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Table 1. Summarizes of the geometrical, optical, and atmospheric thermal and radiational profiles 

quantities and symbols involved in this paper.i 

Symbol Unit Definition 

𝜃, 𝜇, 𝛾 

Radian (1) 

𝜇 = cos𝜃, 𝛾 = sec 𝜃, where 𝜃 is the local viewing zenith angle.ii 

𝜃′, 𝜇′ 𝜇′ = cos𝜃′, where 𝜃′ is the local incident zenith angle. 

𝜃0
′ , 𝜇0

′  𝜇0
′ = cos𝜃0

′ , where 𝜃0
′  is the local solar incident zenith angle. 

𝜑, 𝜑′, 𝜑0
′  Observing, incident, and solar incident azimuthal angles, respectively. 

�⃗�  
1 

Local emission, observing, or reflection direction. 

�⃗� ′, �⃗� 0
′  Local incident direction, local solar incident direction. 

𝑓𝑟,𝜆(∙,∙) 

1 

Local surface Bidirectional Reflectance Distribution Function (BRDF). 

𝛼𝑟,𝜆(∙,∙) Local surface BRDF anisotropic factor. 

𝜌𝜆 
local surface reflectance (also inferred to as albedo or hemispherical reflectance in visible and near-

IR range). 

𝜀λ̅ Mean local surface emissivity at wavelength 𝜆. 

𝜀𝜆(�⃗� ) Local surface emissivity in direction �⃗� . 

𝑇𝑠 

K 

Surface temperature. 

𝑇𝑎0 Near surface air temperature. 

𝑇(𝑧)  Temperature profile along altitude. 

𝑇(𝜏𝜆(𝑧, 𝜇))  Temperature profile along upward transmittance 𝜏𝜆(𝑧, 𝜇). 

𝑡𝜆(𝜇)  

1 

Atmospheric transmittance from the ground to the TOA in direction 𝜇.  

𝜏𝜆(𝑧, 𝜇)  Atmospheric transmittance from the ground to an altitude 𝑧 in direction 𝜇. 

𝑡𝜆
′(𝜇′)  Atmospheric transmittance from the TOA to the ground in direction 𝜇′.  

𝜏𝜆
′ (𝑧, 𝜇′)  Atmospheric transmittance from the TOA to an altitude 𝑧 in direction 𝜇′. 

𝑡𝜆,2(𝜇0
′ , 𝜇)  𝑡𝜆,2(𝜇0

′ , 𝜇) = 𝑡𝜆
′(𝜇0

′ )𝑡𝜆(𝜇). 

𝜏𝑑
′ (𝜏𝜆

′ , 𝜇′)  
Downward transmittance in direction 𝜇′  from the altitude with a solar-beam transmittance 

𝜏λ
′ (𝑧, 𝜇0

′ ) to the ground. 

𝜏𝜆(𝜏λ
′ , 𝜇)  

Upward transmittance defined from the altitude that corresponding to 𝜏λ
′ (𝑧, 𝜇0

′ ) to the TOA along 

a viewing direction 𝜇. 

𝑃(𝜇, 𝜇0
′ )  Scattering phase function of an intercepting particle that distributed in the wave traveling path. 

�̅�  Single scattering albedo of a particle that distributed in the wave traveling path. 

𝜌𝑐(𝜏𝜆
′ )  Molar density of a bulk atmosphere at an altitude with transmittance 𝜏λ

′ (𝑧, 𝜇0
′ ). 

𝐿𝜆,𝑇𝑂𝐴(𝜇), 

𝐿𝜆(𝜇)  

𝑊

𝑚2
𝑆𝑟−1𝜇𝑚−1 TOA outgoing radiance at the entrance slit of a radiometer in direction 𝜇. 

𝐿𝑖(𝜇), 𝐿𝑖 
𝑊

𝑚2
𝑆𝑟−1 Band effective radiance collected by a radiometer channel. 

𝜙(𝜆)  1 
Spectral response function for a specific channel of a radiometer to calibrate the observed signal to 

the radiative transfer equation. 

𝑅𝜆,𝑆𝐿0(𝜇)  

𝑊

𝑚2
𝑆𝑟−1𝜇𝑚−1 

Surface leaving radiance at ground level in direction 𝜇. 

𝑅𝜆,𝑆𝐿1(𝜇)  Attenuated Surface leaving radiance at TOA in direction 𝜇. 

𝐿𝜆,𝐵𝑆↓(𝜇0
′ , 𝜇′)  

Downward solar scattering radiance in direction 𝜇′  when illuminated in 𝜇0
′ , sky radiance in 

direction 𝜇′ when illuminated in 𝜇0
′ . 

𝐵𝜆(𝑇𝑠)  Planck’s function. 

𝐿𝜆,𝐴𝐸↓(𝑇(𝜏
′), 𝜇′)  

Downward atmospheric emitting radiance in direction 𝜇′  when the atmosphere with 

transmittance profile 𝜏𝜆
′ (𝑧, 𝜇′) and temperature profile 𝑇(𝜏′), also called atmospheric radiance for 

short. 

𝑅𝜆,𝐵𝑆↑(𝜇0
′ , 𝜇)  Upward solar scattering radiance in direction 𝜇 when illuminated in 𝜇0

′ , 

𝑅𝜆,𝐴𝐸↑(𝑇(𝜏), 𝜇)  
Upward atmospheric emitting radiance in direction 𝜇 when the atmosphere with transmittance 

profile 𝜏𝜆(𝑧, 𝜇) and temperature profile 𝑇(𝜏), also called atmospheric upward radiance for short. 

𝐽𝜆(𝜏𝜆)  Atmospheric source radiance. 

𝐸𝜆,0  
𝑊

𝑚2
𝜇𝑚−1 

Solar irradiance at the TOA. 

𝐸𝜆,𝐴𝐸  Atmospheric downward irradiance. 

𝐸𝜆,𝑆𝑆  Sky or downward solar diffuse irradiance. 
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Table 2. Summarize of the quantities involved in the Planck's function and its derivational equations 

involved in the IR radiometry. 

Symbol Physical quantity Description Value/Unit 

𝑩𝝀(𝑻)
𝟏 Spectral radiance 

The energy (𝑱) emitted per second per unit wavelength (𝝁𝒎) per steradian 

( 𝒔𝒓 ) from one square meter of a perfect blackbody-surface in 

thermodynamic equilibrium at temperature T (𝑲) 

(
𝑾

𝒎𝟐
) 𝒔𝒓−𝟏𝝁𝒎−𝟏, Where 𝑾 =

𝑱

𝒔
 and  

𝟏 ∙ 𝝁𝒎 = 𝟏𝟎−𝟔𝒎  

𝑩(𝑻) radiance 
The power (𝑾) per steradian (𝒔𝒓) from one square meter of a perfect 

blackbody-surface in thermodynamic equilibrium at temperature T (𝑲) 
(
𝑾

𝒎𝟐
) 𝒔𝒓−𝟏 

𝑴𝝀(𝑻), 𝑬𝝀(𝑻) Spectral exitance 
defined as spectral hemispherical radiance with 𝑴 for outgoing and 𝑬 

for incoming exitance 
∫ 𝑩𝝀(𝑻)𝒅𝛀
𝟐𝝅

, (
𝑾

𝒎𝟐
) 𝝁𝒎−𝟏 

𝑴(𝑻), 𝑬(𝑻) 

radiant flux density, 

radiant exitance 

or Irradiance, 

defined as hemispherical radiance with 𝑴  for outgoing and 𝑬  for 

incoming radiation 
∫ (∫ 𝑩𝝀(𝑻)𝒅𝝀

∞

𝟎

)𝒅𝛀
𝟐𝝅

,
𝑾

𝒎𝟐
 

𝑰 Radiant intensity 
defined as Radiant flux emitted, reflected, transmitted or received, per unit 

solid angleiii. 

𝑾

𝒔𝒓
 

𝝓 Radiant flux,  

defined as Radiant energy, denoted by 𝑸, emitted, reflected, transmitted 

or received per unit time for some giving surface area and sometimes also 

called "radiant power". 

𝑾 =
𝑱

𝒔
 

𝑻 

Physical temperature of the Earth surface systems. For Earth surface, it is denoted by 𝑇𝑠, and for 

the atmosphere at altitude 𝜉, it is referred to as 𝑇(𝜉). For the brightness temperature of the Earth 

surface systems in channel 𝑖 of a radiometer, it is designated by 𝑇𝑖   

𝑲 

𝒉 Planck's constant (or the altitude of the satellite with unit 𝑚) 𝟔. 𝟔𝟐𝟔𝟎𝟕𝟎𝟎𝟒𝟎(𝟖𝟏) × 𝟏𝟎−𝟑𝟒  𝑱𝒔 

𝝀 Wavelength involved in this paper 𝝁𝒎 

𝒌 Boltzmann's constant 𝟏. 𝟑𝟖𝟎𝟔𝟓𝟖 × 𝟏𝟎−𝟐𝟑  𝑱 ∙ 𝑲−𝟏 

𝒄 speed of light in a medium, whether material or vacuum ~𝟐. 𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 × 𝟏𝟎𝟖  𝒎 ∙ 𝒔−𝟏 

𝝈 the Stefan–Boltzmann constant or irradiance coefficient, mathematical short hand for 
𝟐𝝅𝟓𝒌𝟒

𝟏𝟓𝒄𝟐𝒉𝟑
 𝟓. 𝟔𝟕𝟎𝟑𝟕𝟑 × 𝟏𝟎−𝟖  𝒘/(𝒎𝟐𝑲𝟒) 

1 In 𝐵𝜆(𝑇), 𝐵 is for Blackbody or Black-surface which can be absorbed all the incident energy and emitted out, 

if it is in the state of thermodynamic equilibrium, all the absorbed energy to keep thermodynamic equilibrium. 

For a real-body surface, their emitted spectral radiance is denoted by 𝑅𝜆(𝑇) with 𝑅 for Radiance. A real surface 

is of course less emissive than a black surface and their emissive ability is described by a factor called emissivity 

through comparing with the black surface at the same condition. i.e., 𝑅𝜆(𝑇) = 𝜀𝜆(𝜇)𝐵𝜆(𝑇). In honor of the 

brilliant contributions of Johann Heinrich Lambert (1728–1777) to the absorbance of a material sample and the 

reflectance of an ideal surface, a radiometer collected radiance is commonly denoted by 𝐿𝑖  with 𝑖  for the 

corresponding channel number. Furthermore, for convenience and mathematical shorthand, 𝐿𝑖 is converted to 

and recorded by its corresponding blackbody’s physical temperature called brightness temperature and denoted 

by 𝑇𝑖. i.e. 𝑇𝑖 is the solution of 𝐿𝑖 = ∫ 𝜙𝑖(𝜆)𝐵𝜆(𝑇𝑖)𝑑𝜆
𝜆2
𝜆1

, where 𝜙𝑖(𝜆) is the SRF of the channel 𝑖, 𝜆1 and 𝜆2 is the 

lower and upper boundaries of the channel spectral range. 

Table 3． Summarize of the quantities and symbols involved in the relationship between 𝑇𝑠 and 𝐿𝑖. 

Physical and effective quantities symbols definitions 

Water vapor concentration at altitude 𝜉 𝑒(𝜉) 

Pressure of atmosphere at altitude 𝜉 𝑃(𝜉) 

Spectral absorption coefficient of water vapor. 𝛼𝜆 

Spectral absorption coefficient of water vapor at altitude 𝜉. 𝛼𝜆(𝜉) 

The tuning function for Spectral absorption 

coefficient of water vapor at altitude 𝜉 
𝐹(𝑃(𝜉), 𝑇(𝜉)) 𝐹(𝑃(𝜉), 𝑇(𝜉)) =

𝛼𝜆(𝜉)

𝛼𝜆
 

Effective absorption of atmosphere  𝑊 W = ∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

 

Effective radiative temperature of atmosphere 𝑇𝑎 𝑇𝑎 =
∫ 𝑇(𝜉)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

𝑊
 

effective absorptive factor in band 𝑖. 𝐴𝑖 𝐴𝑖(𝑓𝑖, 𝑇𝑖) =

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝛼𝜆𝑑𝜆
∞

0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

 

A mathematical shorthand to describe the 

linearization of the Planck’s function 
�̃�𝑖 

�̃�𝑖 =
𝑅𝜆(𝑇𝑖)

𝑑
𝑑𝑇
𝑅𝜆(𝑇𝑖)
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Results 

The process of surface emitted radiance over the spectral region 8~14 𝜇𝑚 (which is generally 

called SW region and specially used to observe the Earth surface emitted radiance, see path ④ of the 

figure) transferred to a space borne radiometer in a distance ℎ under local thermal equilibrium (LTE) 

in clear sky could be modeled by 

 
𝐼𝜆(𝜇, ℎ) = 𝑡𝜆(𝜇) ∗ (𝜀𝜆(𝜇)𝐵𝜆(𝑇𝑠) + ∫ ∫ 𝑓𝑟,𝜆(𝜇, 𝜇′)𝑅𝜆,0

′ (𝜇′)𝜇′𝑑𝜇′𝑑𝜑′
1

0

2𝜋

0
)⏟                                

Surface leaving radiance

+ 𝑅𝜆,𝐴𝐸↑(𝜇), [1] 

The LTE condition is required because the atmospheric correction is simulated by the Planck’s 

function and Kirchhoff’s law and the condition clear sky is the guarantee of the surface emitted 

radiance to reach the satellite. In order to parameterize the relationship between 𝑇𝑠 and 𝑇𝑖 in one 

channel, Prabhakara et al (1974), McMillin (1975), Deschamps and Phulpin (1980), and Becker (1987) 

proposed four approximations as 

1. The Earth surface is assumed to be a Lambertian reflector (which is generally not a good 

approximation (Becker et al 1985)); 

2. The Planck’s function is linearized in the vicinity of 𝑇𝑖 , where 𝑇𝑖  is the BT in channel 𝑖; 

3. The atmospheric absorption (WV gives the dominant effect in these wavelengths) is small 

enough to approximate the transmission 𝜏𝜆(𝜇, ℎ) by 

 𝜏𝜆(𝜇, ℎ) = 1 − 𝜇
−1 ∫ 𝛼(𝜆, 𝑧)𝑒(𝑧)𝑑𝑧

ℎ

0
 , [2] 

where 𝑒(𝑧) is the WV-concentration at altitude z; and 

4. The dependence of WV-absorption coefficient 𝛼(𝜆, 𝑧) on 𝜆 and 𝑧 may be factored by 

 𝛼(𝜆, 𝑧) = 𝛼(𝜆)𝐹(𝑃(𝑧), 𝑇(𝑧)). [3] 

The relationship derived by Becker is  

 𝑇𝑠 = (𝑇𝑖 +
1−𝜀𝑖

𝜀𝑖
�̃�𝑖) −

𝐴𝑖𝑊

𝜇𝜀𝑖−𝐴𝑖𝑊𝜀𝑖
(𝑇𝑎 − 𝑇𝑖) − 2𝐴𝑖𝑊

1−𝜀𝑖

𝜀𝑖
(𝑇𝑎 − 𝑇𝑖 − �̃�𝑖), [4] 

which was wrong, and the correct one we proposed is  

 𝑇𝑠 = (𝑇𝑖 +
1−𝜀𝑖+𝐴𝑖𝛾𝑊

𝜀𝑖−𝐴𝑖𝛾𝑊
�̃�𝑖) −

𝐴𝑖𝑊

𝜇𝜀𝑖−𝐴𝑖𝑊
(𝑇𝑎 − 𝑇𝑖 + �̃�𝑖) − 2𝐴𝑖𝑊(1 − 𝜀𝑖)

1−𝐴𝑖𝛾𝑊

𝜀𝑖−𝐴𝑖𝛾𝑊
(𝑇𝑎 − 𝑇𝑖 + �̃�𝑖). [5] 

The physical meaning and description of the symbols involved in the above equations (i.e., Eq. [1]~[5]) 

are depicted in Liu et al (2019) and summarized in the above tables 1-3. The derivation of Eq. [5] is 

specified in the following materials and methods section. For comparison purpose, the symbols are 

tried to kept consistent with Becker (1987) as closely as possible.  

Materials and methods 

The detailed mathematical derivation of the correct equation is given as follows. Inheriting the 

symbols or notations in Becker (1987), expanding the factors in Eq.[1], we have 

 

𝐼𝜆(𝜃, ℎ) = [𝜀𝜆𝑅𝜆(𝑇𝑠) + ∫ ∫ 𝑓𝑟,𝜆(𝜃, 𝜃
′, 𝜑′) ∫ 𝑅𝜆(𝑇(𝜉))

𝜕𝜏𝜆
′ (𝜃′,𝜉)

𝜕𝜉
𝑑𝜉

ℎ

0
𝜇′𝑑𝜇′𝑑𝜑′

𝜋

2
0

2𝜋

0
] 𝜏𝜆(𝜃, 0)

+∫ 𝑅𝜆(𝑇(𝜉))
𝜕𝜏𝜆(𝜃,𝜉)

𝜕𝜉
𝑑𝜉

ℎ

0

 [6] 

where 𝐼𝜆(𝜃,ℎ) is the radiance at the entrance silt of a radiometer that observing the surface with local 

zenith angle 𝜃 at wavelength 𝜆 from a distance of ℎ. the terms in the square brackets is the surface 

leaving radiance. 
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Lambertian reflection for the downward radiance 

For a Lambertian reflector, 𝑓𝑟,𝜆(𝜃, 𝜃′ , 𝜑′) =
1−𝜀𝜆
𝜋

. Thus, the reflected atmospheric downward 

radiance at the surface level in Eq. [6] is 

  ∫ ∫ 𝑓𝑟,𝜆(𝜃, 𝜃
′, 𝜑′) ∫ 𝑅𝜆(𝑇(𝜉))

𝜕𝜏𝜆
′ (𝜃′,𝜉)

𝜕𝜉
𝑑𝜉

ℎ

0
𝜇′𝑑𝜇′𝑑𝜑′

𝜋

2
0

2𝜋

0
= 2(1 − 𝜀𝜆) ∫ ∫ 𝑅𝜆(𝑇(𝜉))

𝜕𝜏𝜆
′ (𝜃′,𝜉)𝑑𝜉

𝜕𝜉

ℎ

0
𝜇′𝑑𝜇′

𝜋

2
0

 [7] 

Linearization of Planck’s function 

Planck's function is linearized in the vicinity of 𝑇𝑖  rather than 𝑇𝑠 is generally accurate because 

the main contribution to the upward and downward atmospheric thermal radiances are principally 

emitted from the lower atmosphere, where the temperatures, 𝑇(𝑧), are close to each other and 

generally closer to 𝑇𝑖  than to 𝑇𝑠. This yield 

𝑅𝜆(𝑇) = 𝑅𝜆(𝑇𝑖) +
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖

(𝑇 − 𝑇𝑖)

=
𝑑

𝑑𝑇
𝑅𝜆(𝑇𝑖) ∗ (

𝑅𝜆(𝑇𝑖)
𝑑

𝑑𝑇
𝑅𝜆(𝑇𝑖)

+ 𝑇 − 𝑇𝑖)

. 

For mathematical shorthand, define 

 �̃�𝑖 =
𝑅𝜆(𝑇𝑖)
𝑑

𝑑𝑇
𝑅𝜆(𝑇𝑖)

 , [8] 

the linearization of Planck’s function is 

 𝑅𝜆(𝑇) =
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
(�̃�𝑖 + 𝑇 − 𝑇𝑖) [9] 

Substitute Eq. [7] and [9] into Eq. [6], after rearrangement, we have 

 𝐼𝜆(𝜃, ℎ) = 
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
([𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖) + 2(1 − 𝜀𝜆) ∫ (∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)

𝜕

𝜕𝜉
𝜏𝜆
′(𝜃′, 𝜉)𝑑𝜉

0

ℎ
) 𝑐𝑜𝑠𝜃′𝑠𝑖𝑛𝜃′𝑑𝜃′

𝜋

2
0

] 𝜏𝜆(𝜃, 0) + ∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)
𝜕

𝜕𝜉
𝜏𝜆(𝜃, 𝜉)𝑑𝜉

ℎ

0
) [10] 

Simplification of the transmittance and factorization of the absorption coefficient 

Suppose the absorption of the atmosphere is small enough to approximate the transmission 

𝜏𝜆(𝜃, 𝜉) by the first order approximation of Taylor’s expansion, we have, 

𝜏𝜆(𝜃, 𝜉) = 𝑒
−𝑠𝑒𝑐𝜃 ∫ 𝛼𝜆(𝜉)𝑒(𝜉)𝑑𝜉

ℎ

𝜉 = 1 − 𝑠𝑒𝑐𝜃 ∫ 𝛼𝜆(𝜉)𝑒(𝜉)𝑑𝜉
ℎ

𝜉
. 

Recall the dependence of absorption coefficient 𝛼𝜆(𝑧) on 𝜆 and 𝑧 (Eq.[3]), we have, 

𝜏𝜆(𝜃, 𝜉) = 1 − 𝑠𝑒𝑐𝜃∫ 𝛼𝜆(𝜉)𝑒(𝜉)𝑑𝜉 = 1 − 𝑠𝑒𝑐𝜃 ∙ 𝛼𝜆∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

𝜉

ℎ

𝜉
 

and thus 

𝜕

𝜕𝜉
𝜏𝜆(𝜃, 𝜉) =

𝜕

𝜕𝜉
(1 − 𝑠𝑒𝑐𝜃𝛼𝜆∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉

ℎ

𝜉

) = 𝑠𝑒𝑐𝜃𝛼𝜆
𝜕

𝜕𝜉
∫ 𝐹(𝑃(𝜉),𝑇(𝜉))𝑒(𝜉)𝑑𝜉 = 𝑠𝑒𝑐𝜃𝛼𝜆𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

𝜉
 

Similarly, 

𝜕

𝜕𝜉
𝜏𝜆
′ (𝜃′, 𝜉) = −𝑠𝑒𝑐𝜃′𝛼𝜆𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉 

therefore, Eq. [10] reduces to 

𝐼𝜆(𝜃, ℎ) =
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

([𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖) − 2(1 − 𝜀𝜆)∫ (∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖) sec 𝜃
′ 𝛼𝜆𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉

0

ℎ

)cos𝜃′ sin𝜃′ 𝑑𝜃′
𝜋
2

0

]

                     ∗ (1 − sec𝜃 𝛼𝜆∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

)

                    +∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖) sec𝜃 𝛼𝜆𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

)

 

Since 

∫ sec 𝜃′ cos 𝜃′ sin 𝜃′ 𝑑𝜃′
𝜋

2
0

= 1, 
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and use the shorthand 𝛾 for sec 𝜃, we have 

 

𝐼𝜆(𝜃, ℎ) =
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
([𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖) + 2(1 − 𝜀𝜆)𝛼𝜆 ∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉

ℎ

0
]

              ∗ (1 − 𝛾𝛼𝜆 ∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0
))

+
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
(𝛾𝛼𝜆 ∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉

ℎ

0
)

 [11] 

and since 

∫ 𝑓𝑖(𝜆)𝐼𝜆(𝜃, ℎ)𝑑𝜆
∞

0

= ∫ 𝑓𝑖(𝜆)𝑅𝜆(𝑇𝑖(𝜃))𝑑𝜆=
Applying Eq.[9]

∫ 𝑓𝑖(𝜆)�̃�𝑖
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

∞

0
 

multiplying both sides of Eq. [11] by the SRF 𝑓𝑖(𝜆) and integrating over the channel region, we have  

∫ 𝒇𝒊(𝝀)�̃�𝑖
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝒅𝝀
∞

𝟎

= ∫ 𝒇𝒊(𝝀)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

([𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖) + 2(1 − 𝜀𝜆)𝛼𝜆∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

]
∞

𝟎

                                  ∗ (1 − 𝛾𝛼𝜆∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

)

                                 +𝛾𝛼𝜆∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

)𝑑𝜆  

 

Define 

W = ∫ 𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

 

and 

𝑇𝑎 =
∫ 𝑇(𝜉)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

𝑊
 

(Sobrino et al 1991) and respectively called “absorption weighted WV column” and “atmospheric 

effective radiative temperature” to describe the atmospheric profiles, we have  

 

∫ (𝑇(𝜉) − 𝑇𝑖 + �̃�𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

= ∫ 𝑇(𝜉)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉
ℎ

0

+∫ (�̃�𝑖 − 𝑇𝑖)𝐹(𝑃(𝜉), 𝑇(𝜉))𝑒(𝜉)𝑑𝜉 
ℎ

0

= 𝑊𝑇𝑎 + (�̃�𝑖 − 𝑇𝑖)𝑊 = 𝑊(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)

 

we have, 

 

∫ 𝑓𝑖(𝜆)�̃�𝑖
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
𝑑𝜆

∞

0

= ∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
([𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖) + 2(1 − 𝜀𝜆)𝛼𝜆(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)𝑊](1 − 𝛼𝜆𝛾𝑊)+ 𝛼𝜆(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)𝛾𝑊)𝑑𝜆

∞

0

= ∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
𝜀𝜆(𝑇𝑠 − 𝑇𝑖 + �̃�𝑖)(1 − 𝛼𝜆𝛾𝑊)𝑑𝜆

∞

0

+2𝑊∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖

(1 − 𝜀𝜆)𝛼𝜆(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)(1 − 𝛼𝜆𝛾𝑊)𝑑𝜆
∞

0
+ 𝛾𝑊∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆

𝑑𝑇
|
𝑇𝑖
𝛼𝜆(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)𝑑𝜆

∞

0

 [12] 

Suppose �̃�𝑖 is independent of wavelength within a SW band 

With the assumption of �̃�𝑖 is independent of wavelength within a SW band, Eq. [12] could be 

reduced to 

�̃�𝑖∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

= (𝑇𝑠 − 𝑇𝑖 + �̃�𝑖)∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝜀𝜆(1 − 𝛼𝜆𝛾𝑊)𝑑𝜆
∞

0

     +2𝑊(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

(1 − 𝜀𝜆)𝛼𝜆(1 − 𝛼𝜆𝛾𝑊)𝑑𝜆
∞

0

    +𝛾𝑊(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝛼𝜆𝑑𝜆
∞

0

 

Thus, 
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�̃�𝑖 = (𝑇𝑠 − 𝑇𝑖 + �̃�𝑖)
∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝜀𝜆(1−𝛼𝜆𝛾𝑊)𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

+2𝑊(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)
∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

(1−𝜀𝜆)𝛼𝜆(1−𝛼𝜆𝛾𝑊)𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

+𝛾𝑊(𝑇𝑎 + �̃�𝑖 − 𝑇𝑖)
∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝛼𝜆𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

 [13] 

Suppose the integral of products equals to the product of integrals within a SW band 

Define the band effective absorptive factor and emissivity (channel 𝑖 for this case) by 

𝐴𝑖(𝑓𝑖 , 𝑇𝑖) =

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝛼𝜆𝑑𝜆
∞

0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

 

and 

𝜀𝑖 =

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝜀𝜆𝑑𝜆
∞

0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

 

respectively and applying the integral approximation descripted in Liu et al (2019), the factors in the 

first two terms of the RHS of [13] reduces to 

 

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝜀𝜆(1−𝛼𝜆𝛾𝑊)𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

=
∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝜀𝜆𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

−
∫ 𝑓𝑖(𝜆)

𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝛼𝜆𝑑𝜆
∞
0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇

|
𝑇𝑖

𝑑𝜆
∞
0

𝛾𝑊 = 𝜀𝑖 − 𝛾𝐴𝑖𝑊 [14] 

and 

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

(1 − 𝜀𝜆)𝛼𝜆(1 − 𝛾𝛼𝜆𝑊)𝑑𝜆
∞

0

∫ 𝑓𝑖(𝜆)
𝑑𝑅𝜆
𝑑𝑇
|
𝑇𝑖

𝑑𝜆
∞

0

= (1 − 𝜀𝑖)𝐴𝑖(1 − 𝛾𝐴𝑖𝑊) 

Thus, [13] reduces to 

 �̃�𝑖 = [  𝜀𝑖 − 𝐴𝑖𝛾𝑊 {2(1 − 𝜀𝑖)(1 − 𝐴𝑖𝛾𝑊) + 𝛾}𝐴𝑖𝑊  ] ∙ [  

𝑇𝑠 + �̃�𝑖 − 𝑇𝑖

𝑇𝑎 + �̃�𝑖 − 𝑇𝑖

  ] [15] 

or explicitly written 𝑇𝑠 as Eq.[5], which completes the derivation. 

Eq. [5] or [15] is the formula that we proposed to relate 𝑇𝑠 and 𝑇𝑖  in channel 𝑖 over the SW 

region. It is different from the one developed by Becker (1987). 
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i
 The superscript “ ′ ”and subscript “ 0”is incident and solar related quantities respectively. 
ii
 𝜇 and 𝛾 are introduced for mathematical shorthand. 

iii
 In concurrent radiometry, radiance is referred to as 𝐿𝜆 in honor of Lambert. We use 𝐼𝜆 in this paper is intended only to 

keep pace with Becker 1987.  

                                                   


