Supporting Information

Immobilizing highly catalytically molybdenum oxide nanoparticles on graphene-analogous BN: stable heterogenous catalysts with enhanced aerobic oxidative desulfurization performance

Xiaoyu Yao¹, Chao Wang¹, Hui Liu¹, Hongping Li¹, Peiwen Wu¹, Lei Fan², Huaming Li¹, Wenshuai Zhu^{*1}

¹School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.

²School of Chemistry and Chemical Engineering, Yangzhou University, 88 South University Ave., Yangzhou 225002, P. R. China.

E-mail: zhuws@ujs.edu.cn (Wenshuai Zhu).

Experimental

Materials: Ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄.4H₂O, A.R. grade), boric acid (H₃BO₃, A.R. grade), urea (CO (NH₂)₂, A.R. grade), decalin (A.R. grade), ethanol (C₂H₆O, A.R. grade), *p*-benzoquinone (BQ, 99%), dimethyl sulfoxide (DMSO, A.R. grade), potassium bromide (KBr, A.R. grade), and barium sulfate (BaSO₄, A.R. grade) were purchased from Shanghai Sinopharm Chemical Reagent Company and used as received without purification. Dibenzothiophene (DBT, 98%), 4-methyl dibenzothiophene (4-MDBT, 97%), 4,6-dimethyldibenzothiophene (4,6-DMDBT, 97%), and tetradecane (99%) were obtained from Sigma-Aldrich and used without further purification.

Synthesis of molybdenum oxide (MoO_x): 5.0 g of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ was dissolved in 40 mL of ultrapure water and heated at 55 °C until the water was boiled away, and a white solid was gained. Then the white solid was transferred to a tube furnace and heated to 700 °C for 2 h at a heating rate of 5 °C min⁻¹ under N₂ atmosphere, and then allowed to cool to room temperature. A dark brown product was obtained and designated simply as "MoO_x".

Preparation of model oil: Different model oils were prepared by dissolving DBT, 4-MDBT and 4,6-DMDBT in decalin to give solutions with a sulfur content of 500ppm. In addition, tetradecane was added into the model oil as an internal standard.

Characterization methods: Fourier trans-form infrared spectroscopy (FT-IR) spectra of both the reactants and products were obtained on a Nicolet Nexus 470 FT-IR spectrometer by using KBr pellets at room temperature. Ultraviolet-visible diffuse

reflectance (UV-Vis DRS) spectra were measured with a UV-2450 UV/Vis spectrophotometer (Shimadzu, Japan) in the range of 200-800 nm. BaSO₄ was used as the reflectance standard. X-ray diffraction (XRD) measurements were obtained on a D8 ADVANCE X-ray diffraction using Cu K α radiation ($\lambda = 1.5406$ (Å) with angle range from 10° to 80° (2 θ) at a scanning rate of 7° min⁻¹). Raman spectra were performed on a Thermo Scientific DXR Smart Raman spectrometer. The X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Amicus spectrometer with Mg Ka radiation. The morphology of samples was determined by a Hitachi H-700 transmission electron microscope (TEM). High resolution transmission electron microscopy (HR-TEM) analysis was performed using a JEOL EM-2010F instrument operating at accelerating voltage of 200 kV. The sample powder was ultrasonically dispersed in ethanol and the obtained suspensions were deposited on a lacey carbon film on a copper micro-grid. The nitrogen adsorption/desorption isotherms at 77 K were investigated with a TriStar II 3020 surface-area and porosity analyzer (Micromeritics Instrument Corporation, USA). X-band electron spin resonance (ESR) spectra were recorded at ambient temperature on a JES FA200 spectrometer. The O2 temperature-programmed desorption (O₂-TPD) was conducted by employing 50 mg sample in each measurement. The samples were firstly pretreated in O₂/He at 300 °C for 60 min, then cooled down to 25 °C, and followed by turning the Ar flow into the system with a flow rate of 25 ml/min. The samples were heated from 50 °C to 700 °C at a rate of 10 °C/min. The concentration signals of the desorbed O₂ were monitored by a TCD detector. Electron paramagnetic resonance (EPR) spectra were obtained using a Bruker ESR JES-FA200 spectrometer

at 77 K.

Supplementary Figures:

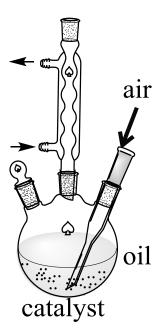
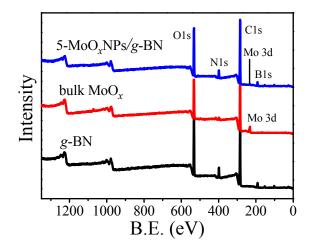
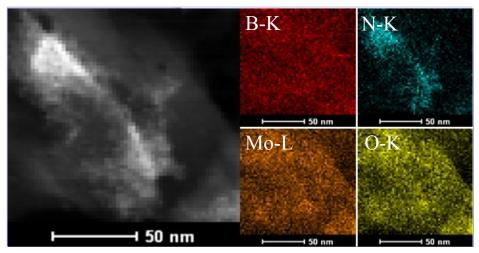




Figure S1. Oxidation desulfurization reactor schematic.

Figure S2. XPS of *g*-BN, bulk MoO_x and $5-MoO_xNPs/g-BN$.

Figure S3. The elemental mapping images of 5-MoO_xNPs/g-BN.

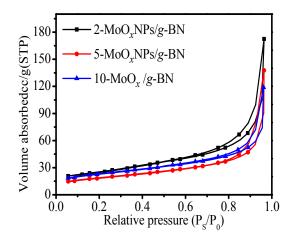


Figure S4. Nitrogen adsorption-desorption isotherms of a) 2-MoO_xNPs/g-BN, b) 5-

MoO_xNPs/g-BN and c) 10-MoO_x/g-BN.

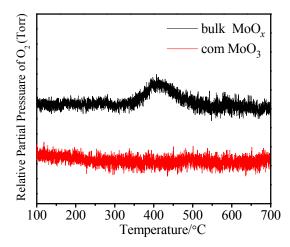


Figure S5. Oxygen temperature-programmed desorption (O₂-TPD) for com MoO₃

and bulk MoO_x samples.

Figure S6. Molecular structures of DBT, 4-MDBT, 4,6-DMDBT (from left to right).

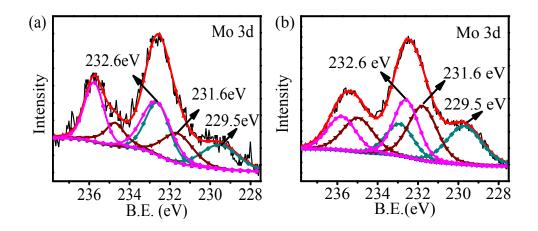


Figure S7. XPS Mo 3d spectra of 5-MoO_xNPs/g-BN catalysts (a) fresh catalyst (b)

used catalyst.

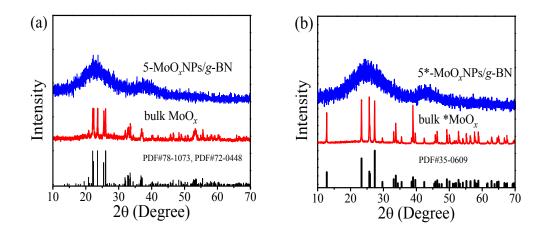


Figure S8. XRD patterns of (a) catalysts prepared under a nitrogen atmosphere, (b)

catalysts of (a) after O_2 treatment.

Supplementary Tables:

Table S1. Catalytic oxidative desulfurization of different supported catalysts in

Entry	Catalyst	Oxidant	TOF/h ⁻¹	Ref
1	MoO ₃ /Al ₂ O ₃	H_2O_2	17.74	1
2	MoO ₃ /SiO ₂	O_2	1.36	2
3	WO ₃ /ZrO ₂	H_2O_2	28.48	3
4	WO ₃ /SBA-15	H_2O_2	10.85	4
5	MoO _x NPs/g-BN	O_2	37.50	this work

previous reports.

Table S2. Comparison of catalytic oxidative desulfurization of sulfur compounds by

Entry	Catalysts	TOF/h ⁻¹	Sulfur removal/%
1	com MoO ₃	8.54	8.9
2	bulk MoO _x	29.14	60.7

different molybdenum oxide catalysts.

Entry	Catalysts	Specific surface area (m^2/g)	TOF/h ⁻¹	Sulfur removal/%
1	$2-MoO_xNPs/g-BN$	200	23.83	33.1
2	$5-MoO_xNPs/g-BN$	108	37.50	100
3	$10-MoO_x/g-BN$	60	30.12	77.3

Table S3. Comparison of catalytic oxidative desulfurization of sulfur compounds by

different catalysts.

Catalysts	Content of	f different fo (%)	orms of Mo
	Mo ⁴⁺	Mo ⁵⁺	Mo ⁶⁺
fresh catalyst	35	35	30
used catalyst	33	35	32

Table S4. Content of different forms of Mo in the near-surface layers of catalysts.

References:

(1) Akbari, A.; Omidkhah, M.; Darian, J. T. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO₃/Al₂O₃ catalyst. *Ultrason. Sonochem.* **2014**, *21*, 692–705.

(2) Zhang, W.; Xiao, J.; Wang, X.; Miao, G.; Ye, F. Y.; Li, Z. Oxidative Desulfurization Using in-Situ-Generated Peroxides in Diesel by Light Irradiation. *Energy & Fuels* **2014**, *28*, 5339–5344.

(3) Hasan, Z.; Jeon, J.; Jhung, S. H. Oxidative desulfurization of benzothiophene and thiophene with WO_x/ZrO₂ catalysts: effect of calcination temperature of catalysts. *J. Hazard. Mater.* **2012**, *205-206*, 216–221.

(4) González, J.; Wang, J. A.; Chen, L. F.; Manríquez, M. E.; Dominguez, J. M. Structural Defects, Lewis Acidity, and Catalysis Properties of Mesostructured WO₃/SBA-15 Nanocatalysts. *J. Phys. Chem. C* 2017, *121*, 23988–23999.