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Contents Section S1 repeats the notation and assumptions introduced in the
main paper for reference. Sections S2 and S3 justify the reduction to a scalar
stochastic differential equation (SDE) under the assumption of the main paper
and Section S1. Section S2 considers the case where the noise is large relative to
the parameter drift speed, while Section S3 considers the case of noise variance
small or comparable with the parameter drift speed. Section S4 gives details on
approximations for tipping probabilities in non-transversal crossings of tipping
thresholds (corresponding to fold bifurcations) discussed in the main article,
Section 4. Section S5 contains a table of fitting coefficients that approximate
a-priori computable functions over argument ranges of interest.

S1 Reference to notation used in main article

We consider an n-dimensional system of ordinary differential equations (ODEs)
with a scalar output yo. The general procedure to simplify a nonlinear sys-
tem near a bifurcation requires a center manifold reduction and normal form
transformations [1]. For the fold bifurcation (or saddle-node) this procedure
simplifies to a simple rescaling of all variables. We also include an additive
Gaussian noise term from the beginning.

dy(t) = f(y(t), q(t))dt+ ΣdWt, y(t) ∈ Rn, q(t) ∈ R, Σ ∈ Rn×`

yo(t) = wTy(t), yo(t) ∈ R,w ∈ Rn,
(S1)

where dWt are the increments of ` independent Wiener processes (Wj,0 = 0,
Wj,t −Wj,s ∼ N (0, t − s), Wj,t1+s1 −Wj,t1 is independent of Wj,t2+s2 −Wj,t2

if t1 + s1 ≤ t2, s1, s2 > 0, and Wj,t is almost surely continuous in t for all
j ∈ {1, . . . , `}).
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Deterministic part We assume that the deterministic part has a fold for
fixed q at q = qb and y = yb, such that
(A1) f(yb, qb) = 0,
(A2) A1 := ∂1f(yb, qb) is singular with single right nullvector v0 and single left

nullvector w0 (A1v0 = 0, wT
0 A1 = 0), scaled such that wT

0 v0 = 1;
(A3) all other eigenvalues of A1 have negative real part;
(A4) a0 := wT

0 ∂2f(yb, qb) > 0;
(A5) κ := 1

2a0
wT

0 ∂
2
1f(yb, qb)v2

0 > 0;

(A6) wTv0 6= 0 (such that we may scale v0 to achieve wTv0 = 1).
The center projection v0w

T
0 is the spectral projection onto the nullspace of

A1, while the stable projection I − v0w
T
0 projects along the nullspace onto the

stable subspace of A1 (spanned by all eigenvectors for eigenvalues with negative
real part). Thus, the stable projection can be written in the form I − v0w

T
0 =

VsW
T
s , where Vs, Ws ∈ Rn×n−1 have full rank and satisfy WT

s Vs = In−1
(the identity in Rn−1), WT

s v0 = 0, wT
0 Vs = 0, and all eigenvalues of As :=

WT
s A1Vs ∈ R(n−1)×(n−1) have negative real part.

Time dependence of parameter Furthermore, we assume that q(t) changes
slowly with t and has a regular maximum at t = 0, such that we may introduce
a small parameter ε and expand

q(t) = qmax + qh(εt) = qb + εR0 + qh(εt), (S2)

where
(P1) qh(0) = q′h(0) = 0,
(P2) R2 := − 1

2q
′′
h(0) > 0.

The parameter R0 in the expansion is of order at most 1, because for R0 � 1
the deterministic system (with noise amplitude Σ = 0) will escape from the
neighborhood of yb for all sufficiently small ε, and for qmax − qb < 0 of order 1
we are in the regime noise-induced escape over a potential barrier [2].

Noise amplitude We assume that variance ∆ = ΣΣT of the noise increments
is small. We introduce another small parameter σ2 that scales the noise variance,

D0 =
1

2
σ−2wT

0 ∆w0 ∈ [0,∞),

Σs = σ−1WT
s Σ ∈ R(n−1)×`,

where we assume that for the case with non-zero noise, D0 is of order 1 and the
matrix norm of ‖Σs‖ is at most of order 1, excluding the case that D0 = 0 and
Σs 6= 0 for simplicity.

Section S2 shows that for 0 < ε3/2 � σ2 � 1 tipping (leaving the neighbor-
hood of yb before time 0) has probability close to 1 for σ → 0. Section S3 shows
that for σ2 � ε3/2 � 1 tipping is determined by the deterministic part, while
for σ2 ∼ ε3/2 the tipping probability is the same as the probability of x→ +∞
from x(t0) ≤ 0, t0 � −1 in finite time, when x satisfies the SDE

dx = a0[R0 −R2t
2 + κx2]dt+

√
2DdWt, (S3)

where D = σ2ε−3/2D0, as claimed in the main paper. The basic arguments
are following those in the textbook by Berglund and Gentz [3]. However, we
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use slightly less precise estimates, as we do not establish that certain small
probabilities are exponentially small for ε→ 0, but simply that they go to zero
for ε→ 0, σ → 0.

S2 Escape from (yb, qb) for ε3/4 � σ — Large-
noise or slow drift regime

Let as assume that 0 < ε3/4 � σ � 1 (or 0 < ε � σ4/3 � 1), and that
the initial condition y(t0) is in a neighborhood of order σ2/3 of yb at time
t0 ∼ −ε−1/2 � −σ−2/3. First we aim to confirm that the probability of y
staying in a neighborhood of yb of size O(σ2/3) for all times up to O(ε−1/2)
goes to zero as σ → 0 (and, hence, ε → 0). In order to do so, we assume that
y − yb ∼ σ2/3 for all t from initial time t0 ∼ −ε−1/2 up to some exit time tE
(which is at most of order O(ε−1/2)). For times in [t0, tE ] the difference of the
forcing q(t) from qb is of order O(ε) or less such that for the large-noise regime
we can estimate the forcing as q(t) = qb + O(ε) = qb + o(σ4/3). Hence, the
precise form of the forcing does not play a role in the following expansions of
Section S2. This is unsurprising as we aim to show that y(t) escapes independent
of the forcing parameters.

The trajectory y(t) can be described using the following rescaled and pro-
jected quantities by zooming into the neighborhood of yb using the small pa-
rameter σ:

yc := σ−2/3wT
0 (y − yb) ∈ R, ys := σ−2/3WT

s (y − yb) ∈ Rn−1. (S4)

The new quantities yc(t), ys(t) have magnitude at most O(1) for times in [t0, tE ]
(in fact, we may define the exit time for a given large threshold c � 1 as the
first time when |yc| ≥ c or |ys| ≥ c). The stable component ys satisfies the
stochastic differential equation (obtained by multiplying the SDE in (S1) by
WT

s )

dys = [Asys + o(1)]dt+ σ1/3ΣsdWt, (S5)

where o(1) is a bounded nonlinear term depending on yc, ys and t. We use
the notation that an expression η is o(1), if the probability P (|η| > c) → 0 for
σ → 0 for all c. Consequently, for times t > t1 := t0 + c2| log σ| (where c2 is a
constant that depends on the eigenvalues of As) the stable component ys will
be o(1) in this sense. The new time t1 is still of order −ε−1/2 � −σ−2/3.

For the center component yc we multiply the SDE in (S1) by wT
0 and rescale

time
tnew := σ2/3told (S6)

such that time in the new scale is still ranging over the large time interval
(−ε−1/2σ2/3, ε−1/2σ2/3). We obtain the SDE

dyc =
[
O(σ−4/3ε) + a0κy

2
c +Ac

11[v0yc][Vsys] +Ac
11[Vsys]

2 + o(1)
]

dt (S7)

+
√

2D0dWt, where Ac
11 := wT

0 ∂
2
1f(yb, qb).

The first term O(ε/σ4/3) arises from the expansion of the forcing q(t). After time
t1 the terms involving ys are all small with probability approaching 1 for σ → 0.
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Similarly, the terms η collected in the remainder o(1) satisfy P (|η| > c) → 0
for σ → 0 and all c > 0 and all times t ∈ [t0, tE ]. Since O(ε/σ4/3) = o(1), yc
satisfies for all t ∈ [t1, tE ]

dyc =
[
a0κy

2
c + o(1)

]
dt+

√
2D0dWt

with positive a0, κ and D0 in the rescaled time. Since t1 ∼ −σ2/3/ε1/2 � −1
for small σ and the o(1) term is bounded and satisfies P (|η| > c)→ 0 for σ → 0
and all c > 0, yc reaches every arbitrary C > 0 with probability approaching
1 for σ → 0 before time tE = 0 (since t1 → −∞ for σ2/3 � ε1/2 and σ → 0,
one could choose any other time tE as long as tE stays bounded for σ → 0).
Consequently, the output

yo = wTy = wTyb + σ2/3yc + σ2/3wTVsys = ybo + σ2/3yc + σ2/3o(1)

leaves the σ2/3-neighborhood of its critical value ybo also at its upper end, re-
gardless of the forcing parameters.

S3 Escape from (yb, qb) for σ of order ε3/4 or smaller
— the balanced or small-noise regime

If the noise amplitude σ is less or equal to ε3/4 (any constant factor can be
absorbed into D0 and Σs), then we may rescale the components of y(t) and time
depending on ε, knowing that the noise amplitude is simultaneously bounded.
We now assume that y− yb ∼ ε1/2 for all t from initial time t0 ∼ −ε−1/2 up to
some exit time tE (which is at most of order O(ε−1/2)). Slightly stronger, we
assume that y(t0) is close to ys(q(t0)), the stable equilibrium of the deterministic
part for fixed q < qb (for example, we may assume wT

0 (y(t0)−yb) < 0). Whether
the exit occurs before time reaches order ε−1/2 or not, depends now on the
forcing parameters R0 and R2. We again rescale the trajectory y(t), but now
using the small parameter ε:

yc := ε−1/2wT
0 (y − yb) ∈ R, ys := ε−1/2WT

s (y − yb) ∈ Rn−1. (S8)

The new quantities yc(t0), ys(t0) have magnitude at most O(1) before exit
time tE . The stable component ys satisfies the stochastic differential equation
(obtained by multiplying the SDE in (S1) by WT

s )

dys = [Asys + o(1)]dt+ σε−1/2ΣsdWt, (S9)

where σε−1/2 � 1, and o(1) is bounded satisfying P (|η| > c)→ 0 for ε→ 0 and
all c > 0. Consequently, if ε is small, for times t > t1 := t0 + c2| log ε| the stable
component ys will be of order o(1) with probability close to 1. The new time
t1 is still of order −ε−1/2. For the center component yc we multiply the SDE in
(S1) by wT

0 and rescale time

tnew := ε1/2told (S10)

such that time in the new scale ranges over a finite time interval [−t0,new, tE,new],
where we now look for exit times tE,new within a bounded time interval. We
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drop the subscript from tnew below. By our assumption on the starting point
of the trajectory yc(t0) is less than 0. It satisfies the SDE

dyc =
[
a0
(
R0 −R2t

2 + κy2c
)]

dt+
σ

ε3/4

√
2D0dWt (S11)

+
[
Ac

11[v0yc][Vsys] +Ac
11[Vsys]

2 + o(1)
]

dt, (S12)

where Ac
11 = wT

0 ∂
2
1f(yb, qb), and κ, a0, R0 and R2 are the expansion coefficients

defined in A4, A5, (S2) and P2. Furthermore, the noise amplitude is bounded,
since σ ≤ ε3/4. In the new time scaling the term ys(t) decays rapidly (within
time of order ε1/2| log ε|) to o(1), with probability close to 1 as ε → 0. Thus,
for any positive threshold c > 0, the probability that yc(t1) > c > 0 goes
to zero as ε → 0 (the time t1 is the time when ys reaches small values with
probability close to 1). Furthermore, from t1 onward all terms in the line (S12)
are small with probability close to 1 as ε→ 0. Furthermore, the rescaled output
x = ε−1/2wT (y−yb) satisfies x = yc +wTVsys = yc + o(1) for ε→ 0. Thus, up
to terms of order o(1) it satisfies the same SDE (S11), starting from the same
initial condition.

For σ � ε3/4 (S11) is a small-noise perturbation of the deterministic differ-
ential equation

ẋ = a0
(
R0 −R2t

2 + κx2
)

. (S13)

If σ ∼ ε3/4, we may define D = σ2/ε3/2D0 such that equation (S11) becomes
the scalar stochastic differential equation for x (up to terms that are o(1) for
ε→ 0)

dx = a0[R0 −R2t
2 + κx2]dt+

√
2DdWt (S14)

where the rescaled noise variance 2D is of order 1 and a0, κ > 0. The initial
condition is at x(t0) < c, where c > 0 is a small positive threshold, and t0 <
0. By further rescaling x and time and introducing correspondingly rescaled
versions of the parameters R0 and R2,

xnew =
(a0κ)1/3

D1/3
xold, tnew = D1/3(a0κ)2/3told,

p0 =
a
2/3
0 R0

D2/3κ1/3
, p2 =

R2

D4/3κ5/3a
2/3
0

,

(S15)

we may simplify (S14) to the SDE

dx = [p0 − p2t2 + x2]dt+
√

2dWt (S16)

Remark for the case of σ = 0 For the case without noise (σ = 0), the
dynamics of the stable direction ys can be decoupled into an exponentially
decaying term (the stable fibres or isochrones) and the center manifold, which
is a graph of the form ε1/2ys(yc, t). Thus, all terms involving ys in the projection
by wT

0 , (S12) are of order ε1/2 and can be neglected in the deterministic case,
leading to the sharper error term O(ε1/2) in equation (2.4) of the main paper.

5



S4 Approximations of tipping probability Pesc

The tipping probability Pesc in (S16) is defined as the probability of leaving
the domain I = [−xbd, xbd] before time T0, when starting from some x0 ≤ 0
at time T0. The probability density u(x, t) determining Pesc is governed by the
Fokker-Planck equation (FPE)

∂tu(x, t) = ∂2xu(x, t)− ∂x[(p0 − p2t2 + x2)u(x, t)] (S17)

with Dirichlet boundary conditions (u(−xbd, t) = u(xbd, t) = 0) starting from u
concentrated near x = x0 < 0 at t = −T0 = −

√
(x20 + p0)/p2 and x0 � −1 with∫

I
u(x, t)dx = 1. Then Pesc = 1 −

∫
I
u(x, T0)dx. Since escape through −xbd

is extremely unlikely, this difference corresponds almost exclusively to escape
through the upper boundary xbd.

For large T0 this probability is nearly independent from the values x0, T0,
xbd. The main article’s Figure 5 shows numerical results in the order-1 region
of the (q1, q2) = (

√
p2, p0 −

√
p2) plane for xbd = 8, T0 =

√
(x20 + p0)/p2 and

x0 = −4.
In the region of the main articles Figure 5 the double exponential of 1−Pesc

satisfies a cubic fit accurately over the region shown in Figure 5 of the main
article:

1− Pesc ≈ exp

− exp

3∑
k=0,j≤k

ckjq
j
1q

k−j
2

 , (S18)

where the coefficients ckj are given in Table S1. The absolute error over the
region of the main article’s Figure 5 is 0.024 and the cut-off relative error

errrel = |Pesc − P approx
esc |/max(0.1, Pesc) (S19)

is less than 10%. Since the two-parameter fit does not give insight in the origin
of its terms, we provide approximations in two limiting regimes.

Slow drift approximation For small parameters p2 (or q1) the integration
of the FPE (S17) would require long time intervals (only for times of order
1/
√
p2 are well separated stable and unstable slow manifolds present in the

deterministic part ẋ = p0 − p2t
2 + x2). However, in this regime the time-

dependence of (S16) is weak: the time derivative of the right-hand side p0 −
p2t

2+x2 is of order
√
p2 for |t|√p2 of order 1 or less. Hence, we may approximate

the rate of escape at each time t using the escape rate for the static potential
well corresponding to the right-hand side p0 − p2t2 + x2. This escape rate is
given by the dominant eigenvalue λ0 of the linear operator on the right-hand
side of the Fokker-Planck equation (S17) [3]. Solving the parameter-dependent
eigenvalue problem

−λ(p)u(x, p) = ∂2xu(x, p)− ∂x[(p+ x2)u(x, p)] (S20)

for its first eigenvalue λ0 (specifically, with Dirichlet boundary conditions on
the interval [−8, 8] using chebfun[4]), provides the escape rate. The eigenvalue
λ0(p) is real and positive (due to the minus sign on the left-hand side in (S20)),
and exponentially small for p � −1, where the approximation with Kramers’
escape rate (λ0 ≈

√
−p/π exp(4p

√
−p/3) for the drift term in (S20) and D = 1)
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Figure S1: Slow drift approximation: (a) shows the leading eigenvalue λ0(p)
(blue solid) as numerically computed using (S20), the approximation given by
Kramers’ escape rate (red markers) and µ0 defined below (S21) (black dashed).
(b) compares the slow drift approximation (S21) (blue solid) to the numerical
value (from Figure 5, main article) (red dashed) at p2 = 0.1. The difference
always below 0.02.

is valid. Figure S1a shows λ0 and the Kramers’ escape rate approximation.
The probability of not escaping is then the product of all probabilities of not
escaping near all times t, such that overall:

Pesc ≈ 1− exp

(
−2

∫ ∞
0

λ0(p0 − p2t2)dt

)
≈ 1− exp

(
−2p

−1/2
2 µ0(p0)

) (S21)

where µ0(p0) =
∫∞
0
λ0(p0 − s2)ds is also shown in Figure S1a. Since the eigen-

value λ0(p) (and its integral µ0(p)) are exponentials, approximation (S21) ex-
plains the double exponential nature of the probability Pesc. The logarithms
of λ0 and µ0 fit accurately to cubic polynomials over the range shown in Fig-
ure S1 (µ0(p) ≈ exp(1.35(p − 1)) fits up to 0.02 in absolute value for p < 0.3;
see Table S1. Figure S1b compares the slow-drift approximation (S21) to the
numerical result at p2 = 0.1 from Figure 5 of the main article (q1 = 0.316 in
Figure 5). The absolute error is always below 0.02 and the cut-off relative error
errrel in (S19) is less than 10%. The slow drift approximation becomes more
accurate for values of p2 smaller than 0.1, such that

Pesc(p0, p2) ≈ 1− exp
(
−2p

−1/2
2 exp(1.35(p0 − 1))

)
(S22)

is a good approximation for the probability of escape of x → ∞ satisfying
dx = p0 − p2t

2 + x +
√

2dWt, starting from x(t0) ≤ 0 for t0 � −1, for all
p2 ≤ 0.1.

Mode approximation in moving coordinates An approach explored by
Ritchie and Sieber [5] extends the slow drift approximation to a region of the
parameter plane where p2 is not small. We consider the unique solution x̄(t; p0)
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of the deterministic ODE (dropping
√

2dWt from (S16))

dx(t) = [p0 − p2t2 + x(t)2]dt (S23)

satisfying x̄(t; p0) +
√
p2|t| → 0 for t → ∞ (see Figure S2a). Then we make a

time-dependent coordinate shift z(t) = x(t) − x̄(t; p0, p2) and consider escape
of a realization of z from the vicinity of the origin when adding stochastic
disturbances to this shifted system:

dz = [z2 + 2x̄(t; p0, p2)z]dt+
√

2dWt. (S24)

Now we apply the slow-drift approximation in the coordinate system for z (after
the time-dependent shift). The eigenvalue problem for the operator on the
right-hand side of the Fokker-Planck equation for (S24) is now (with Dirichlet
boundary conditions)

−γ(p)u(z; p) = ∂2zu(z; p)− ∂z[(z2 + 2pz)u(z; p)], (S25)

where the parameter p is equal to x̄(t; p0, p2). Ritchie and Sieber [5] give a way
to approximate the escape rate γ1(p). Its numerically computed value is shown
in Figure S2b (computation performed with chebfun[4] on the interval [−8, 8]).
As one can see, the escape rate γ1(p) has a maximum at p = 0. This points to a
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Figure S2: (a) Trajectory of deterministic system (S23) with p0 = 0.59 and
p2 = 1. (b) Slow drift approximation (blue solid) and numerical value (red) of
escape rate γ1(p) for escape problem (S25).

limitation of the validity for the mode approximation. When the deterministic
trajectory x̄(t) enters the region x > 0, it becomes locally repelling, such that
the potential −z3/3− pz2 corresponding to (S24) has a hill top at 0, but a well
at −2x̄. The region of validity for the mode approximation is thus limited to the
region where p = x̄ ≤ 0. This implies that the deterministic reference trajectory
x̄(t; p0, p2) has to lie in {x ≤ 0} for all t. This is the case when p0 ≤ 0.59

√
p2

(corresponding to the area below the red line in Figure 5 of the main article).
Figure S2b also shows a fitted curve of the form γ1,2(x̄) = exp(−c0 − c2x̄2)

with c0 = 1.01 and c2 = 1.41. A 4th-order fit γ1,4(x̄) = exp
(
−
∑4

j=0 cj x̄
4−j
)

with c = (0.33, 0.04, 1.17,−0.01, 1.04) has an absolute error less than 10−3 and
a cut-off relative error (|γ1(p)− γ1,4(p)|/max(0.1, γ1)) less than 10−2.
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Again, the probability of not escaping is the product of all probabilities of
not escaping near all times t, such that overall

Pesc ≈ 1− exp

(
−
∫ ∞
−∞

γ1(x̄(t; p0, p2))dt

)
, (S26)

which equals the approximation (4.8) in Section 4 of the main article. In con-
trast to the slow drift approximation (S21) the integrand γ1 depends on the
deterministic trajectory x̄(t; p0, p2). This trajectory is typically non-symmetric
about t = 0 (see Figure S2a; in contrast to the simple parabolic path p0− p2t2)
such that the escape rate has to be integrated over all times. As there is no good
approximation formula for the trajectory x̄(t; p0, p2) (a quadratic approximation
at its maximum is typically poor), the integral has to be evaluated numerically.
This evaluation can be performed in parallel to the computation of the trajec-
tory x̄(t; p0, p2) itself, in particular also covering the case 0 ≤ p2 � 1 for which
the slow drift approximation (S21) is valid. For the normal form this would be
an extension of the form (assuming that the integration interval is [−T0, T0])

ẋ = p0 − p2t2 + x2, x(−T0) = −T0 (S27)

γ̇acc = γ1,4(x), γacc(−T0) = 0. (S28)

Then Pesc ≈ 1− exp(−γacc(T0)). More generally, the parameter path does not
have to be parabolic: p0− p2t2 may be replaced with an arbitrary function p(t)
satisfying p(t) � −1 for |t| � 1 (after rescaling). Moreover, x in (S28) can be
the rescaled scalar output of the simulated large system (after applying scalings
(S8) and (S15): x(t) = ε−1/2D1/3(a0κ)−1/3wT (y(t)−yb)). The initial condition
for γacc should be set to 0, as (S28) evaluates the integral in (S26).

S5 Fitting coefficients

The values of the fitting coefficients for the approximations of tipping probability
Pesc are listed in Table S1.

Table S1: Table of fitting coefficients

Expression coefficient Value

Eq. (S18) c0 0.98

c1 (1.41,−0.97)

c2 (−0.22,−0.28, 0.33)

c3 (0.01, 0.03, 0.04,−0.04)

log λ0(s) =
∑3

k=0 cks
k c (−1.3433, 1.3659,

in Eq. (S21) −0.2347, 0.0277)

log γ1,4(x̄) =
∑4

k=0 ckx̄
k c (−1.0388, 0.0058,

in Eq. (S28) −1.1687,−0.0409,

−0.3326)
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