Supporting Information

Rational Design of Robust Si/C Microspheres for High Tap Density Anode Materials

Jin-Yi Li, ^{†,‡} Ge Li, ^{†,‡} Juan Zhang, ^{†,‡} Ya-Xia Yin, ^{†,‡} Feng-Shu Yue,[§] Quan Xu, ^{†,‡,*} Yu-Guo Guo ^{†,‡,*}

[†]Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, CAS, Beijing 100190, P.R. China.

[‡]University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

- [§] Beijing IAmetal New Energy Technology Co., LTD, Beijing 100190, P.R. China
- * Corresponding Author. E-mail: xuquan@iccas.ac.cn; ygguo@iccas.ac.cn

Figure S1. (a) Typical SEM image of Si NPs anchored on the graphite with pitch, (b) high-resolution (HR-) SEM image of composites after 1.5 h reaction, (c) HR-SEM image of surface of Si/C microsphere.

Figure S2. (a) SEM image of composites after reacting at 350 °C under 2 MPa, (b) SEM image of composites after reacting at 480 °C under 4 MPa, (c) SEM image of composites after reacting at 430 °C under 2 MPa.

Figure S3. Cycling performance of Si/C microspheres (red) and mixture (blue) at 0.2 C.

Resistance	1 st cycle	5 th cycle	20 th cycle	50 th cycle	
components					
Rs / Ω	2.5	2.4	2.2	2.2	
Rsei /Ω	31.1	47.8	84.8	88.1	
Rct / Ω	208	217	241	249	

Table S1. Values of resistance components estimated by curve fitting

Figure S4. Electrochemical performance of commercial graphite before and after rolling process.

Figure S5. SEM image of (a) Si/C microspheres with porous structure fabricated by spray-drying, (b) top view of electrode prepared with Si/C microspheres and graphite, (c) cross-section view of electrode prepared with Si/C microspheres and graphite.

Figure S6. (a) charge and discharge curves of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ in half cell, (b) cycling stability and CE of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ in half cell.

	Initial	Specific	Capacity retention	Capacity retention
Ref. No.	Coulombic	capacity	in half cell	in Full cell
	efficiency / %	/ mAh g ⁻¹	/ %	/ %
1	80.5	712	80% (100 cycles)	-
2	92	510	96% (100 cycles)	92% (100 cycles)
3	88.1	694	91% (100 cycles)	-
4	81.4	3154	89.8% (70 cycles)	-
Our work	90.5	640	85% (300 cycles)	84% (100 cycles)

Table S2. The electrochemical performance of various Si/C anodes

References

(1) Kim, S. Y.; Lee, J.; Kim, B. H.; Kim, Y. J.; Yang, K. S.; Park, M. S. Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2016**, *8*, 12109-17.

(2) Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J., Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries. *Nat. Energy* **2016**, *1*, 16113.

(3) Lin, Y.; Chen, Y.; Zhang, Y.; Jiang, J.; He, Y.; Lei, Y.; Du, N.; Yang, D., Wet-Chemical Synthesized MCMB@Si@C Microspheres for High-Performance Lithium-Ion Battery Anodes. *Chem. Commun.* **2018**, 54, 9466-9469.

(4) Lee, P.-K.; Tan, T.; Wang, S.; Kang, W.; Lee, C.-S.; Yu, D. Y. W., Robust Micron-Sized Silicon Secondary Particles Anchored by Polyimide as High-Capacity, High-Stability Li-Ion Battery Anode. *ACS Appl. Mater. Interfaces* **2018**, *10*, 34132-34139.