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Supplementary Note 1. We have shown that high pupillary responses are associated with 

behavioural and fMRI findings, including broader integration in a variety of information 

processing tasks, that are predicted by low levels of neural gain – that is, by a reduction in the 

impact of all inputs on post-synaptic neural responses1–5. Thus, to demonstrate how large pupil 

responses may be related to the formation of decision biases, we simulate the effect of low gain 

on a framing bias in a multi-alternative, multi-attribute decision problem, using a previously 

developed model of such decision problems (Supplementary Figure 1a)6.  

Consider a choice between two vacation destinations: Destination A has gorgeous beaches and 

coral reefs but a high petty crime rate, whereas Destination B has average beaches and an 

average crime rate. The model assumes that on each time step, attention selects one of the 

attributes (i.e., ‘beaches’ or ‘crime rate’) at random, and the evidence this attribute provides is 

accumulated at the decision layer. Since framing effects are typically conceptualized as 

attentional biases that exert their effect during the decision process (Levin et al., 1998), they 

can be naturally implemented in the model as a tendency to select certain attributes more often 

than others. For instance, framing the question as to where to go would direct attention to 

more frequently select the positive attribute (beaches), whereas framing the question as where 

not to go would draw attention towards the negative attribute (crime rate).  

If decision making unfolds over many time steps, even a small bias can accumulate and 

determine the result of the decision process. In contrast, if the decision is made after only a 

small number of time steps, the effect of the bias would be minimized. This is where neural gain 

comes in: lower gain diminishes the effect of each piece of evidence on the decision process, 

increasing the number of time steps required to reach a decision. As a result, the effect of biases 

is stronger. In this way, differences in neural gain may underlie an association of framing 

effects with high pupil dilation (indicative of low gain) and longer decision times 

(Supplementary Figure 1b,c). We note that similar results would be obtained by any decision 

model that involves gradual integration of information, as long as the signal-to-noise ratio is 

high enough to allow reliably accurate decisions on trivial decision problems. In more noisy 

settings, weak biases are difficult to detect with any level of gain (Supplementary Figure 

1d,e).  

More generally, we note that the enhancement of weak influences by low gain illustrated in 

this model is not dependent on an evidence accumulation process being involved, as we have 

also previously illustrated it in decision models that do not involve evidence accumulation3,4  
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Supplementary Figure 1. An illustration of the effect of gain on the manifestation of a decision bias in a 

previously published evidence integration model of multi-attribute decisions6. Based on previous work6–9, a 

framing bias is implemented in the model as a tendency to attend to one attribute more frequently than the other. 

(a) The model consists of two competing accumulators, one for each item. Every time step, activity ai of 

accumulator i is updated to reflect evidence in favor of the respective item by: ∆𝑎𝑖 = 0.05 (−𝑎𝑖 + 𝑔(𝐼𝑖 − |𝑎𝑗|
+
) +

𝜖), where g reflects the level of gain, Ii is the evidence-based excitatory input to accumulator i, j is the competing 

accumulator whose positive component (||+) provides inhibitory input, and 𝜖 is zero-mean normally-distributed 

noise with a standard deviation of 0.5. On each time step, one attribute is randomly selected, and the evidence in 

favor of each item is accumulated by the competing decision units. One of the attributes favors one item, and thus 

generates input of 1.2 to one accumulator and 0.8 to the other accumulator. The other attribute favors the other 

item, and thus generates the reversed input. Bias was implemented as a tendency to select one of the attributes 

more frequently (p = 0.55). A decision is reached once one of the accumulators reaches a value of 1 or 1000 time 

steps are completed. (b) Accuracy and bias as a function of gain. Average proportion (± standard deviation) of 

accurate and bias-consistent decisions in a sample of 100 simulated decisions. Accuracy was measured in a separate 

set of simulations in which both attributes favored the same choice. The decision process was simulated 100,000 

times with each level of gain. The dashed line indicates chance-level accuracy and bias. With low (but not too low) 

gain accuracy is high, but so is the effect of the bias. (c) Bias detectability and mean decision time as a function of 

gain. Bias detectability was measured as the proportion of simulations in which a statistically significant bias 

(p<0.05, binomial test) was evident, with each simulation including 100 decisions. Bias is associated with slower 

rather than faster decisions, due to low gain. (d, e) Same as panels b and c, but with a high level of noise (standard 

deviation = 2), set such that accuracy would be less than optimal. In this case, biases are difficult to detect with 

any level of gain. 
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Supplementary Figure 2. Pupillary responses during each of the decision-making tasks (a; n = 44) and the 
auditory oddball task (b; n = 6). Responses were computed based on the same number of trials per subject to be 
included in the experiment. Time 0 denotes trial onset. Measurements were normalized by subtracting the 
average 1s pre-trial baseline diameter, and dividing by each individual’s pre-experiment reference measurement. 
Shaded area: S.E.M. 
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