Appendix A

The G-DINA Model

In CDMs, a **Q**-matrix that defines the relationship between items and attributes should be specified by content and domain experts. Let q_{jk} denote the entry in the **Q**-matrix for the indication of item j (j = 1, ..., J) loading on attribute k (k = 1, ..., K), and $q_{jk} = 1$ represents the *k*th attribute that is required to correctly answer the *j*th item, whereas $q_{jk} = 0$ otherwise. For convenient notation, let K_j^* denote the number of required attributes for item *j*, let $\boldsymbol{a}_{lj}^* = (\alpha_{lj1}, ..., \alpha_{ljK_j^*})$ be the reduced attribute vector for the latent class *l* and item *j*, and let $P(\boldsymbol{a}_{lj(i)}^*)$ be the probability of a correct response to item *j* when examinee *i* has the attribute pattern of \boldsymbol{a}_{lj}^* . The G-DINA model can be formulated as follows:

$$P(\boldsymbol{\alpha}_{lj(i)}^{*}) \equiv P(X_{ij} = \mathbf{1} \ \boldsymbol{\alpha}_{lj(i)}^{*}) = \delta_{j0} + \sum_{k=1}^{K_{j}^{*}} \delta_{jk} \alpha_{lk} + \sum_{k=k+1}^{K_{j}^{*}} \sum_{k=1}^{K_{j}^{*}-1} \delta_{jkk'} \alpha_{lk} \alpha_{lk'} \dots + \delta_{j12\dots K_{j}^{*}} \prod_{k=1}^{K_{j}^{*}} \alpha_{lk}, \quad (A1)$$

where $X_{ij} = 1$ indicates a correct response to item *j* by examinee *i* and δ_{jo} , δ_{jk} , $\delta_{jkk'}$, and $\delta_{j12...K_j^*}$ are the intercept term, main effect, first-order interaction effect, and K_j^* th-order interaction effect of item *j*, respectively.

Suppose five attributes are measured in a cognitive diagnostic test; each examinee can be assigned to one of 32 possible latent classes or attribute profiles. If item *j* measures the first three attributes, in the G-DINA model framework, the reduced attribute vector is denoted $\mathbf{a}_{ij}^* = (\alpha_{ij1}, \alpha_{ij2}, \alpha_{ij3})$ and the number of latent classes can be reduced to eight, that is, l = 1, 2, ..., 8. When an examinee has mastered α_{ij1} and α_{ij3} , for example, the probability of a correct response to item *j* for him or her is $\delta_{j0} + \delta_{j1} + \delta_{j3} + \delta_{j13}$. Therefore, the eight latent classes identified by attribute profiles can be allowed to have different successful probabilities on the item response.

Various CDMs can be derived from the saturated G-DINA model (i.e., with $2^{\kappa_j^*}$

parameters) by constraining certain parameters of this probability function to be equal to zero. For example, if only the intercept term and the highest-order effect are estimated, then the saturated G-DINA model reduces to the DINA model (Haertel, 1989; Junker & Sijtsma, 2001), and if only the main effects are retained together with the intercept term, the additive CDM arises. Readers who are interested in the variety of CDMs derived from the G-DINA model are referred to the original study by de la Torre (2011).

Appendix B

Figure B1. Tree diagram of a sequential CDM when the maximum number of attempts is three

Appendix C

Specification of **Q**-Matrix in this Study

Item	Attribute 1	Attribute 2	Attribute 3	Attribute 4
1	1	0	0	0
2	1	0	0	0
3	1	1	0	0
4	1	1	0	0
5	1	1	0	0
6	1	1	0	0
7	1	1	0	0
8	1	1	0	0
9	0	1	0	0
10	0	1	0	1
11	1	1	1	1
12	1	1	1	1
13	1	1	1	1
14	1	1	1	1
15	1	1	1	1
16	0	0	1	0
17	1	1	1	1
18	0	1	0	1
19	1	0	0	1
20	1	0	0	0
21	1	0	0	0
22	1	0	0	0
23	1	0	1	0

Table C1. Q-Matrix for the Simulation Study

Item	Attribute 1	Attribute 2	Attribute 3	Attribute 4
1	1	1	0	0
2	1	1	0	0
3	1	0	1	0
4	1	1	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	0	1

 Table C2. Q-Matrix for the Mathematical Test in the Empirical Data Analysis