Supporting Information

for

Determinants of Greenhouse Gas Emissions from Interconnected Grids in China

Hongxia Wang¹, Weicai Wang¹, Sai Liang^{2,*}, Chao Zhang^{3,4}, Shen Qu⁵, Yuhan Liang², Yumeng Li², Ming Xu^{5,6}, Zhifeng Yang²

¹Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China

²State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China

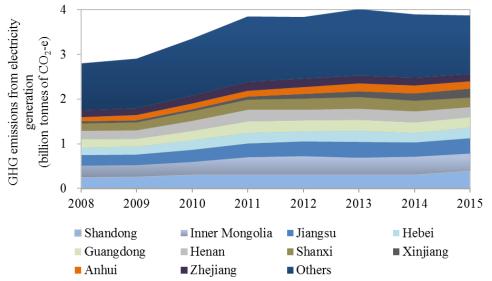
³School of Economics and Management, Tongji University, Shanghai, 200092, China

⁴United Nation Environment-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai, 200092, China

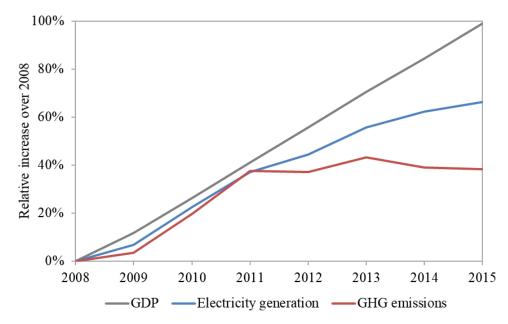
⁵School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan 48109-1041, United States

⁶Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States

*To whom correspondence should be addressed. Email: <u>liangsai@bnu.edu.cn;</u> <u>liangsai09@gmail.com</u>(Sai Liang)


Pages: 13 Figures: 2 Tables: 9

The supporting information provides the results of the QIO model and supplemental Tables supporting the main text.


S1 GHG Emissions from Electricity Generation

GHG emissions from electricity generation generally increased from 2.8 billion (10^9) tonnes (Bt) of CO₂ equivalents (CO₂-e) to 3.9 Bt during 2008–2015 (Figure S1a). The top 10 grids with the largest power generation (Figure S1a) contributed about 60% of the total electricity generation in China. Shandong and Inner Mongolia are the two largest electricity producers, contributing 10.2% and 10.1% of total electricity generation in 2015, respectively.

China implemented the *Four-Thousand-Billion Stimulus Plan* in 2008 for economic rehabilitation after the global financial crisis. This facilitated the rapid increase in GDP, electricity generation, and GHG emissions during 2009–2011 (Figure S1b). We observed two decoupling trends after 2011: the decoupling of GHG emissions from electricity generation and GDP; and the decoupling of electricity generation from GDP.

(a) GHG emissions from electricity generation

(b) Changes in GDP, electricity generation volume, and associated GHG emissions

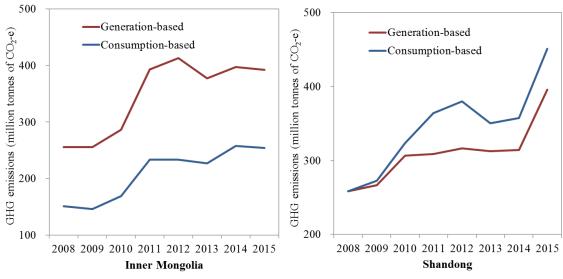
Figure S1. GDP, electricity generation volume, and associated GHG emissions during 2008–2015. Full results are listed in Tables S1 and S2 in the Supporting Information (SI).

S2 GHG Emissions caused by Electricity Consumption

Figure S2a compares GHG emissions from electricity generation (generation-based GHG emissions) with those caused by electricity consumption (consumption-based GHG emissions) in 2015. We observed obvious differences between generation-based and consumption-based GHG emissions, which are caused by inter-grid electricity transmission.

Net electricity importing provinces such as Shandong, Jiangsu, Hebei, Guangdong, Henan, Zhejiang, and Liaoning have larger consumption-based GHG emissions than generationbased GHG emissions. For example, consumption-based GHG emission in Hebei and Liaoning are 24% and 25% higher than their generation-based GHG emissions, respectively, in 2015. We observed the same situation for 4 municipalities including Shanghai, Tianjin, Beijing, and Chongqing. Consumption-based GHG emissions in Beijing are around four times larger than its generation-based GHG emissions. For Shanghai and Tianjin, their consumption-based GHG emissions are 27% and 46% higher than generation-based GHG emissions in 2015.

In contrast, net electricity exporting provinces such as Inner Mongolia, Shanxi, Xinjiang, and Anhui have larger generation-based GHG emissions than consumption-based GHG emissions. For example, generation-based GHG emissions of Inner Mongolia and Shanxi are 54% and 37% higher than their consumption-based GHG emissions in 2015. These provinces are major electricity exporters to other regions in China.


We specifically investigated the differences between generation-based and consumptionbased GHG emissions in Inner Mongolia and Shandong – two largest grids in electricity generation (Figure S2b). Generation-based and consumption-based GHG emissions in Inner Mongolia and Shandong showed generally increasing trends during 2008–2015, with slight decreases during 2012–2013. There have been obvious differences between generation-based and consumption-based GHG emissions in Inner Mongolia and Shandong during 2008–2015, especially during 2011–2013.

We further revealed consumption-generation pairs to show which electricity consumers are driving GHG emissions from electricity generation of a particular grid. For instance, Inner Mongolia in Northeast China is the largest electricity producer and exporter, and GHG emissions from its electricity generation increased by 137 million tonnes of CO₂-e during 2008–2015. Major consumers driving GHG emissions from electricity generation in Inner Mongolia include Liaoning, Beijing, Shanxi, and Tianjin, contributing 15%, 8%, 4%, and 2% to this increase, respectively. These provinces are major importers of electricity generation in Inner Mongolia. Moreover, Shanxi in North China is also a large electricity producer and exporter. The increase in its generation-based GHG emissions during 2008–2015 is mainly driven by the growth in electricity consumption of Hebei (contributing 28%), Henan (10%), and Shandong (7%).

The above findings indicate the necessity to investigate GHG emissions embodied in intergrid electricity flows. Generation-based results can identify "hotspots" grids for productionside measures such as using low-carbon energy sources and improving thermal efficiency of power generation. Consumption-based results can identify "hotspots" grids for consumptionside measures such as improving electricity end-use efficiency.

(a) Generation-based and consumption-based GHG emissions in 2015

(b) GHG emissions of Inner Mongolia and Shandong grids during 2008–2015

Figure S2. Generation-based and consumption-based GHG emissions of each grid in China. Full results are listed in Tables S3 in the SI.

S3 Additional Tables Supporting the Main Text

Table S1. GHG emissions from electricity generation during 2008–2015 (Unit: billion tonnes
of CO ₂ -e).

Provincial grids	2008	2009	2010	2011	2012	2013	2014	2015
Beijing	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Tianjin	0.04	0.04	0.05	0.06	0.06	0.06	0.05	0.05
Hebei	0.17	0.18	0.21	0.24	0.23	0.25	0.22	0.24
Shanxi	0.17	0.17	0.22	0.24	0.25	0.25	0.24	0.22
Inner Mongolia	0.26	0.26	0.29	0.39	0.41	0.38	0.40	0.39
Liaoning	0.11	0.12	0.14	0.15	0.15	0.15	0.16	0.15
Jilin	0.07	0.06	0.06	0.08	0.07	0.07	0.08	0.07
Heilongjiang	0.08	0.08	0.08	0.09	0.09	0.07	0.08	0.08
Shanghai	0.07	0.07	0.08	0.08	0.07	0.08	0.07	0.07
Jiangsu	0.24	0.23	0.27	0.31	0.33	0.35	0.32	0.34
Zhejiang	0.15	0.16	0.17	0.19	0.18	0.18	0.17	0.17
Anhui	0.10	0.12	0.13	0.13	0.16	0.18	0.18	0.17
Fujian	0.07	0.07	0.07	0.11	0.10	0.11	0.11	0.10
Jiangxi	0.04	0.05	0.06	0.06	0.06	0.07	0.07	0.07
Shandong	0.26	0.27	0.31	0.31	0.32	0.31	0.31	0.40
Henan	0.19	0.19	0.22	0.25	0.24	0.25	0.24	0.23
Hubei	0.06	0.06	0.08	0.10	0.08	0.09	0.09	0.09
Hunan	0.05	0.06	0.07	0.09	0.07	0.08	0.07	0.06
Guangdong	0.19	0.18	0.22	0.26	0.24	0.25	0.24	0.23
Guangxi	0.03	0.04	0.05	0.06	0.06	0.07	0.06	0.05
Hainan	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
Chongqing	0.03	0.03	0.03	0.04	0.04	0.05	0.04	0.04
Sichuan	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.04
Guizhou	0.08	0.10	0.10	0.10	0.10	0.10	0.09	0.08
Yunnan	0.06	0.07	0.07	0.08	0.07	0.06	0.05	0.03
Shaanxi	0.07	0.08	0.10	0.10	0.10	0.11	0.12	0.12
Gansu	0.04	0.04	0.06	0.07	0.07	0.07	0.07	0.06
Qinghai	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ningxia	0.05	0.05	0.06	0.10	0.10	0.10	0.10	0.10
Xinjiang	0.04	0.05	0.05	0.07	0.10	0.13	0.17	0.19

Year	GDP changes	Electricity generation changes	GHG emission changes
2008	-	-	-
2009	12%	7%	4%
2010	26%	23%	20%
2011	41%	37%	38%
2012	56%	45%	37%
2013	70%	56%	43%
2014	85%	62%	39%
2015	99%	66%	38%

Table S2. Changes in GDP, electricity generation volume, and associated GHG emissions during 2008–2015.

Provincial grids	Generation-based	consumption-based
Shandong	396	451
Inner Mongolia	393	254
Jiangsu	340	369
Hebei	238	296
Guangdong	231	273
Henan	226	254
Shanxi	216	157
Xinjiang	191	169
Anhui	170	135
Zhejiang	167	194
Liaoning	152	191
Shaanxi	117	95
Ningxia	98	73
Fujian	95	94
Hubei	86	63
Guizhou	85	51
Heilongjiang	82	77
Jilin	71	65
Jiangxi	69	73
Shanghai	68	86
Gansu	64	59
Hunan	62	69
Tianjin	52	75
Guangxi	47	44
Chongqing	39	41
Sichuan	37	25
Yunnan	33	23
Hainan	18	19
Beijing	17	69
Qinghai	12	17

Table S3(a). Generation-based and consumption-based GHG emissions of each grid in China in 2015 (Unit: million tonnes of CO₂-e).

Table S3(b). GHG emissions of Inner Mongolia and Shandong grids during 2008–2015 (Unit: million tonnes of CO₂-e).

Year	Inner 1	Mongolia	Shandong		
I tai	Generation-based	Consumption-based	Generation-based	Consumption-based	
2008	255	151	258	258	
2009	256	146	267	273	
2010	287	169	307	324	
2011	393	234	309	364	
2012	413	233	317	380	
2013	377	227	313	350	
2014	397	258	314	357	
2015	393	254	396	451	

Decomposed factors	2008-2009	2009-2010	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015	2008-2015
GDP	311	382	402	377	352	308	283	2416
Fuel mix	-19	201	-27	4	49	-43	10	174
Electricity transmission structure	0	1	16	-14	-13	-39	-10	-58
Electricity structure	28	-40	55	-155	1	-109	-103	-323
Energy efficiency	-91	-141	55	-44	-156	-89	-23	-488
Electricity efficiency of GDP	-130	45	-2	-176	-62	-145	-178	-648
Total changes	100	449	500	-9	171	-118	-21	1071

Table S4. Relative contributions of six factors to changes in GHG emissions from interconnected grids of China during 2008–2015 (Unit: million tonnes of CO₂-e).

Sub-national grids	Provincial grids
	Beijing
	Tianjin
North China Grid	Hebei
	Shanxi
	Shandong
	Shanghai
	Jiangsu
East China Grid	Zhejiang
	Anhui
	Fujian
	Jiangxi
	Henan
Central China Grid	Hubei
Central China Grid	Hunan
	Chongqing
	Sichuan
	Inner Mongolia
Northeast China Grid	Liaoning
Northeast Clinia Olid	Jilin
	Heilongjiang
	Shaanxi
	Gansu
Northwest China Grid	Qinghai
	Ningxia
	Xinjiang
	Guangdong
	Guangxi
Southern Power Grid	Hainan
	Guizhou
	Yunnan

Table S5. The sub-national and provincial grids of China.

Notes:

Tibet grid belonging to the Northwest China Grid is not included in this study due to data unavailability.

Year	North China Grid	East China Grid	Central China Grid	Northeast China Grid	Northwest China Grid	Southern Power Grid
2008	719	647	422	433	207	364
2009	744	676	435	427	216	393
2010	888	759	515	478	252	448
2011	992	852	602	591	300	501
2012	1,011	872	545	584	338	480
2013	1,007	952	598	561	388	495
2014	981	896	556	597	405	449
2015	1,048	878	525	588	413	410

Table S6. GHG emissions caused by electricity consumption of sub-national grids in China during 2008–2015 (Unit: million tonnes of CO₂-e).

Table S7. Relative contributions of six factors to changes in GHG emissions from interconnected grids of China during 2008–2015 (Unit: million tonnes of CO₂-e).

Decomposed factors	North China Grid	East China Grid	Central China Grid	Northeast China Grid	Northwest China Grid	Southern Power Grid
Fuel mix	78	30	21	19	7	18
Energy efficiency	-127	-85	-115	-53	-35	-73
Electricity structure	-49	-48	-40	-56	-24	-107
Electricity transmission structure	-2	-42	-5	2	0	-11
GDP	593	542	391	361	226	304
Electricity efficiency of GDP	-164	-165	-149	-118	32	-84
Total changes	329	232	103	155	206	46

Decomposed factors	Beijing	Shanghai	Hubei	Inner Mongolia	Xinjiang	Guangdong
Fuel mix	-3	14	1	5	2	1
Energy efficiency	-13	-21	-13	-28	-14	-27
Electricity structure	-6	-4	14	-22	-0	-34
Electricity transmission structure	-2	-12	-2	1	0	-11
GDP	42	50	46	154	63	169
Electricity efficiency of GDP	-18	-29	-22	-6	77	-55
Total changes	1	-2	24	103	129	42

Table S8. Relative contributions of six factors to changes in GHG emissions caused by electricity consumption of special provincial grids during 2008–2015 (Unit: million tonnes of CO₂-e).

Study	Perspective	Spatial resolution and time period	Method	Factors and accumulated contribution (decrease (-)/increase (+) emissions)	The same as our study (Yes/No /Not covered (-))						
				Energy efficiency of electricity generation (-)	Yes						
				Electricity intensity of GDP (-)	Yes						
Zhang et	Electricity	National level	LMDI	Electricity structure (i.e., share of thermal power generation) (-)	Yes						
al. (2013) <u>1</u>	generation-side	(1991-2009)	LMDI	CO ₂ emissions coefficient of fossil fuel (-)	-						
				Thermal power structure (i.e., fuel mix of thermal power) (+)	Yes						
				GDP (+)	Yes						
				Energy intensity of electricity generation (i.e., regional intensity effect) (-)	Yes						
	Electricity Six sub-national		Energy mix of electricity generation (i.e., fuel mix of thermal power) (-)	Yes							
Zhou et $(2014)^2$	Electricity	2	LMDI	Electricity share of sub-national grids (i.e., regional structure effect) (+)	-						
al. $(2014)^2$	$(2014)^2$ generation-side			CO ₂ emissions intensity of energy (+)	-						
				Thermal electricity production (i.e., activity effect) (+)	-						
				Energy efficiency of GDP (-)	Yes						
Yan et al.	Electricity	Six sub-national	LMDI	Energy structure of thermal power generation (i.e., fuel mix) (-)	Yes						
(2016) <u>³</u>	generation-side	grids (2000-2012)	grids (2000-2012)	grids (2000-2012)	grids (2000-2012)	grids (2000-2012)	grids (2000-2012)	grids (2000-2012)	LMDI	GDP (+)	Yes
				Population, CO_2 emissions intensity of energy (+)	-						
				Energy intensity of thermal power generation (-)	Yes						
Liu et al.	Electricity	Provincial grids		Fuel mix of thermal power (-)	Yes						
(2017) <u>4</u>	generation-side	(2000-2014)	LMDI	Electricity share of provincial grids (i.e., regional shift effect) (-)	-						
				Clean power penetration (i.e., electricity structure) (-)	Yes						
	Electricity			Energy structure impacts (-)	Yes						
Ma et al.	generation and	Sector level	IO-SDA	Technical impacts (i.e. generation efficiency) (-)	Yes						
(2019) <u>⁵</u>	consumption	(2007,2012, 2015)	10-2DA	Final use structure impacts (+)	-						
	side			Final use level impacts (+)	Yes						

Table S9. Relative contributions of factors to changes in emissions from the electricity system in China (by existing studies).

References

1. Zhang, M.; Liu, X.; Wang, W.; Zhou, M., Decomposition analysis of CO₂ emissions from electricity generation in China. *Energ Policy* **2013**, *52*, 159-165.

2. Zhou, G. H.; Chung, W.; Zhang, Y. X., Carbon dioxide emissions and energy efficiency analysis of China's regional thermal electricity generation. *J Clean Prod* **2014**, *83*, 173-184.

3. Yan, Q.; Zhang, Q.; Zou, X., Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020. *Energy* **2016**, *112*, 788-794.

4. Liu, N.; Ma, Z.; Kang, J., A regional analysis of carbon intensities of electricity generation in China. *Energ Econ* **2017**, *67*, 268-277.

5. Ma, J.-J.; Du, G.; Xie, B.-C., CO₂ emission changes of China's power generation system: Input-output subsystem analysis. *Energ Policy* **2019**, *124*, 1-12.