### A nucleotide-binding site-leucine-rich repeat receptor pair confers broadspectrum disease resistance through physical association in rice

### **Supplementary Figures**



976 SSIEVQTADPVPDAQGSVTVAVEATDPLPEQEGESSQSQVITLTTNDSEEIGTAQAG 1032

### Figure S1. Genomic structure and amino acid sequence of Pizh-2

(*a*) Gene structure of *Pizh-2*. The black box represents exon, lines denote introns, and grey boxes indicate 5' and 3'untranslated regions.

(*b*) Deduced animo acid sequence of the Pizh-2 protein. The two coiled-coil (CC) motifs are underlined. The conserved motifs (P-loop, Kinase2, RNBS-B, GLPL, RNBS-D, MHD) of the nucleotide-binding site (NB-ARC) region are also underlined. The C-terminal leucine-rich repeat (LRR) domain consists of 17 imperfect LRR repeats with the consensus IXX(L)XX(L)XX(L) is shown.



#### Figure S2. Gene induction analysis of Pizh-1 and Pizh-2 during pathogen infection

qRT-PCR analysis detected transcript levels of *Pizh-1* and *Pizh-2*. Total RNAs were prepared from leaves of ZH11 inoculated with isolate 85-14 in a time course from 0 to 72 h after inoculation. Values are means  $\pm$  SD of three biological repeats. A Student's *t*-test was used to analyze the difference significance (\*p < 0.05).



#### Figure S3. Phylogenetic analysis of Pizh and other NLR proteins in rice

The phylogenic tree is constructed based on full-length amino acid sequences of the selected NLRs, using a neighbor-joining algorithm. The numbers associated with individual branches indicate confidence levels based on 1000 bootstrap replicates, each major group shares >50% similarity at the amino acid level. The unit branch length is equivalent to 0.1 amino acid substitutions per site. A-I represent nine major groups of cloned R proteins.



## Figure S4. Comparison of genomic structure in the *Pizh* cluster with ellelic loci *Pigm/Pi2/Pi9*

Copy number variation of R genes in the *Pizh* and allelic loci from different rice germplasm. Ortholog and paralog members are indicated with the same color and identity percentages.



# Figure S5. Chromatographs of Sanger sequencing detection of deletion mutations on the *Pizh-1* and *Pizh-2* genes

(*a*) Alignment of the chromatograms to the reference sequence indicating the *pizh-1* mutation (deletion of the two nucleotide 'CC').

(*b*) and (*c*) Alignment of the chromatograms showing the *pizh-1* (deletion of one nucleotide 'A') and *pizh-2* (deletion of two nucleotides 'AA') double mutation.

(*d*) Alignment of the chromatograms to the target sequence, showing no mutation on *Pizh-2*. The spacer is in gray, and the PAM site is underlined.

 $\odot$  The Authors under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

### Supplementary Table

|              | C101A51(Pi2) | 75-1-127( <i>Pi9</i> ) | CO39 | ZH11 | Zenith | Gumei 4(Pigm) |
|--------------|--------------|------------------------|------|------|--------|---------------|
| 04-52        | R            | MR                     | S    | R    | S      | R             |
| <b>ZJ</b> 11 | R            | S                      | S    | R    | S      | R             |
| 01-19        | S            | R                      | S    | R    | S      | R             |
| 85-14        | S            | R                      | S    | R    | S      | R             |
| YN2          | R            | R                      | S    | R    | MR     | R             |
| SH188        | R            | S                      | S    | R    | MS     | R             |
| CN155        | R            | R                      | S    | R    | R      | R             |
| CN97         | R            | R                      | S    | R    | MS     | R             |
| CN102        | R            | R                      | S    | R    | MS     | R             |
| P06-6        | S            | S                      | S    | R    | MR     | R             |
| GD00-1200    | S            | S                      | S    | R    | R      | R             |
| GUY11        | S            | R                      | S    | R    | R      | R             |
| YJ1-2        | R            | R                      | S    | R    | R      | R             |
| 2001-054     | R            | R                      | S    | R    | R      | R             |
| V13          | R            | R                      | S    | R    | R      | R             |
| PH14         | S            | R                      | S    | R    | R      | R             |
| TH12         | S            | R                      | S    | S    | S      | R             |
| P131         | MR           | R                      | S    | R    | R      | R             |
| 01-12        | R            | R                      | S    | R    | R      | R             |
| CH131        | S            | R                      | S    | R    | MR     | R             |
| 03-32        | R            | R                      | S    | R    | R      | R             |
| 03-5         | R            | R                      | S    | R    | R      | R             |
| 99-188       | R            | MR                     | S    | R    | R      | R             |
| 05-5-1       | R            | R                      | S    | R    | R      | R             |
| CN43         | R            | R                      | S    | R    | MS     | R             |
| 01-15        | R            | R                      | R    | R    | R      | R             |
| 99-30-1      | MR           | MR                     | S    | R    | R      | R             |

 $\[mmc]$  The Authors under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

| 2001-117 | R | R | R | R | R  | R |
|----------|---|---|---|---|----|---|
| CN199    | R | S | S | R | MS | R |
| CN184    | R | R | S | R | R  | R |
| 06-3-1   | R | R | S | R | S  | R |

R: Resistance; S: susceptibility; MR: middle resistance; MS: middle susceptibility

Supplementary Table 1: Resistance evaluation of different rice varieties to *M. oryzae* isolates

| Isolates  | ZH11 | NIPB | Pizh-1 (NIPB) | Pizh-2 (NIPB) |
|-----------|------|------|---------------|---------------|
| GD00-1200 | R    | S    | R             | S             |
| 85-14     | R    | S    | R             | S             |
| CN131     | R    | S    | R             | S             |
| YJ1-2     | R    | S    | R             | S             |
| H14       | R    | S    | R             | S             |
| 99-128    | R    | S    | R             | S             |

Supplementary Table 2: Resistance evaluation of the transgenic plants expressing *Pizh-1* and *Pizh-2* inoculated with *M. oryzae* isolates

| Name             | Forward sequence               | Reverse sequence                        | Purpose                |
|------------------|--------------------------------|-----------------------------------------|------------------------|
| RM6836           | TTGTTGTATACCTCATCGAC           | AGGGTAAGACGTTTAACTTG                    | For fine mapping       |
| RM3183           | GCTCCACAGAAAAGCAAAGC           | TGCAACAGTAGCTGTAGCCG                    |                        |
| RM19780          | CATGGTGATCAGTGATGGAAACG        | TCCAAGATTGGTGAACCTGAAGC                 |                        |
| RM7213           | AACAACGAAGAGCAGGGAGAGC         | TGTTGGAGCAACAGCAACTAATGG                |                        |
| RM3330           | AGCCAAGCAAGCAAAGCAAACG         | GATTTGGGCGAGACGAGAACG                   |                        |
| RM19782          | ACCGTGTGCCATGAGAATCTAGC        | ATGGCCCTATACGTGTCAGTTGG                 |                        |
| RM19795          | TAGTAGTTGGCATCTCCGGTTGC        | CAAGCGGCCACTACGTATAGTACC                |                        |
| RM19800          | TACCGGGTGGAACCACAAATCC         | CAGCGAAATCGCCTCTACATAAATGG              |                        |
| RM19804          | CAATGATGAAGCCGAGCCATCC         | TTGAACTACACCCAATCGGACTCG                |                        |
| RM19814          | GGGTGAGGAAATGGGAGAGAGG         | AAGCAACACACTGGAGAAGTGAGG                |                        |
| RM19819          | CAAGGGATACATTGGGTTGTCG         | TCCTCACAAATGGGAACTTAGGC                 |                        |
| Indel1           | CAAAAGATTCGTCTCGTAGTTTTCA      | ACCAGTCAACGGGTTTGGATAA                  |                        |
| Indel2           | AATGTAATCTAGGTCCAATTCAAAT      | GCCAAAGGAGCAAATAGTGAGT                  |                        |
| Indel3           | TTGCATTCTTGAAGTTGTGCCAAGA      | CACCTAAGCAGGCTCCTCCATT                  |                        |
| Indel4           | TAATTAATTTCCTGTTGTTGTTGTTGTG   | TCCGACCAATCACAATCCTCTACCAT              |                        |
| Indel5           | AAAACAGAGTCCTCGGCGTCTAAAC      | TTAGAAAGATTATTGGTGTCCC                  |                        |
| Indel6           | AATTCGAAATGATGACATGAAAGCT      | GTAACTTCCCAATCTTCTATGTC                 |                        |
| OsActin          | TGTATGCCAGTGGTCGTACCA          | CCAGCAAGGTCGAGACGAA                     | qRT-PCR detection      |
| Pizh-1           | CAGATCCTGTTCCTGATGCC           | CTTGAGCTGTGCCTATCTCTTC                  |                        |
| Pizh-2           | GTTGACGACGAATGATAGCGAAGAG      | ACGACGCTGATGGGGGGGGGGGGGGGGGGGGGGGGGGGG |                        |
| R6               | CCAAGCGCTACTCAACTGCC           | TTTCCAGCCCCACACTGTC                     |                        |
| Pizh1-U6a-f      | gccgCGACGAGACCAGCCTCCTGC       | aaacGCAGGAGGCTGGTCTCGTCG                | gene-editing construct |
| Pizh2-U3a-f      | ggcaTGAAACTTAGAGAGCGCCAC       | aaacGTGGCGCTCTCTAAGTTTCA                |                        |
| 2-pizt-u6a-f     | gccgCTCCCCTACTGAGGACACTC       | aaacGAGTGTCCTCAGTAGGGGAG                |                        |
| 2-pizt-u3-f      | ggcaCTAGAAATAAACCCAAGCC        | aaacGGCTTGGGTTTATTTCTAG                 |                        |
| 35S::Pizh-1      | CAATGTCGACATGGCGGAGACGGTGCTGAG | ATCAACTAGTTCAGCCAGCTTGAGCTGTG           | Clone construct        |
| 35S::Pizh-2      | CAATGTCGACATGGCGGAGACGGTGCTGAG | ATCAACTAGTTCAGCCAGCTTGAGCTGTG           |                        |
| CLuc- Pizh-<br>1 | ATCAACTAGTATGGCGGAGACGGTGCTGAG | CCGTGTCGACTCCGCCAGCTTGAGCTGTG           |                        |
| Pizh-1-NLuc      | ATCAACTAGTATGGCGGAGACGGTGCTGAG | CCGTGTCGACTCCGCCAGCTTGAGCTGTG           |                        |
| CLuc- Pizh-<br>2 | ATCAACTAGTATGGCGGAGACGGTGCTGAG | CCGTGTCGACTCCGCCAGCTTGAGCTGTG           |                        |
| Pizh-2-NLuc      | ATCAACTAGTATGGCGGAGACGGTGCTGAG | CCGTGTCGACTCCGCCAGCTTGAGCTGTG           |                        |
| Pizh-1-CDS       | CACCATGGCGGAGACGGTGCTGAG       | TCAGCCAGCTTGAGCTGTG                     | Yeast two-hybrid       |

© The Authors under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

| Pizh-2-CDS | CACCATGGCGGAGACGGTGCTGAG | TCAGCCAGCTTGAGCTGTG     |                             |
|------------|--------------------------|-------------------------|-----------------------------|
| MgPot2     | ACGACCCGTCTTTACTTATTTGG  | AAGTAGCGTTGGTTTTGTTGGAT | Analysis of blast infection |
| OsUbq      | GACGGACGCACCCTGGCTGACTAC | TGCCAATTACCATATACCACGAC |                             |
| M262       | GTTCTCCACTTCACCTCCAT     | TTGCTCTACCCAAACCTTTA    | Molecular marker            |

## Supplementary Table3: Primers used for mapping, plasmid construction and PCR detection