Supplementary Information:

Process Safety Analysis for Ti₃C₂T_x MXene Synthesis and Processing

Pritishma Lakhe^{1,2}, Evan M. Prehn³, Touseef Habib¹, Jodie L. Lutkenhaus^{1,3}, Miladin Radovic³, M. Sam Mannan^{1,2}, and Micah J. Green,^{1,3,*}

¹Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA

²Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA

³Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Corresponding author: Micah J. Green, Tel: +1 979 862 1588; Fax: +1 979 458 1493; E-mail: micah.green@tamu.edu; Mailing address: 3122 TAMU Room 202, College Station, TX 77843

SECTION S1

In this section, we have listed the assumptions used in computing the Dow Fire and Explosion Index (Dow F&EI) shown in **Figure 5b**.

Assumptions:

- Moderate exotherms for etching (equivalent to that of an oxidation reaction)
- Adequate ventilation (reaction done inside hood)
- Adequate access to laboratory in case of emergency (at least two clear doorways and easy access to fire extinguisher)
- Spills are contained (doesn't spread to other experiments or equipment)
- No air sensitive material used
- H₂ released could make the environment flammable
- MAX phase particle size is < 75 micron
- No over pressure (done at atmospheric condition)
- Minor leaks
- Agitation failure could lead to bad consequences
- No flammable liquid/gas/solids in use or stored for the process
- Reaction conditions are same for all 6 methods
- In terms of toxicity, HF of concentrations >10 wt.% have same amount of toxicity

Tables S1 through S6 shows the values assigned for each category for the 6 etching methods available in literature. The Dow F&EI used in this study is adapted from Jensen et al. which is modified for laboratory processes (Dow 1994, Jensen 1994).

S1. Ti₃C₂X_n synthesis using HF (> 10 wt. %)

	Nh	Nf	Nr	MF	
HF 10 wt. %	4	0	1	14	
			_		
Mater	ial Factor (MF)			14	
Ger	neral process ha	zard factors	_		
Penalty factor descri	ption	Value/range		Value	
Base penalty factor		1		1	
Exothermic chemical r	eactions	0.30 to 1.25		0.5	
Endothermic chemical	reactions	0.20 to 0.40		0	
Handling and transfer	of materials	0.25 to 1.05		0.5	
Indoor and otherwise	enclosed facility	0.25 to 0.90		0.3	
Access to facility		0.20 to 0.35		0	
Liquid drainage from a	irea	0.25 to 0.50		0	
Total (F1)				2.3	
Spe	cial process haz	zards factor			
Penalty factor descri	ption	Value/range		Value	
Base penalty factor		1		1	
Toxicity of material use		0.20 to 0.80		0.8	
Operation of sub-atmo	spheric	0 5			
pressure		0.5		0	
Operation in/or near fla		0.30 to 0.80		0.3	
Dust explosion hazard		0.25 to 2.00		2	
Operating pressure		0.16 to 1.50		0	
Low temperature oper Quantity of flammable		0.20 to 0.30		0	
material		0.12 to 4.00		0	
Corrosion		0.10 to 0.75		0.2	
Leakage		0.10 to 1.50		0.1	
Use of direct fired equ	ipment	0.00 to 1.00		0	
Hot oil exchange syste		0.15 to 1.15		0	
Rotating equipment		0.5		0.5	
Total (F2)				4.9	
		L	1		
Process Unit	Process Unit Hazards Factors, F3				
Fire and Explosion Index (F&EI)				<u>11.27</u> 157.78	

S2. Ti_3C_2X_n synthesis using LiF and HCl

	Nh	Nf	Nr	MF
LiF	2	0	0	1
HCI	3	0	1	14

Material Factor (MF)	14				
General process hazard factors					
Penalty factor description	Value/range	Value			
Base penalty factor	1	1			
Exothermic chemical reactions	0.30 to 1.25	0.5			
Endothermic chemical reactions	0.20 to 0.40	0			
Handling and transfer of materials	0.25 to 1.05	0.5			
Indoor and otherwise enclosed facility	0.25 to 0.90	0.3			
Access to facility	0.20 to 0.35	0			
Liquid drainage from area	0.25 to 0.50	0			
Total (F1)		2.3			
Special process ha	zards factor				
Penalty factor description	Value/range	Value			
Base penalty factor	1	1			
Toxicity of material used	0.20 to 0.80	0.6			
Operation of sub-atmospheric					
pressure	0.5	0			
Operation in/or near flammable range	0.30 to 0.80	0.3			
Dust explosion hazard	0.25 to 2.00	2			
Operating pressure	0.16 to 1.50	0			
Low temperature operation	0.20 to 0.30	0			
Quantity of flammable or unstable					
material	0.12 to 4.00	0			
Corrosion	0.10 to 0.75	0.2			
Leakage	0.10 to 1.50	0.1			
Use of direct fired equipment	0.00 to 1.00	0			
Hot oil exchange system	0.15 to 1.15	0			
Rotating equipment	0.5	0.5			
Total (F2)		4.7			
Process Unit Hazards Factor		10.81			
Fire and Explosion Index (F	151.34				

S3. Ti $_3C_2X_n$ synthesis using NH₄NF

	Nh	Nf	Nr	MF
NH₄NF	3	0	1	14

Material Factor (MF)	14	
General process ha	zard factors	
Penalty factor description	Value/range	Value
Base penalty factor	1	1
Exothermic chemical reactions	0.30 to 1.25	0.5
Endothermic chemical reactions	0.20 to 0.40	0
Handling and transfer of materials	0.25 to 1.05	0.5
Indoor and otherwise enclosed facility	0.25 to 0.90	0.3
Access to facility	0.20 to 0.35	0
Liquid drainage from area	0.25 to 0.50	0
Total (F1)		2.3
Special process ha	zards factor	
Penalty factor description	Value/range	Value
Base penalty factor	1	1
Toxicity of material used	0.20 to 0.80	0.6
Operation of sub-atmospheric pressure	0.5	0
Operation in/or near flammable range	0.30 to 0.80	0.3
Dust explosion hazard	0.25 to 2.00	2
Operating pressure	0.16 to 1.50	0
Low temperature operation	0.20 to 0.30	0
Quantity of flammable or unstable		
material	0.12 to 4.00	0
Corrosion	0.10 to 0.75	0.2
Leakage	0.10 to 1.50	0.1
Use of direct fired equipment	0.00 to 1.00	0
Hot oil exchange system	0.15 to 1.15	0
Rotating equipment	0.5	0.5
Total (F2)		4.7
Process Unit Hazards Factor	e F3	10.81
Fire and Explosion Index (F	151.34	
	131.34	

S4. Ti_3C_2X_n synthesis using FeF_3 and HCI

	Nh	Nf	Nr	MF
HCI	3	0	1	14
FeF3	3	0	0	1

Material Factor (MF)	14				
General process hazard factors					
Penalty factor description	Value/range	Value			
Base penalty factor	1	1			
Exothermic chemical reactions	0.30 to 1.25	0.5			
Endothermic chemical reactions	0.20 to 0.40	0			
Handling and transfer of materials	0.25 to 1.05	0.5			
Indoor and otherwise enclosed facility	0.25 to 0.90	0.3			
Access to facility	0.20 to 0.35	0			
Liquid drainage from area	0.25 to 0.50	0			
Total (F1)		2.3			
Special process haz	zards factor				
Penalty factor description	Value/range	Value			
Base penalty factor	1	1			
Toxicity of material used	0.20 to 0.80	0.6			
Operation of sub-atmospheric pressure	0.5	0			
Operation in/or near flammable range	0.30 to 0.80	0.3			
Dust explosion hazard	0.25 to 2.00	2			
Operating pressure	0.16 to 1.50	0			
Low temperature operation	0.20 to 0.30	0			
Quantity of flammable or unstable					
material	0.12 to 4.00	0			
Corrosion	0.10 to 0.75	0.2			
Leakage	0.10 to 1.50	0.1			
Use of direct fired equipment	0.00 to 1.00	0			
Hot oil exchange system	0.15 to 1.15	0			
Rotating equipment	0.5	0.5			
Total (F2)		4.7			
Dreeses Unit Hererde Faster	а Г 2	10.04			
Process Unit Hazards Factor	10.81				
Fire and Explosion Index (Fe	151.34				

S5. $Ti_3C_2X_n$ synthesis using HCI

	Nh	Nf	Nr	MF
HCI	3	0	1	14

Material Factor (MF)			14	
General process ha	zard factors			
Penalty factor description	Value/range		Value	
Base penalty factor	1		1	
Exothermic chemical reactions	0.30 to 1.25		0	
Endothermic chemical reactions	0.20 to 0.40		0	
Handling and transfer of materials	0.25 to 1.05		0.5	
Indoor and otherwise enclosed facility	0.25 to 0.90		0.3	
Access to facility	0.20 to 0.35		0	
Liquid drainage from area	0.25 to 0.50		0	
Total (F1)			1.8	
Special process haz	ards factor			
Penalty factor description	Value/range		Value	
Base penalty factor	1		1	
Toxicity of material used	0.20 to 0.80		0.6	
Operation of sub-atmospheric pressure	0.5		0	
Operation in/or near flammable range	0.30 to 0.80		0.3	
Dust explosion hazard	0.25 to 2.00		2	
Operating pressure	0.16 to 1.50		0	
Low temperature operation	0.20 to 0.30		0	
Quantity of flammable or unstable				
material	0.12 to 4.00		0	
Corrosion	0.10 to 0.75		0.2	
Leakage	0.10 to 1.50		0.1	
Use of direct fired equipment	0.00 to 1.00		0	
Hot oil exchange system	0.15 to 1.15		0	
Rotating equipment	0.5		0.5	
Total (F2)			4.7	
Process Unit Hazards Factors, F3			8.46	

S6. $Ti_3C_2X_n$ synthesis using NaOH

	Nh	Nf	Nr	MF
NaOH	3	0	1	14

Material Factor (MF)	14	
General process haza		
Penalty factor description	Value/range	Value
Base penalty factor	1	1
Exothermic chemical reactions	0.30 to 1.25	0
Endothermic chemical reactions	0.20 to 0.40	0
Handling and transfer of materials	0.25 to 1.05	0.5
Indoor and otherwise enclosed facility	0.25 to 0.90	0.3
Access to facility	0.20 to 0.35	0
Liquid drainage from area	0.25 to 0.50	0
Total (F1)		1.8
Special process haza	rds factor	
Penalty factor description	Value/range	Value
Base penalty factor	1	1
Toxicity of material used	0.20 to 0.80	0.6
Operation of sub-atmospheric pressure	0.5	0
Operation in/or near flammable range	0.30 to 0.80	0.3
Dust explosion hazard	0.25 to 2.00	2
Operating pressure	0.16 to 1.50	0
Low temperature operation	0.20 to 0.30	0
Quantity of flammable or unstable material	0.12 to 4.00	0
Corrosion	0.10 to 0.75	0.2
Leakage	0.10 to 1.50	0.1
Use of direct fired equipment	0.00 to 1.00	0
Hot oil exchange system	0.15 to 1.15	0
Rotating equipment	0.5	0.5
Total (F2)		4.7
Process Unit Hazards Factors,	F3	8.46
Fire and Explosion Index (F&I	118.44	

SECTION S2

The gas generation calculation in **Figure 7** based on the proposed reaction pathway and synthesis recipe provided by Naguib et al. (Naguib, 2012). The reaction pathway is show below:

 $\begin{array}{l} \mathsf{Ti}_3\mathsf{AIC}_2 + 3\mathsf{HF} = \mathsf{AIF}_3 + \mathsf{Ti}_3\mathsf{C}_2 + 3/2 \ \mathsf{H}_2 \\ \mathsf{Ti}_3\mathsf{C}_2 + 2\mathsf{H}_2\mathsf{O} = \mathsf{Ti}_3\mathsf{C}_2(\mathsf{OH})_2 + \mathsf{H}_2 \\ \mathsf{Ti}_3\mathsf{C}_2 + 2\mathsf{HF} = \mathsf{Ti}_3\mathsf{C}_2\mathsf{F}_2 + \mathsf{H}_2 \end{array}$

Where, one mole Ti_3AlC_2 give 3.5 moles of H_2 gas. The calculation is done at isothermal condition at room temperature (~ 25C, 298 K). Following recipe is used for the gas volume calculations (Naguib, 2012): 30 mL of 6M HCl, to 2 gm of LiF, 3 gm of Ti_3AlC_2

The pressure generation accounts only in vapor space of the reactor. Therefore, the volume of the reactor mass is subtracted from the total vapor space available for gas accumulation.

References:

- 1. Fire, Dow. "Explosion Index Hazard Classification Guide." *AICHE New York* (1994).
- 2. N. Jensen, "Modifying the DOW fire & explosion index for use in assessing hazard and risk of experimental setups in research laboratories," in 12th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, 2007
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, "Two-dimensional transition metal carbides," ACS nano, vol. 6, no. 2, pp. 1322–1331, 2012.