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Abstract 11 

Localized primary emissions of carbonaceous aerosol are the major drivers of intra-city variability 12 

of submicron particulate matter (PM1) concentrations. We investigated spatial variations in 13 

PM1 composition with mobile sampling in Pittsburgh, Pennsylvania, USA, and performed source 14 

apportionment analysis to attribute primary organic aerosol (OA) to traffic (HOA) and cooking 15 

OA (COA). In high source impact locations, the PM1 concentration is on average 2 µg m-3 (40%) 16 

higher than urban background locations. Traffic emissions are the largest source contributing to 17 

population-weighted exposures to primary PM. Vehicle-miles travelled (VMT) can be used to 18 

reliably predict the concentration of HOA and localized black carbon (BC) in air pollutant spatial 19 

models. Restaurant count is a useful but imperfect predictor for COA concentration, likely due to 20 

highly variable emissions from individual restaurants. Near-road cooking emissions can be falsely 21 

attributed to traffic sources in the absence of PM source apportionment . In Pittsburgh, 28% and 22 

9% of the total population are exposed to >1 µg m-3 of traffic- and cooking-related primary 23 

emissions, with some populations impacted by both sources. The source mix in many U.S. cities is 24 

similar, thus we expect similar PM spatial patterns and increased exposures in high-source areas 25 

in other cities. 26 

 27 

1. Introduction 28 

Ambient fine particulate matter (PM2.5) is a complex mixture of components that differ 29 

significantly in chemical identities and sources. Long-term exposure to PM is associated with 30 

various adverse health effects and increased mortality.1 PM concentrations vary both between and 31 

within cities. Epidemiology and air quality studies have historically focused on inter-city 32 
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variability,2 but the magnitude of intra-city variability is comparable or sometimes greater.3 There 33 

is evidence of association between intra-city PM spatial gradients and adverse health effects within 34 

urban areas.1,4 Such intra-city variations are often caused by localized primary sources of PM 35 

emissions.5 Studies have also shown evidence that emissions from different sources vary in their 36 

negative health effects.6 Thus, it is important to capture the spatial variability of both the 37 

concentration and source contributions of PM in urban environments.  38 

In the United States and Europe, the major local emission sources of PM include traffic, cooking, 39 

and biomass burning.7,8 The relationship between traffic and PM spatial variability has been 40 

studied extensively.9,10 Near-road exposures are correlated with respiratory diseases,4 vascular 41 

disease,11 and negative birth outcomes.12 Significantly less is known about spatial variations 42 

caused by distributed non-traffic sources, such as cooking and biomass burning. 43 

Source contributions to PM can be inferred from geospatial analysis (e.g., the gradient of PM 44 

concentration moving away from a roadway) and source-specific chemical fingerprints. For 45 

example, urban black carbon (BC) is dominated by diesel vehicle emissions,13 hopanes14 are 46 

markers of vehicular emissions, and levoglucosan is associated with biomass burning.15 More 47 

recently, source apportionment analysis of Aerosol Mass Spectrometer (AMS) data using positive 48 

matrix factorization (PMF)16 has identified primary and secondary PM components with consistent 49 

and comparable source profiles around the world.17–19 50 

Mobile sampling with high time resolution instruments is capable of capturing sharp spatial 51 

gradients,20,21 and mobile deployment of sophisticated, chemically-specific instruments like AMS 52 

enables PM source apportionment with high spatial resolution. This in turn enables spatially- and 53 

source-resolved characterization of PM, which can vastly improve our understanding of human 54 

exposures. In this study, we conducted in-motion mobile sampling with an AMS in Allegheny 55 

County and Pittsburgh, Pennsylvania, USA (Figure 1). We investigated the PM composition and 56 

source impact at 200-meter spatial resolution and explored how this spatial variability (1) is 57 

correlated with the geographic covariates that represent local sources and (2) impacts population 58 

exposures in different locations. While these data were collected for one city, we expect similar 59 

spatial patterns to exist in other cities because the urban source mix is often dominated by traffic 60 

and cooking. 61 

 62 

2. Materials and Methods 63 
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The goal of this study is to quantify the spatial variability of PM concentration, composition, 64 

and source impact. To achieve this goal, we collected a spatially- and chemically-resolved PM 65 

dataset to quantify the contribution from various sources. Spatial patterns of total and source-66 

resolved PM and the correlation between concentration and spatial covariates enable us to identify 67 

hotspots associated with specific sources. Further details on the methods are described in the 68 

Supplemental Materials. 69 

 70 
Figure 1. (a) Location of Allegheny County and Pittsburgh in the continental US. (b) Boundaries 71 

of Allegheny County (black) and the city of Pittsburgh (green), and the residential population 72 

distribution. The inset shows the wind frequency distribution. (c) Land-use distribution in sampled 73 

areas inside the city of Pittsburgh, gridded at 200m resolution. Several neighborhoods are 74 

identified. Details of the sampled neighborhoods are listed Table S1. (Basemap attribution, 75 

Sources: Esri, DeLorme, HERE, MapmyIndia) 76 
  77 
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 78 

2.1. Mobile sampling platform 79 

Measurements took place in Allegheny County and the city of Pittsburgh, Pennsylvania, USA 80 

(Figure 1) as part of the Center for Air, Climate, and Energy Solutions (CACES). We utilized a 81 

mobile laboratory22 with an Aerodyne High-Resolution Aerosol Mass Spectrometer (AMS)23 and 82 

a Magee Scientific Aethalometer (AE-33) onboard. The inlet of the mobile sampling platform is 83 

located about 4 meters above ground at the front of the van. We saw no indication of self-sampling 84 

during our tests and sampling periods.24,25 We performed in-motion sampling on 32 different days 85 

in summer, fall, and winter from August 2016 to February 2017 (Table S1). The AMS and 86 

Aethalometer measurements were made at 20-second resolution, which is equivalent to one sample 87 

from every 224 meters at 40 km/h (25 mph). Sixteen communities of roughly 1 km2 area were 88 

selected to characterize urban, suburban and rural areas with different land use and source 89 

distributions (Table S2). Samples collected on frequently travelled roads between the designated 90 

communities were included as well. 91 

Each time we visited a community, we drove through all public roads at least once. Sampling 92 

typically took 45-60 minutes per community, and we typically sampled 3-5 communities on each 93 

sampling day. For each community, measurements were taken during morning (5-10AM), midday 94 

(11AM-4 PM) and evening (5-10 PM) periods on different days, so that concentration data are not 95 

biased due to the time-of-day patterns of local emissions. Measurements were only conducted on 96 

weekdays to avoid any bias from weekday-weekend emission patterns. 97 

2.2. Classification of land-use by traffic and restaurant density  98 

Spatial gradients of PM concentrations exist within a 1-km2 community. Thus, it is necessary 99 

to look at the spatial variation at a finer scale relevant to local sources. A 200-by-200-meter grid 100 

cell system is used to process spatially-resolved data in this study (the mobile sampling platform 101 

collects roughly one sample in every grid cell it passes at 40km/h). All spatial analysis and 102 

mapping were performed in Esri ArcGIS Pro (v1.4.1). A total of 1366 cells were visited. The 103 

sample size within each 200m grid cell is listed in Figure S1.  104 

We use land-use covariates to classify all the grid cells into four categories (Figure 1c, Table 105 

S5) and to quantify the correlation between measurements and local sources. “Low source” cells 106 

(250 out of 1366 cells in the sampling domain) have low traffic and no restaurants. Low source 107 

cells are mostly in residential areas and parks. “Restaurant” cells (24 out of 1366), which have at 108 

least one restaurant and low traffic, are very rare. “Traffic” cells (817 out of 1366), which have 109 
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high traffic but zero restaurants, are the most common cells largely due to the on-road sample 110 

collection. “High source” cells (275 out of 1366), which have both high traffic and restaurants, are 111 

located in business areas such as downtown Pittsburgh. Due to the small number of low traffic 112 

restaurant cells, we exclude them from most of the analyses in the manuscript. Details of this 113 

classification are described in the SI (Section S.1) 114 

2.3 Organic PM source apportionment and BC background correction 115 

Data collected by AMS were processed by Squirrel (v1.57I) and Pika (v1.16I) in Igor 116 

(v6.37)23,26 to determine the concentration of total non-refractive sub-micron PM (PM1), as well 117 

as concentrations of various chemical families such as organics, sulfate, nitrate, ammonium, and 118 

chloride. We consider the sum of AMS non-refractory PM1 and Aethalometer-measured black 119 

carbon (BC) as the total PM1 concentration. 120 

Positive matrix factorization (PMF) analysis was performed on the organic aerosol mass spectra 121 

using the AMS PMF tool (1.4.1)7,27, and yielded a five-factor solution (details in Figure S3, Section 122 

S.2). Three primary organic aerosol (POA) factors and two oxidized organic aerosol (OOA) factors 123 

were resolved. The three POA factors represent fresh OA emissions from traffic (hydrocarbon-124 

like OA, or “HOA”), cooking (COA) and biomass burning (BBOA). The two OOA factors (more-125 

oxidized organic aerosol, “MOOOA”, and less-oxidized organic aerosol, “LOOOA”) differ in their 126 

molar O:C ratio (0.80 versus 0.52). 127 

Following previous AMS studies, we used the default collection efficiency (CE=0.5) for all 128 

species and relative ionization efficiency (RIE=1.4) for organics. Recently published studies have 129 

suggested that the default RIE and CE may lead to overestimation of COA concentration, though 130 

there seems to be significant variability in RIE for COA.28,29 We use to the default parameters in 131 

this manuscript so that our results remain comparable to other previous field studies. 132 

The BC concentration was determined from the 880-nm channel in the Aethalometer. The BC 133 

concentration time series features spikes (Figure S4) associated with local emissions and 134 

neighborhood-level enhancements associated with traffic emissions,24 but a substantial fraction of 135 

the BC concentration is not spatially variable. We performed background correction to separate 136 

the local, spatially variable BC concentration from the spatially invariant background.  137 

The background correction for BC concentration is demonstrated in Figure S4. First, we 138 

smoothed the BC time-series with a second degree polynomial model to remove spikes (Matlab 139 

function “smooth” with “span”=30 minutes). These spikes are typically associated with emissions 140 

from vehicles or nearby stationary sources.24 We then fit the baseline of the smoothed curve with 141 
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a spline function of the moving 10% quantile (Matlab function “msbackadj” with 142 

“WindowSize”=2 hours). We consider the mass concentration below the fitted baseline as the 143 

“background” concentration, and the difference between the measured and background 144 

concentration as the “local BC” concentration. As shown in Figure S4, the background 145 

concentration slowly varies over the course of each sampling day due to changes in the boundary 146 

layer height. The local BC contribution captures the individual plumes noted above as well as 147 

neighborhood-level enhancements that arise from higher vehicle densities in some areas. 148 

 149 

3. Results and discussion 150 

3.1. Seasonal variation of PM1 concentration, composition, and source contribution 151 

The concentration and composition of PM1 varies greatly by season (Section S.4, Figure S5, 152 

SI). In general, PM1 concentration is significantly higher (ANOVA test p-value<0.001) in summer 153 

(11.4±5.5 µg m-3, average ± standard deviation) than winter (9.1±7.8 µg m-3) due to the increased 154 

concentrations of secondary oxygenated organic aerosols (less and more oxidized organic aerosols, 155 

LOOOA and MOOOA) and sulfate. These are the result of enhanced photochemical oxidation in 156 

the hotter season.30,31 Concentrations of primary components - traffic-related OA (HOA), cooking-157 

related OA (COA) and local BC - show much less seasonal variability. Biomass burning-related 158 

OA (BBOA) concentration is notably higher in winter, likely a result of more wood burning for 159 

home heating in colder months. Primary PM1 accounts for about half of the total concentration in 160 

winter versus a quarter in the summer. 161 

Comparing the result of our 2016-2017 campaign with the 2002 Pittsburgh Air Quality Study 162 

(PAQS),32,33 the summer PM1 concentration in Pittsburgh has reduced by 5.3 µg m-3 (Figure S5b). 163 

The reduction is primarily driven by inorganic components, which fell from 9.8 to 2.8 µg m-3. 164 

Organic aerosol concentrations increased from 4.4 to 6.2 µg m-3. 165 

3.2. Spatial patterns of PM1 components 166 

The spatial variation in primary carbonaceous PM drives the overall PM1 spatial variability. 167 

The measured concentration of local BC, HOA and COA are spatially joined to 200-m grid cells 168 

in the sampling domain and are illustrated in the maps in Figure 2. The spatial variability of these 169 

factors, as well as the sum of these three, is clearly evident. In Section S.5 and Figure S5c in the 170 

supplementary information, we show that the spatial variability of local BC, HOA and COA far 171 

outweighs that of secondary components (inorganics and OOAs) and BBOA. This variability is 172 

driven by emissions from local sources; these emissions produce both intense plumes and 173 
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neighborhood-level enhancements in PM1 concentrations.25,34 In this section, we use mapping and 174 

land-use classification to investigate the details of intra-city variability of PM1 concentration and 175 

sources. 176 

 177 

3.2.1. Mapping of primary carbonaceous PM1 components 178 

Source-specific maps provide a reference for regulators to locate the hotspots of emission 179 

sources and can also enable epidemiologists to evaluate the health risks of PM emissions from 180 

specific sources. Emissions from different sources may vary in their risk levels,35,36 but there is no 181 

consensus yet about what sources are more harmful. Thus, concentration maps can be useful in the 182 

advancement of exposure analysis. 183 

 184 
Figure 2. The average concentration of (a) local BC (b) HOA (c) COA and (d) total localized 185 

primary PM1 in each 200m grid cell in the sampling domain. Panel (d) uses a different color scale 186 

from the rest. (Basemap attribution, Sources: Esri, DeLorme, HERE, MapmyIndia) 187 

 188 

In Figure 2, there are important differences in the spatial patterns of local BC, HOA, and COA. 189 

For both local BC and HOA, the hotspots are located along the major truck routes. Near these truck 190 
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routes, there are sharp gradients of local BC and HOA concentrations visible on the maps. This 191 

suggests that traffic emissions can lead to high near-road concentrations, but the impacts do not 192 

reach very far beyond the scale of a single 200-meter grid cell.37,38 Local BC concentrations are 193 

generally higher than corresponding HOA concentrations. For example, in Downtown Pittsburgh, 194 

the BC concentrations are often > 2 µg m-3, but the HOA concentrations are ~0.5 µg m-3, and only 195 

slightly elevated above background. This may be a result of the fleet make-up (e.g., from transit 196 

bus operations) and operating condition (e.g., stop-and-go driving) in the downtown area, or may 197 

simply reflect that emissions of organic aerosol from both gasoline and diesel vehicles have fallen 198 

rapidly in recent years.39  199 

Hotspots of COA appear as clusters on the map, and spatial gradients are clearly visible at the 200 

boundary of several communities (Figure 2c). These COA hotspots arise from the clustering of 201 

restaurants in urban environments.40 Some COA hotspots are coincident with hotspots of HOA or 202 

BC (Downtown, Strip District, Oakland and Lawrenceville), consistent with the large number of 203 

grid cells with both high traffic and high restaurant intensity. Other COA hotspots are dominated 204 

by cooking alone (Shadyside and Highland Park). Highland Park is mostly a residential area with 205 

several restaurants at the center, and the dominance of COA on the local air quality is clearly 206 

visible. In general, COA has similar, if not higher, concentrations than HOA and covers a wider 207 

range in residential area. Thus, cooking is worthy of more attention in future analysis of urban PM 208 

and OA exposure. 209 

3.2.2. Variation of PM1 concentration by land-use 210 

In this section we use the land-use classification defined in Figure 1c to evaluate the variation 211 

of PM concentration among different land-use classes. Figure 3 summarizes the average 212 

concentration and fractional contribution from each PM1 component and PMF factor for three of 213 

the four land use classes: low source, traffic, and high source (restaurant plus traffic). Data 214 

collected from summer (August and September) and winter (January and February) are presented 215 

separately to contrast the seasonal trends.  216 

We empirically determined the precision of the AMS measurement to be 0.2 µg m-3 for most 217 

OA factors, with the exception of LOOOA and local BC (0.3 µg m-3, Table S3 and Section S.8). 218 

This is broadly consistent with previous AMS studies.23 In our spatial analysis, we use this 219 

precision to determine whether concentration differences among land-use classes are meaningful. 220 

This precision is inherently different from the bootstrapping method that is commonly applied in 221 
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PMF. Bootstrapping determines the uncertainty of the PMF solution itself,27 whereas the precision 222 

defined here is used when comparing spatial concentration differences. 223 

Local BC, HOA and COA concentrations are higher in land use classes with source impacts. 224 

Comparing traffic with low source land-use, the mean HOA concentration increases by 0.4 µg m-225 
3 in the summer. The difference in winter is not meaningful (0.1 µg m-3). Local BC increases by 226 

0.8 µg m-3 in the summer and 0.3 µg m-3 in the winter. The reduced impact of traffic in the winter 227 

months may be the result of differences in activity or emission factor. Vehicle volumes and miles 228 

traveled are higher in the summer.41 Vehicle emissions may change with season or ambient 229 

temperature, though the exact relationship is uncertain, with some studies showing higher BC 230 

emissions in colder temperatures,42 and others the reverse.43 231 

 232 

 233 
Figure 3. Variation of chemically-resolved PM1 concentrations by land-use types in summer and 234 

winter. The top two panels show the concentrations of each specific inorganic component, OA 235 

PMF factor, and local and background BC. The bottom two panels show the fractional contribution 236 
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from broader chemical families. Total OOA = LOOOA + MOOOA. POA = primary organic 237 

aerosol = BBOA + HOA + COA. 238 

 239 

Comparing high source (cooking added) with traffic land-use, COA concentration increases by 240 

0.7 µg m-3 in the summer and 0.6 µg m-3 in the winter. The consistent spatial pattern between 241 

seasons suggests similar cooking activity patterns and emission factors in summer and winter, 242 

consistent with stationary sources of COA, primarily restaurants.44 Overall, source-impacted areas 243 

have an additional ~1-2 µg m-3 of primary PM1 compared to low source areas.  244 

The comparison between land-use classes discussed above uses the empirically-defined 245 

precision of OA factors and local BC to determine significant spatial differences between land-use 246 

classes. An ANOVA test also verified that the concentration differences between land use classes 247 

are statistically significant (Figure S7). 248 

Secondary components have slight spatial variations that are season-specific. In summer, the 249 

LOOOA concentration, representative of fresh secondary organic aerosol, is enhanced in high 250 

source land-use by about 0.4 µg m-3 compared to the other two land use types. This difference is 251 

nearly eliminated in winter (0.1 µg m-3), largely due to reduced photochemical activity and lower 252 

total LOOOA concentrations (0.2  µg m-3 on average). In winter, nitrate concentrations are slightly 253 

enhanced in traffic and high source land-use by 0.2 µg m-3 compared to low source land-use, while 254 

the differences are less than 0.1 µg m-3 in summer. The enhancement of both the LOOOA and 255 

nitrate concentration can be explained as a result of the oxidation of vehicular emissions of volatile 256 

and intermediate-volatility organic compounds and NOx in high-source areas.45–47 257 

PM components typically associated with the regional background – sulfate, MOOOA, and 258 

background BC – are not spatially variable among land use classes. The differences in sulfate and 259 

MOOOA are around 0.1 µg m-3, suggesting that these components, which form over timescales 260 

longer than ~1 day, are regionally homogeneous for this domain. Background BC has no 261 

discernable spatial pattern among the land-use classes (differences less than 0.1 µg m-3) in both 262 

summer and winter; this is in contrast to local BC, which is elevated in high traffic areas. The 263 

spatial homogeneity of background BC verifies the background correction methods we applied, 264 

and also reflects the non-reactiveness of BC in the atmosphere. The other primary OA component, 265 

BBOA, has a seasonal difference (>0.2 µg m-3 between summer and winter) but no spatial variation 266 

among the land-use classes in both seasons (differences less than 0.1 µg m-3). This finding suggests 267 
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that BBOA is not an important localized source in our sampling domain and instead is likely 268 

transported from upwind locations. 269 

Regardless of location, total OOA and inorganics are the most important contributors to PM1 270 

in both summer and winter. Primary components of PM1 make up of 52% of total PM1 in the worst 271 

case (high source land-use in winter) and 17% of total PM1 in the best case (low source land-use 272 

in summer). In both seasons, the incremental exposure to PM1 from low source to high source 273 

land-use are approximately 2 µg m-3, and this can be largely attributed to the spatial variation of 274 

local BC, HOA, and COA concentrations.  275 

3.3. Correlation between land-use covariates and PM1 components 276 

Statistical air pollutant spatial models, including land use regression (LUR), use land-use 277 

covariates to predict spatial distributions of pollution.14,48 These covariates are generally applied 278 

to non-source specific data (e.g. PM mass) and therefore LUR attempts to attribute a fraction of 279 

measured PM mass to source categories that are related to the spatial covariates.  Whether the 280 

covariates can effectively represent the concentration patterns near local sources is important to a 281 

successful LUR model. 282 
 283 

 284 

Figure 4. (a&b) Average concentration (red circles) and standard error (black whiskers) of local 285 

BC and HOA versus decile groups of VMT. The linear fit for the average concentrations of each 286 

group is shown as blue lines. (c) Average concentration (red circles) and standard error (black 287 

whiskers) of COA versus restaurant count. The average concentrations are calculated for groups 288 

of grid cells with the same number of restaurants inside. Cells with ten or more restaurants are 289 
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combined as one group (Table S3). Blue lines show linear fits for all (solid), as well as the first 290 

seven (dashed), data points. 291 

 292 

We summarized the average concentration of local BC, HOA and COA for all of the 200m grid 293 

cells in our sampling domain. We also calculated values of two representative land-use covariates 294 

related to traffic and cooking emissions: annualized daily vehicle miles traveled (VMT) and 295 

restaurant counts for each grid cell. All the grid cells are binned based on decile groups of VMT 296 

and integer restaurant counts. Figure 4 shows scatter plots of mean local BC, HOA and COA 297 

concentrations of each bin against their related covariates. These figures help reveal how 298 

concentrations of primary PM1 components are related to land use covariates. 299 

The average concentrations of local BC and HOA are both linearly correlated with VMT 300 

(R2=0.97 for local BC and 0.88 for HOA; Figure 4a&b). This suggests that VMT can be used as a 301 

reliable predictor of traffic-related primary PM concentration. Previous BC LURs21,49 have 302 

leveraged this strong relationship between BC and traffic covariates.  303 

The HOA:BC ratio is spatially variable and can be different by a factor of two depending on 304 

VMT. At lower VMT (<2000 miles per day), HOA and BC concentrations are approximately equal 305 

(HOA:BC ~ 1). For the highest traffic bin (VMT = 10,000 miles per day), the HOA:BC ratio is 306 

0.5, suggesting higher relative emissions of BC than HOA in extremely high traffic areas. 307 

There are two possible explanations for this phenomenon. First, the vehicle fleet composition 308 

is spatially variable. Diesel trucks constitute a larger fraction of total VMT for grid cells with 309 

VMT > 3000 miles per day (the upper three deciles) than for grid cells with VMT < 3000 miles 310 

per day (Figure S8). Diesel vehicles, especially older vehicles not equipped with advanced after 311 

treatment systems such as diesel particulate filters, have much lower HOA:BC emission ratios than 312 

gasoline vehicles.39 Absolute BC and HOA emissions from diesel vehicles are also larger than 313 

from gasoline vehicles, so small changes in the composition of the on-road vehicle fleet can have 314 

large impacts on overall fleet emissions.50 Thus, cells with a higher fraction of diesel truck traffic 315 

should be expected to have lower HOA:BC ratios. Second, vehicle operating conditions are also 316 

spatially variable. Grid cells with VMT>3000 miles per day are mostly highways (Figure S2), 317 

where traffic is often free-flowing at high speed. Cells with VMT <3000 miles per day are surface 318 

streets where vehicles travel at lower speed and often operate at stop-and-go conditions. The 319 

emission factors of both diesel and gasoline vehicles can vary by an order of magnitude depending 320 

on operating conditions, and there is evidence that the hot/cold start condition typical of urban 321 
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driving increases HOA emissions more than BC.51,52 Thus, cells with stop-and-start traffic would 322 

be expected to have a higher HOA:BC ratio than cells containing highways, independent of fleet 323 

composition. 324 

The total contribution of local traffic to PM1 is the sum of local BC and HOA. The variable 325 

HOA:BC ratio in our data indicates that the total impact of traffic on PM1 exposures cannot be 326 

determined from BC alone; the HOA concentration is not a linear transform of the local BC 327 

concentration. This demonstrates the value of the source-specific measurements presented here. 328 

We are able to determine the contribution of local traffic to PM1 in each grid cell because of the 329 

chemical specificity of the AMS. 330 

The relationship between COA concentration and restaurant count is complex for the entire 331 

range of data (Figure 4c). COA is linearly correlated with restaurant count for grid cells with fewer 332 

than 6 restaurants (R2=0.63) but is poorly correlated (R2=0.10) for the entire range. This may be 333 

an artifact of the small number of grid cells with >6 restaurants (Table S4). It may also reflect the 334 

location of restaurant exhaust hoods.25 Areas with lower restaurant and building density may be 335 

more likely to vent cooking exhaust at street level than more congested (e.g., downtown) areas. In 336 

cities with more intense commercial activities, it may be possible to collect data in more areas with 337 

extremely high restaurant counts and improve the correlation.  338 

We believe that restaurant count may not be a perfect indicator for cooking emissions for two 339 

main reasons. First, it excludes multiple sources of cooking emissions: household cooking, food 340 

trucks, and non-commercial outdoor grilling activities. All these activities can be significant 341 

cooking emission sources for local environments. Unfortunately, data that can reliably quantify 342 

the emissions from such sources at a high spatial resolution do not exist. Second, the emission rate 343 

of an individual restaurant may be largely dependent on the cooking style and the activity level.53 344 

Meat grilling can be more polluting than sushi making, and a large restaurant can have larger 345 

emissions than a smaller one with similar cooking style. These factors are not captured in the 346 

restaurant count statistics. Future analysis may benefit from more detailed information for each 347 

restaurant, such as cooking style and daily average number of guests. 348 

COA is also correlated with traffic volume (Figure S7 and S9). For grid cells with VMT < 3000 349 

miles per day, COA concentration increases with VMT (Figure S9). This is likely a result of many 350 

restaurants being located in high traffic areas. COA is not correlated with VMT for the highest-351 

traffic cells (VMT > 3000 miles per day) because these cells are highways. Thus, in studies where 352 

source apportionment of PM is not available, the traffic contribution to near-road PM 353 
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concentrations may be overestimated if land use covariates associated with restaurants are not 354 

explicitly considered. 355 

 356 

3.4. Source-resolved distribution of population PM exposures 357 

PM1 concentration, source impact, and the population are all spatially variable. Thus, it can be 358 

difficult to determine which emission source has the largest impact on human exposure in an urban 359 

environment. In this section, we use the spatial distribution of population to assess the spatially-360 

resolved exposure to local primary PM from traffic (local BC+HOA) and cooking (COA) 361 

emissions. We followed methods similar to those described in Apte et al. (2015) and Brauer et al. 362 

(2016)54,55 for use in the Global Burden of Disease study.  363 

We ranked the average concentrations of each PM component from all the 200m grid cells and 364 

created 50 equal bins on a logarithmic scale. A sum of population from all the grid cells that fall 365 

within each bin were calculated and a population distribution is thus constructed. It is important 366 

that this process is done for each type of land-use separately. The population distribution in the 367 

sampling domain does not match the population distribution in Allegheny County – our sampling 368 

domain is biased towards high-source and high traffic areas. The bias of the sampled domain can 369 

be adjusted by the population coverage ratio (RPC), which is described in Equation 1 and shown in 370 

Table S5.  371 

 372 

Equation 1. 373 

𝑅"# =
𝑃&
𝑃'()

 374 

 375 

RPC is the population coverage ratio for a specific type of land-use. PS is the residential population 376 

that are covered by the sampling domain in this type of land-use. PLUT is the actual residential 377 

population in this type of land-use in the whole county. 378 

The population distribution for the entire Allegheny County, which includes all types of land-379 

use, is reconstructed following Equation 2, where the population from each land-use in the ith bin 380 

are weighted by RPC and added together. A population distribution curve can be constructed for 381 

each specific PM component, and the area under each curve represents the total population in the 382 

county. This curve is then normalized for use in Figure 5 as a probability distribution.  383 

 384 

Equation 2. 385 
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𝑃* = +
𝑃&(-,*)	
𝑅"#(-)

1

-23

 386 

 387 

Pi is the adjusted population within the ith bin of concentration range. PS(N,i) is the population within 388 

the Nth type of land-use that are covered by the sampling domain. RPC(N,i) is the population coverage 389 

ratio for the Nth type of land-use. 390 

 391 

 392 
Figure 5. Normalized probability distribution of residential population over the measured OA and 393 

BC concentration range. The impact from traffic is the sum of the local BC and HOA concentration. 394 

 395 

Figure 5 shows the normalized population distributions for outdoor cooking and traffic PM 396 

exposures. Each curve in Figure 5 captures the full population; the integral under every curve is 397 

unity. The four curves all follow log-normal distributions, and the medians of each curve fall 398 

between 0.1 to 1.0 µg m-3. Primary traffic emissions are clearly more impactful than cooking on a 399 

population-weighted basis. For Allegheny county, 55%, 28% and 9% of the population are 400 

exposed to >0.5, >1 and >2 µg m-3 of traffic-related local primary PM1, respectively; the numbers 401 

for cooking-related PM1 are 31%, 9% and 2%, respectively. 402 

Cooking emissions constitute an important part of overall primary PM exposures. Curves for 403 

cooking, local BC, and HOA are similar in their medians (0.2-0.3 µg m-3), and cooking is more 404 

important than HOA as a source of exposure to primary organic aerosol. Policies to reduce 405 

emissions from restaurant cooking, such as installation of filters on restaurant vent hoods, could 406 
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reduce PM exposures by ~0.3 µg m-3 for the entire county population, with much larger reductions 407 

(>1 µg m-3) in some high-source neighborhoods with high restaurant densities.  408 

Figure 5 only quantifies exposures to local primary emissions that drive a large fraction of the 409 

observed intra-city spatial variability. Background BC concentrations, while spatially 410 

homogeneous in our sampling domain, are at least partially the result of upwind emissions from 411 

vehicular traffic. Vehicular emissions are also an important contributor to the burden of secondary 412 

OA46–48 and PM nitrate,45 and Figure 3 shows that concentrations of the LOOOA factor, which we 413 

interpret as “fresh” secondary OA, are elevated in high source areas. Thus, Figure 5 likely under 414 

estimates the total PM exposure that can be assigned to vehicular emissions. 415 

Probability distributions of population like those shown in Figure 5 are a useful way to examine 416 

the intra-city spatial variability of outdoor PM1 exposure. However, Figure 5 assumes that each 417 

person’s exposure is governed by the outdoor concentration at their home address. This assumption 418 

may lead to exposure misclassification, because people may be exposed to emissions from indoor 419 

sources56 as well as outdoor sources, and exposures occur at places other than the home. Indoor 420 

exposure is beyond the scope of this study. The proportion of indoor exposure that originates from 421 

outdoor emissions can be highly variable in different environments,57 and we lack the data to 422 

reliably address this issue here. To test the sensitivity of our exposure estimates to population 423 

mobility, we recalculated the population exposures using commuter-adjusted population (Figure 424 

S10 and Section S.7). The overall conclusion that traffic is the major source of exposure to primary 425 

PM, and that cooking is also important, is robust to the assumptions about population mobility.  426 

Emissions sources in many US and European cities are dominated by traffic and cooking 427 

sources. Thus, we expect to observe similar spatial patterns of PM concentration and exposure in 428 

most cities, even in cases where there remain major industrial emissions sources. Preliminary 429 

analysis of data collected in Oakland, CA58 reflect the basic spatial patterns presented here: PM1 430 

spatial variations are dominated by carbonaceous sources, and PM1 concentrations are highest in 431 

source-rich environments. 432 
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