
exascaleproject.org

Overview of Best Practices in HPC 
Software Development

Better Scientific Software Tutorial
Anshu Dubey
Argonne National Laboratory
ECP Annual Meeting
January 14, 2019

See slide 2 for 
license details



2

License, citation, and acknowledgements

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). 
• Requested citation: Anshu Dubey and David E. Bernholdt, Overview of Best Practices in HPC Software 

Development, in Better Scientific Software Tutorial, Exascale Computing Project Annual Meeting, Houston, 
Texas, 2019. DOI: 10.6084/m9.figshare.7581746

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific 

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort 
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed managed by 
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, 
LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://dx.doi.org/10.6084/m9.figshare.7581746


3

Good scientific process 
requires 

good software practices

Good software practices 
increase

scientific productivity



4

You Can Mitigate Risk But It Is Never Zero

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one 
instance when the full process could not be applied because of time constraints. 

• Short notice availability of one of the biggest 
machines of it’s time
– < 1month to get ready, run was 1.5 weeks



5

Heroic Programming

Usually a pejorative term, is used to describe the expenditure of huge amounts of 
(coding) effort by talented people to overcome shortcomings in process, project 
management, scheduling, architecture or any other shortfalls in the execution of a 
software development project in order to complete it. Heroic Programming is often the 
only course of action left when poor planning, insufficient funds, and impractical 
schedules leave a project stranded and unlikely to complete successfully.

From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

http://c2.com/cgi/wiki?HeroicProgramming


6

What is wrong with heroic programming

Scientific results that could be obtained with heroic programming have run their 
course, because:

It is not possible for a single person to take on all these roles

Better scientific 
understanding

Different roles 
and responsibilities

More complex 
software

Math model 

Numerics

Verification

Performance



7

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is through separation 

of concerns
– It is more difficult to work on the same software in different roles without a software 

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori 
– The only safeguard is investing in flexible design and robust software engineering 

process



8

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is through separation 

of concerns
– It is more difficult to work on the same software in different roles without a software 

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori 
– The only safeguard is investing in flexible design and robust software engineering 

process
Supercomputers change fast

Especially Now



9

Technical Debt

Accretion leads to unmanageable software
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-on time for new developers
• Reduces software and science productivity due to technical debt

Consequence of Choices
Quick and dirty collects interest which means more effort required to add features. 



10

Challenges Developing a Scientific Application

Technical
• All parts of the cycle can be under research

• Requirements change throughout the lifecycle 
as knowledge grows

• Verification complicated by floating point 
representation

• Real world is messy, so is the software

Sociological
• Competing priorities and incentives

• Limited resources 

• Perception of overhead without benefit

• Need for interdisciplinary interactions



11

Customizations For Science Applications 

• Testing does not follow specific methods as understood by the software 
engineering research community
– The extent and granularity reflective of project priorities and team size
– Larger teams have more formalization

• Lifecycle of science compare to lifecycle of development
• Development model

– Mostly ad-hoc, some are close to agile model, but none follows it explicitly
– Much more responsive to the needs of the lifecycle



12

Lifecycle of Scientific Application • Modeling
– Approximations
– Discretizations
– Numerics

• Convergence
• Stability

• Implementation
– Verification

• Expected behavior
– Validation

• Experiment/observati
on

Numerical 
solvers

Validation

Physical World

Equations

Difference 
equationsImplementation

Model

Discretize

Verify accuracy
stability

Model 
fidelity

Model 
fidelity



13

Software productivity cycle

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf



14

Software Process Best Practices 

Baseline

• Invest in extensible code design

• Use version control and automated testing

• Institute a rigorous verification and validation 
regime

• Define coding and testing standards

• Clear and well defined policies for 
– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable

• Provenance and reproducibility

• Lifecycle management

• Open development and frequent releases



15

A Useful Resource

https://ideas-productivity.org/resources/howtos/

• ‘What Is’ docs: 2-page characterizations of important topics 
for SW projects in computational science & engineering 
(CSE)

• ‘How To’ docs: brief sketch of best practices
– Emphasis on ``bite-sized'' topics enables CSE software teams to 

consider improvements at a small but impactful scale

• We welcome feedback from the community to help make 
these documents more useful

1/12/2019 15

https://ideas-productivity.org/resources/howtos/


16

Other resources
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

1/12/2019 16

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://flash.uchicago.edu/cc2012/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255
http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147


17

Summary

• Good software practices are needed for scientific productivity
• Science at extreme-scales is complex and requires multiple expertise
• Software process does need to address reality
• Open codes, community contribution, are a powerful tool

It is extremely important to recognize that science through computing is 
only as good as the software that produces it


	Overview of Best Practices in HPC Software Development
	License, citation, and acknowledgements
	Slide Number 3
	You Can Mitigate Risk But It Is Never Zero
	Heroic Programming
	What is wrong with heroic programming
	In Extreme-Scale science
	In Extreme-Scale science
	Technical Debt
	Challenges Developing a Scientific Application
	Customizations For Science Applications 
	Lifecycle of Scientific Application
	Software productivity cycle
	Software Process Best Practices 
	A Useful Resource
	Other resources
	Summary

