
Appendix

A Simplified generative model
(i) Emitters independence A first assumption is that two transition processes are independent,
i.e. Pr(Z,U) = Pr(Z)Pr(U) so that:

(z,u) ∼ Pr(Z,U |a, z0,u0) = Pr(Z|a, z0,u0)Pr(U |a, z0,u0)

(ii) End-effector control An additional assumption is that the controlled transition process is
relatively “fast” in comparison with the uncontrolled one (for, e.g, saccades can be realized in a
100-200 ms interval). In consequence we assimilate the motor command a with a setpoint (or
posture) u in the actuator space, that is supposed to be reached at short notice by the motor
apparatus once the command is emitted, under classical stability/controllability constraints. This
entails that, consistently with the ‘end-effector” ballistic control setup (Mussa-Ivaldi and Solla, 2004),
u is independent from u0, i.e.:

u ∼ Pr(U |a)

The motor command a then corresponds to the desired end-orientation of the sensor, here con-
sidered as a setpoint in the actuators space, either expressed in actuators or endpoint coordinates
(with hardware-implemented detailed effector response function). Under that perspective, the effec-
tor acts on the sensors position and orientation so as to achieve a certain perspective (or view) over
the external scene, and the controlled emitter u is now called a viewpoint.

(iii) Uncontrolled environment The third important assumption is that the motor command
a is not expected to affect the uncontrolled latent emitter z, i.e.

z ∼ Pr(Z|z0)

so that z should depend only on the external dynamics (the external “uncontrolled” process).

(iv) Static assumption Under a scene decoding task, it is rather common to consider the envi-
ronment as “static” (Butko and Movellan, 2010). This fourth assumption means, in short, that:

Pr(Z|z0) = δ(Z, z0)

with δ the Knonecker symbol. The uncontrolled latent emitter z is thus expected to capture all
relevant information about the current scene, while remaining invariant throughout the decoding
process.

Last, the observation x may rely on both emitters z and u, i.e.

x ∼ Pr(X|z,u) (39)

Each observation x is generated from a mixed emitter (z,u), with u the controlled part of the
emitter and z the uncontrolled part. Note that z is said the latent state out of habit, though both
u and z contribute to the generation of x.

For notational simplicity, we absorb here the execution noise (Van Beers et al., 2004) in the
measure process, i.e.: x ∼ Pr(X|z, U)Pr(U |a). Then, by notational abuse, we assimilate in the rest



of the paper u (the controlled emitter) with a (the motor command), so that a single variable u ≡ a
should be used for both. Each different u is thus both interpreted as a motor command and as an
emitter. As a motor command, it is controllable, i.e. determined by a controller. As an emitter, it
monitors the generation of the sensory field, in combination with the latent state z.

B Viewpoint-dependent variational encoding setup
The variational encoding perspective (Hinton and Zemel, 1994) was originally developed to train

unsupervised autoencoder neural networks. If x is the original data, the corresponding code z is
generated by a distribution q, i.e. z ∼ q(Z). This distribution is called the encoder. Then, the
reconstruction is made possible with a second conditional probability over the codes, i.e. p(X|z),
that is called the decoder. If z is the current code, the reconstructed data is x̃ ∼ p(X|z).

In short, the efficacy of a code is estimated by an information-theoretic quantity, the “reconstruc-
tion cost” that is defined for every x knowing p and q:

F (x) = Ez∼q [− log(p(x|z))] + KL(q(Z)||p(Z)) (40)
= − log p(x) + KL(q(Z)||p(Z|x)) (41)

with p(Z) the prior over the latent state. F is also said the Variational Free Energy (VFE), for it
shares shares a mathematic analogy with the Helmhotz Free Energy (Friston, 2010). Minimizing the
cost F according to p and q thus means minimizing the “surprise” caused by observing the data x
(Friston, 2010).

Viewpoint-dependent VFE If we now turn back to the viewpoint selection setup, an additional
factor u (the viewpoint) comes into the play. The data x that is actually read is now conditioned
on u, so that:

F (x|u) = Ez∼q [− log(p(x|z,u))] + KL(q(Z)||p(Z)) (42)
= − log p(x|u) + KL(q(Z)||p(Z|x,u)) (43)

When only the variations of p and q are considered in the optimization, each viewpoint u provides
a distinct optimization problem that is resolved by finding q(Z) ' p(Z|x,u). Each u may thus drive
a different posterior and thus a different reconstruction cost. It is thus feasible to change (and
optimize) the reconstruction cost through changing u.

Sequential viewpoint-dependent VFE When generalized to many observations: (x,u), (x′,u′),
..., (x(n),u(n)), the nth reconstruction cost F (n)(x(n)|u(n), ...,x,u) also obeys to the chain rule (see
eq. 6), i.e. is estimated from q(n−1), u(n) and x(n) only:

F (x(n)|u(n); q(n−1)) = Ez∼q

[
− log p(x(n)|z,u(n))

]
+ KL(q(Z)||q(n−1)(Z)) (44)

= − log p(x(n)|u(n)) + KL(q(Z)||p(Z|x(n),u(n); q(n−1))) (45)

with q(n−1) having the role of the prior, providing a forward variational encoding scheme (see also
(Chung et al., 2015; Fraccaro et al., 2016).


