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Abstract
The Supplementary Material contains additional simulation results in support of the main article.

Web Appendix A: Goodness-of-fit
diagnostics
As stated in the main manuscript, the two ways the
transformation model can fail even if there is convergence
to a unique solution, a, are (1) the conditional Kendall’s
tau that is used to estimate the dependence model may
not achieve true quasi-independence between T ′(a) and X
and (2) the linear dependence model may be incorrect.
To address the first potential source of failure and to
detect potential residual dependence between T ′(a) and
X , we recommend permutation based hypothesis tests that
are powerful for nonmonotone dependence [1] and the
incorporation of T ′(â) (or categorized versions of it) as
covariates in a weighted Cox model that accounts for biased
selection of uncensored observations. This procedure can
be easily implemented using standard software such as
the coxph function in the R survival package. In the
absence of censoring, the conditional Pearson’s product-
moment correlation coefficient [2] can be used, as well.

To address the second source of failure for the
transformation model, the linear dependence structure can be
verified by examining the linear relationship between X and
T under the transformation model assumption. If the linear
transformation model holds, the regression coefficient for X
in a model for X − T should be close to (1 + a), as required
by

X − T =− (1 + a)E{T ′(a)}+
(1 + a)X − (1 + a)[T ′(a)− E{T ′(a)}]

:=β0 + β1X + ε.

A more formal diagnostic based on the truncated regres-
sion model above is to consider a linear piecewise trun-
cated regression model and test if the slopes in every
segment are equal. Specifically, this can be constructed by
allowing K changepoints at bk, k = 1, . . . ,K, such that
0 = b0 < b1 < . . . < bK < bK+1 = max{Xi}. The piece-
wise truncated regression model on (X,T ) is then
expressed as X − T = β0 + α1X1 + . . .+ αK+1XK+1 +
ε, where Xj = min{max(X − bk−1, 0), bk − bk−1}, j =
1, . . . ,K + 1. We recommend selecting changepoints that
are uniformly spaced across the range of X , after removing
outliers using the Tukey rules on quantiles [3], and subject to
the requirement that each segment contains at least 10 events.

Rejection of the global test of H0 : α1 = . . . = αK+1 is
tantamount to rejection of the transformation model. When
the global test is rejected, we apply separate transformation
models to each segment to obtain a total ofK transformation
parameters, each of which is used to compute the latent
independent truncation times. In the process, we continue
to use the inverse weighting by the censoring distribution to
adjust the selection bias due to the restriction of uncensored
events. The revised transformation estimator can be obtained
by a weighted Kaplan–Meier estimator using the aggregate
data that combine T ′(a) and X from all segments.

Once non-linearity is detected, it is possible to consider
alternative methods using fractional polynomials or mono-
tone splines in place of applying the transformation model
separately to each segment. These approaches, like the trans-
formation model, also require estimation of unknown param-
eters. The estimation of transformation models for each
segment has intuitive appeal, is computationally simple and
does not require additional assumptions on the underlying
structure that are hard to verity. A more in-depth comparison
merits future research.

Web Appendix B: Simulation when copula
assumptions hold
We compare the performance of the transformation estimator
to that of the copula estimators when data are generated
under the copula assumption. Specifically, we generated T
and X from the conditional joint distribution of (T, Y ):

Pr(T ≤ t,X ≥ x|T < X) ∝ φ−1α [φα{FT (t)}+ φα{SX(x)}],

where the generator function, φα(v) was either the Frank
copula, φα(v) = log{(1− α−1/1− α−v}, α > 0 or the
Clayton copula, φα(v) = (v−(α−1) − 1)/(α− 1), α ≥ 0.
Under these models, the dependence on (T,X) is completely
specified by the copula parameter, α. We selected α = 0.054
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and 1.857, corresponding to τ = 0.3 and −0.3 under the
Frank and the Clayton copulas, respectively. We generated
the failure time, X , from a Weibull distribution with shape
parameter 2 and scale parameter 4. We denote this with
Weibull(2, 4). We generated the truncation time, T , from a
Weibull(2, p) distribution, with scale parameter p tuned to
achieve an average truncation probability of Pr(T ≤ Y ) =
50%. We generated the censoring variable, C, from a log-
normal(µ, 1) distribution, where µ was selected to obtain
three levels of censoring: 20%, 40%, and 60%. For each
of 1000 repetitions of our simulation, we retained n = 200
observations that satisfied T < min(X,C).

For each scenario considered, data generated under the
Frank and Clayton copula models yield similar average
values of Pr(X > X(n)), Pr(X > T(1)) and Pr(X >
T ′(1)(â)). In particular, the averages of Pr(X > T(1)) and
Pr(X > T ′(1)(â)) range from 0.996 to 1.000 under all
configurations, so S′X(x) is expected to be very close to
the unconditional survival curve, SX(x). On the other hand,
the average values of Pr(X > X(n)) range from 0.001
to 0.021 under 20% and 40% censoring, but increase to
0.055 under 60% censoring. Therefore, we expect S′′X(x)
to be close to SX(x) and S′X(x) under 20% and 40%
censoring, but not under heavier censoring. Figure 1 displays
our proposed estimate, the Frank copula estimate, the
Clayton copula estimate and the conventional Kaplan–Meier
estimate under independent truncation, under the different
scenarios that we consider. Under 20% and 40% censoring,
the copula estimators perform poorly when dependence
structure is misspecified, while the transformation estimator
displays less departure from the target survival curve.
Under 60% censoring, the estimators are in closer
agreement with the corresponding target survival curve.
This is because the dependent truncation is weakened by
independent censoring. Overall, these observations indicate
that the proposed adjusted transformation estimator exhibits
reasonable performance even under a misspecified model.
The numerical results summarized in Table 1 confirm these
findings.

[Figure 1 about here.]

[Table 1 about here.]
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Table 1. Summary statistics of the simulation data with n = 200. The dependence structure of (T,X) is specified by copula
models. Bias is the average bias; ESE is the empirical standard error; MSE is the average mean squared error.

Transformation Frank’s estimator Clayton’s estimator

Censoring Ŝ∗(·) bias ESE ASE MSE bias ESE MSE bias ESE MSE
Under Frank’s copula dependence structure

20% 0.8 −0.056 0.090 0.088 0.011 −0.013 0.085 0.007 −0.089 0.079 0.014
0.6 −0.084 0.086 0.087 0.015 −0.015 0.086 0.008 −0.119 0.070 0.019
0.4 −0.074 0.068 0.067 0.010 −0.014 0.072 0.005 −0.104 0.053 0.014
0.2 −0.038 0.042 0.042 0.003 −0.008 0.045 0.002 −0.057 0.031 0.004

40% 0.8 −0.036 0.078 0.075 0.007 −0.008 0.060 0.004 −0.060 0.064 0.008
0.6 −0.047 0.076 0.078 0.008 −0.008 0.063 0.004 −0.077 0.061 0.010
0.4 −0.034 0.062 0.064 0.005 −0.007 0.055 0.003 −0.062 0.049 0.006
0.2 −0.012 0.044 0.045 0.002 −0.005 0.042 0.002 −0.033 0.036 0.002

60% 0.8 −0.008 0.050 0.051 0.003 −0.006 0.043 0.002 −0.032 0.045 0.003
0.6 −0.003 0.057 0.057 0.003 −0.004 0.050 0.003 −0.032 0.050 0.004
0.4 0.008 0.058 0.055 0.003 −0.002 0.056 0.003 −0.021 0.054 0.003
0.2 0.019 0.056 0.055 0.004 −0.003 0.056 0.003 −0.012 0.053 0.003

Under Clayton’s copula dependence structure
20% 0.8 −0.181 0.309 0.037 0.128 0.152 0.057 0.026 0.008 0.170 0.029

0.6 −0.136 0.240 0.238 0.076 0.278 0.083 0.084 0.006 0.155 0.024
0.4 −0.078 0.168 0.170 0.034 0.369 0.108 0.148 0.006 0.116 0.013
0.2 −0.032 0.090 0.090 0.009 0.340 0.118 0.130 0.005 0.065 0.004

40% 0.8 −0.157 0.295 0.294 0.112 0.109 0.094 0.021 −0.004 0.148 0.022
0.6 −0.107 0.231 0.233 0.065 0.205 0.145 0.063 −0.003 0.132 0.017
0.4 −0.063 0.162 0.162 0.031 0.270 0.174 0.104 −0.001 0.097 0.009
0.2 −0.026 0.087 0.081 0.007 0.235 0.161 0.081 −0.001 0.056 0.003

60% 0.8 −0.096 0.243 0.244 0.068 0.014 0.130 0.017 −0.012 0.110 0.012
0.6 −0.065 0.190 0.190 0.040 0.064 0.171 0.033 −0.010 0.094 0.009
0.4 −0.037 0.135 0.136 0.020 0.096 0.194 0.047 −0.009 0.075 0.006
0.2 −0.007 0.082 0.084 0.007 0.084 0.164 0.034 −0.006 0.058 0.003
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(a) Censoring = 20%
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(b) Censoring = 40%
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(c) Censoring = 60%
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(d) Censoring = 20%
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(e) Censoring = 40%
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(f) Censoring = 60%
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Figure 1. The average of the estimators of the distribution of X when the dependence structure of (T,X) is specified by Frank’s
copula in (a), (b), (c) and Clayton copula in (d), (e), (f). The results are based on 1000 data sets and a sample size of n = 200.
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