* Impact, community
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Dr Veronika Cheplygina
@vcheplygina

Excited to announce that I'll join the Medical
Image Analysis group @TUeindhoven as
assistant professor in Feb 2017!

veronikach.com/news/
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1. Excitement

| get to do research and teach and learn from others for the next 5 years! How amazing
have so many ideas, | can't wait!

2. Relief

| get to have a job for 5 years and don't have to apply for positions for like, a very long t
started looking for my next position halfway through my postdoc, which was a job in it
not reflect well on my postdoc project. A few things were not really going well for me i
the news about the position couldn't have come at a better time.

3. Fear

| worry they will discover I'm an impostor and they should have hired somebody else. |
reassure myself by thinking that if I'm an impostor and they are the the real deal, they :
fizured out that | was one already. But | also worry about just being able to handle it all.

4. Guilt

As many other |'esearr:hers are for‘ce::l out of academia, | feel guilty for “su rviving" whil-

have to deal with hundreds of rejections - | applied to four jobs, inter uewed for three, ;
offered one. Sure, | worked hard, but | think luck and privilege played a big role.

5.Hope

| get to be one step closer to maybe one day being able to change things, just a little bi



2017+ Not without challenges




2017+ Find others to support you

https://unsplash.com/photos/iugmGmst5Po



Academia as supervised learning?

 Input=CV attime t

 Output = Success / failure at t+1

e Successes at t+1 define “decision tree”




But CVs # true data distribution

* Input space is much larger (Shadow CV)

« Output space is much larger (Impact,
being happy)

* Noisy labels, many unlabelled inputs



Overfitting

33



Not-so-supervised advice
 People vs projects
 Examples vs rules

 Explore vs repeat
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