
exascaleproject.org

Git Workflows & Continuous Integration

Better Scientific Software Tutorial
Jared O’Neal
Argonne National Laboratory
ECP Annual Meeting
January 14, 2019

See slide 2 for
license details

2

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Jared O’Neal, Git Workflows & Continuous Integration, in Better Scientific Software
Tutorial, Exascale Computing Project Annual Meeting, Houston, Texas, 2019. DOI:
10.6084/m9.figshare.7581746

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

• Anshu Dubey, Klaus Weide, Saurabh Chawdhary, and Carlo Graziani

• Iulian Grindeanu

• Alicia Klinvex

https://creativecommons.org/licenses/by-sa/4.0
https://dx.doi.org/10.6084/m9.figshare.7581746

Git Workflows

4

Goals

Development teams would like to use version control to
collaborate productively and ensure correct code
• Understand challenges related to parallel code development via distributed version

control

• Understand extra dimensions of distributed version control & how to use them
– Local vs. remote repositories
– Branches
– Issues, Pull Requests, & Code Reviews (earlier talk)

• Exposure to workflows of different complexity

• What to think about when evaluating different workflows

• Motivate continuous integration

5

Distributed Version Control System (DVCS)

Two developers collaborating via Git
• Local copies of master branch synched to origin
• Each develops on local copy of master branch
• All copies of master immediately diverge
• How to integrate work on origin?

6

DVCS Race Condition

Integration of independent work occurs when
local repos interact with remote repo
• Alice pushes her local commits to remote

repo first
• No integration conflicts
• No risk
• Alice’s local repo identical to remote repo

7

Integration Conflicts Happen

Bob’s push to remote repo is rejected
• Alice updated code in commit D
• Bob updated same code in commit E
• Alice and Bob need to study conflict and decide

on resolution at pull (time-consuming)
• Possibility of introducing bug on master branch

(risky)
loops.cpp (commit C) loops.cpp (commit D) loops.cpp (commit E)

8

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?
• What if team members works on different parts of the code?
• Working directly on master

https://www.atlassian.com/git/tutorials/comparing-workflows

9

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

10

Control Branch Complexity

Workflow policy is needed
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
– Can multiple people work on one branch?

11

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

12

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

13

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

14

Feature Branches Summary
• Multiple, parallel lines of development possible on single local repo

• Easily maintain local master up-to-date and useable

• Integration with rebase on local repo is safe and can be aborted

• Testing before updating local and remote master branches

• Rebase is advanced Git command
– Rebase can cause complications and should be used carefully.

• Hide actual workflow
– History in repo is not represent actual development history
– Less communication
– Fewer back-ups using remote repo

• Does it scale with team size? What if team integrates frequently?

• Commits on master can be broken

• See Atlassian/BitBucket for a richer Feature Branch Workflow

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://www.atlassian.com/git/tutorials/comparing-workflows

15

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

16

Current FLASH5 Workflow

Test-driven workflow

• Feature branches start and end with master

• All feature branches are merged into development
for integration & manual testing

• All feature branches are then merged into staged
for full, automated testing

Workflow designed so that

• All commits in master are in
staged & development

• infinite branches don’t diverge

• Merge conflicts first exposed
on development

17

Branch Rules

Why base feature branches off master?
• Start from correct, verified commit
• Clean and simple to learn/enforce
• Isolate master from integration environment

Motivates more rules
• Development never merged into

another branch
• Staged never merged into

another branch

18

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?

https://github.com/nvie/gitflow

19

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable
2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review

http://scottchacon.com/2011/08/31/github-flow.html

20

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

21

Things to Think About When Choosing a Git Workflow

Want to establish a clear set of polices that

• results in correct code on a particular branch (usually master),

• ensures that a team can develop in parallel and communicate well,

• minimizes difficulties associated with parallel and distributed work, and

• minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary

Continuous Integration

23

The Short & Sweet of Continuous Integration

A master branch that always works

• DVCS workflow isolate master from integration environment
• Extend workflow to address difficulties of integrating

– Minimize likelihood of merge conflict
– Detect bugs immediately
– Make debugging process quick and easy

24

Work Decomposition

Commit and integrate often
• Limit divergence between feature and master branches
• Decreased probability of conflict
• Conflict resolution is simpler and less risky

25

Error detection

Test at integration to identify failures immediately

• Control quality of code

• Isolate failure to few commits

• No context switching for programmer

We want a system that

• triggers automated builds/tests on target environments when code changes and

• ideally tests on proposed merge product without finalizing merge.

26

Test Servers

Servers that
• automate the execution of a test suite or a subset of a test suite,
• allow for running tests on different environments,
• host an interface for viewing results, and
• allows for configuring when the tests are run.

Examples
• CTest/CDash
• Jenkins
• Travis CI and GitLab CI

27

Cloud-based Test Servers
• Linked to VCS hosts
o GitHub & Travis CI
o GitLab CI
o BitBucket Pipelines

• Automated builds/tests triggered via pushes and pull requests
• Builds/tests can be run on cloud systems
• Test results are reported in repository’s web interface
• Can trigger code coverage analysis & documentation build

28

Continuous integration (CI)

• Has existed for some time and interest is growing
• ECP working to adapt CI for HPC machines

• ECP Continuous Integration Framework: Tue Jan 15 from 3:00 PM to 4:00 PM

• Working Lunch - Plenary Continuous Integration: Wed Jan 16 from 12:00 PM to 1:30 PM

• Setup, maintenance, and monitoring required
• Prerequisites

o A reasonably automated build system
o An automated test system with significant test coverage & useful feedback
o Builds/tests must finish in reasonable about of time
o Ability to bundle subset of tests

CI Hello World

Simplest CI example
https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld

CI example w/ multiple platforms and specific compiler versions
https://github.com/jrdoneal/CI_Multiplatform

Code coverage, testing and CI tutorial (C++)
https://github.com/amklinv/morpheus

Code coverage, testing, and CI example (Fortran, C++)
https://github.com/jrdoneal/infrastructure

https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld
https://github.com/jrdoneal/CI_Multiplatform
https://github.com/amklinv/morpheus
https://github.com/jrdoneal/infrastructure

30

Agenda
Time Module Topic Speaker

9:00am-9:30am 01 Overview of Best Practices in HPC Software Development Anshu Dubey, ANL

9:30am-10:00am 02 Better (Small) Scientific Software Teams David E. Bernholdt, ORNL

10:00am-10:30am 03 Improving Reproducibility through Better Software
Practices

David E. Bernholdt, ORNL

10:30am-11:00am Break

11:00am-11:45am 04 Verification & Refactoring Anshu Dubey, ANL

11:45am-12:30pm 05 Git Workflow & Continuous Integration Jared O’Neal, ANL

CI Hello World – Backup Slides

32

GitHub Repository Page

https://github.com/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld

33

Travis CI Configuration File
.travis.yml

34

The Script Phase

hello_world.sh

35

Connecting GitHub & Travis CI

36

Repository in Travis CI
https://travis-ci.org/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld

37

Commit History

.travis.yml
added

38

Travis CI Build History

39

Travis CI Build History

40

Travis CI Build History

!

Extra Slides

42

More Branch Rules
Is staged really necessary?
• Contains only changes intended for master
• No integration means cleaner branch
• Allows for extra stage of testing with more tests
• Extra buffer for protecting master branch

43

Merge Conflicts
How are merge conflicts resolved in FLASH5 Workflow?
• Merge conflict with master means merge conflict with staged and development
• We want to avoid conflict resolution when merging into master
• Directly on feature branch if resolution is there
• One idea is to merge master into feature branch

44

How do we determine what other tests are needed?

Code coverage tools
• Expose parts of the code that aren’t being tested
• gcov

o standard utility with the GNU compiler collection suite
o Compile/link with –coverage & turn off optimization
o counts the number of times each statement is executed

• lcov
o a graphical front-end for gcov
o available at http://ltp.sourceforge.net/coverage/lcov.php

• Hosted servers (e.g. coveralls, codecov)
o graphical visualization of results
o push results to server through continuous integration server

http://ltp.sourceforge.net/coverage/lcov.php

45

Code coverage output

https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/jrdoneal/infrastructure

46

Code coverage is popular

• gcov also works for C and Fortran
• Other tools exist for other languages
o JCov for Java
o Coverage.py for python
o Devel::Cover for perl
o profile for MATLAB
o etc.

47

Special Notes for Morpheus Tutorial

• A code coverage and testing tutorial can be found at the Morpheus repository
doxygen pages
– https://amklinv.github.io/morpheus/index.html

• STEP 1: These exercises must be run on your own local machine or on a remote
machine that you have access to.

• If you cannot generate your own gcov output, the associated lcov output is online
– https://amklinv.github.io/morpheus/lcovFiles/index.html

https://amklinv.github.io/morpheus/index.html
https://amklinv.github.io/morpheus/lcovFiles/index.html

	Git Workflows & Continuous Integration
	License, citation, and acknowledgments �
	Git Workflows
	Goals
	Distributed Version Control System (DVCS)
	DVCS Race Condition
	Integration Conflicts Happen
	Our First Workflow
	Branches
	Control Branch Complexity
	Feature Branches
	Feature Branch Divergence
	Feature Race Condition
	Feature Branches Summary
	More Branches
	Current FLASH5 Workflow
	Branch Rules
	Git Flow
	GitHub Flow
	GitLab Flow
	Things to Think About When Choosing a Git Workflow
	Continuous Integration
	The Short & Sweet of Continuous Integration
	Work Decomposition
	Error detection
	Test Servers
	Cloud-based Test Servers
	Continuous integration (CI)
	CI Hello World
	Agenda
	CI Hello World – Backup Slides
	GitHub Repository Page
	Travis CI Configuration File
	The Script Phase
	Connecting GitHub & Travis CI
	Repository in Travis CI
	Commit History
	Travis CI Build History
	Travis CI Build History
	Travis CI Build History
	Extra Slides
	More Branch Rules
	Merge Conflicts
	How do we determine what other tests are needed?
	Code coverage output
	Code coverage is popular
	Special Notes for Morpheus Tutorial

