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This Supplementary Material contains additional technical details for the proofs of Lemmas

3–8. All the notation is the same as in the main body of the paper.

B Additional technical details

B.1 Lemma 3 and its proof

Lemma 3. Assume that X = (Xij) ∈ Rn×p has independent rows with distribution N(0,Σ0),

Λmax(Σ0) ≤M , and ε = (ε1, · · · , εn)T has i.i.d. components with P{|εi| > t} ≤ C1 exp(−C−11 t2)

for t > 0 and some constants M,C1 > 0. Then we have

P
{∥∥∥ 1

n
XTε

∥∥∥
∞
≤ C

√
(log p)/n

}
≥ 1− p−c

for some constant c > 0 and large enough constant C > 0.

Proof. First observe that P(|Xij | > t) ≤ 2 exp{−(2M)−1t2} for t > 0, since Xij ∼ N(0,Σ0,jj)

and Σ0,jj ≤ Λmax(Σ0) ≤ M , where Σ0,jj denotes the jth diagonal entry of matrix Σ0. By

assumption, we also have P(|εi| > t) ≤ C1 exp{−C−11 t2}. Combining these two inequalities

yields

P(|εiXij | > t) ≤ P(|εi| >
√
t) + P(|Xij | >

√
t)

≤ C1 exp{−C−11 t}+ 2 exp{−(2M)−1t}

≤ C2 exp{−C−12 t},

where C2 > 0 is some constant that depends only on constants C1 and M . Thus by Lemma

6 in [28], there exists some constant C̃1 > 0 such that

P(|n−1
n∑
i=1

εiXij | > z) ≤ C̃1 exp{−C̃1nz
2) (A.1)

for all 0 < z < 1.

Denote by Xj the jth column of matrix X. Then by (A.1), the union bound leads to

1− P
(∥∥∥n−1XTε

∥∥∥
∞
≤ z
)

= P
(∥∥∥n−1XTε

∥∥∥
∞
> z
)

= P
(

max
1≤j≤p

|n−1εTXj | > z
)

≤
p∑
j=1

P(|n−1
n∑
i=1

εiXij | > z)

≤ pC̃1 exp{−C̃1nz
2).

1



Letting z = C
√

(log p)/n in the above inequality, we obtain

P
(∥∥∥n−1XTε

∥∥∥
∞
≤ C

√
(log p)/n

)
≥ 1− C̃1p

−(C̃1C2−1).

Taking large enough positive constant C completes the proof of Lemma 3.

B.2 Lemma 4 and its proof

Lemma 4. Assume that all the conditions of Proposition 2 hold and an[(Lp+L
′
p)

1/2+K
1/2
n ] =

o(1). Then we have

P

{
sup

Ω∈A, |S|≤Kn

∥∥∥ρ̃S − G̃S,SβT,S

∥∥∥
∞
≤ C4

√
(log p)/n

}
= 1−O(p−c4)

for some constants c4, C4 > 0.

Proof. In this proof, we use c and C to denote generic positive constants and use the same

notation as in the proof of Proposition 2 in Section A.6. Since βT = (βT0 , 0, . . . , 0)T with

β0 the true regression coefficient vector, it is easy to check that X̃KOβT = Xβ0. In view of

y = Xβ0 + ε, it follows from the definitions of ρ̃ and G̃ that

ρ̃S − G̃S,SβT,S =
1

n
X̃
T

KO,SXβ0 +
1

n
X̃
T

KO,Sε−
1

n
X̃
T

KO,SX̃KO,SβT,S

=
1

n
XT

KO,Sε+
1

n
(X̃KO,S −XKO,S)Tε.

Using the triangle inequality, we deduce

‖ρ̃S − G̃S,SβT,S‖∞ ≤
∥∥∥ 1

n
XT

KO,Sε
∥∥∥
∞

+
∥∥∥ 1

n
(X̃KO,S −XKO,S)Tε

∥∥∥
∞
.

We will bound both terms on the right hand side of the above inequality.

By Lemma 3, we can show that for the first term,∥∥∥ 1

n
XT

KO,Sε
∥∥∥
∞
≤
∥∥∥ 1

n
XT

KOε
∥∥∥
∞
≤ C

√
(log p)/n

with probability at least 1 − p−c for some constants C, c > 0. We will prove that with

probability at least 1− o(p−c),∥∥∥ 1

n
(X̃KO,S −XKO,S)Tε

∥∥∥
∞
≤ Can(Lp + L′p)

1/2
√

(log p)/n+ Can
√
n−1Kn(log p). (A.2)

Then the desired result in this lemma can be shown by noting that an[(Lp+L′p)
1/2+K

1/2
n ]→

0.
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It remains to prove (A.2). Recall that matrices X̆S and X̆0,S can be written as

X̆S = X(I−Ωdiag{s})S + ZB0,S(BT
0,SB0,S)−1/2

(
(BΩ
S )TBΩ

S

)1/2
,

X̆0,S = X(I−Ω0diag{s})S + ZB0,S ,

where the notation is the same as in the proof of Proposition 2 in Section A.6. By the

definitions of X̃KO and XKO, it holds that∥∥∥ 1

n
(X̃KO,S −XKO,S)Tε

∥∥∥
∞

=
∥∥∥ 1

n
(X̆S − X̆0,S)Tε

∥∥∥
∞
, (A.3)

where X̆S and X̆0,S represent the submatrices formed by columns in S. We now turn to

analyzing the term n−1(X̆S − X̆0,S)Tε. Some routine calculations give

1

n
(X̆S − X̆0,S)Tε =

1

n

((
(Ω0 −Ω)diag{s}

)
S

)T
XTε

+
1

n

((
(BΩ
S )TBΩ

S
)1/2

(BT
0,SB0,S)−1/2 − I

)
BT

0,SZ
Tε.

Thus it follows from sj ≤ 2Λmax(Σ0) for all 1 ≤ j ≤ p and the triangle inequality that∥∥∥ 1

n
(X̆S − X̆0,S)Tε

∥∥∥
∞
≤ 2Λmax(Σ0)

∥∥∥ 1

n
(Ω0,S −ΩS)TXTε

∥∥∥
∞

+
∥∥∥ 1

n

((
(BΩ
S )TBΩ

S
)1/2

(BT
0,SB0,S)−1/2 − I

)
BT

0,SZ
Tε
∥∥∥
∞
. (A.4)

We first examine the upper bound for
∥∥∥ 1

n
(Ω0,S − ΩS)TXTε

∥∥∥
∞

in (A.4). Since Ω ∈ A
and Ω0 is Lp-sparse, by Lemma 3 we deduce∥∥∥ 1

n
(Ω0,S −ΩS)TXTε

∥∥∥
∞
≤

∥∥∥ 1

n
(Ω0 −Ω)XTε

∥∥∥
∞

≤ ‖Ω0 −Ω‖1
∥∥∥ 1

n
XTε

∥∥∥
∞

≤
√
Lp + L′p‖Ω−Ω0‖2 · C

√
(log p)/n

≤ Can(Lp + L′p)
1/2
√

(log p)/n. (A.5)

We can also bound the second term on the right hand side of (A.4) as∥∥∥ 1

n

((
(BΩ
S )TBΩ

S
)1/2

(BT
0,SB0,S)−1/2 − I

)
BT

0,SZ
Tε
∥∥∥
∞

≤
∥∥∥((BΩ

S )TBΩ
S
)1/2

(BT
0,SB0,S)−1/2 − I

∥∥∥
1

∥∥∥ 1

n
BT

0,SZ
Tε
∥∥∥
∞

≤
√

2|S|
∥∥∥((BΩ

S )TBΩ
S
)1/2

(BT
0,SB0,S)−1/2 − I

∥∥∥
2

∥∥∥ 1

n
BT

0,SZ
Tε
∥∥∥
∞

≤
√

2KnCan
√

(log p)/n = Can
√
n−1Kn(log p),

where the second to the last step is entailed by Lemma 2 in Section A.3 and Lemma 5 in

Section B.3. Therefore, combining this inequality with (A.3)–(A.5) results in (A.2), which
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concludes the proof of Lemma 4.

B.3 Lemma 5 and its proof

Lemma 5. Under the conditions of Proposition 2, it holds that with probability at least

1−O(p−c),

sup
|S|≤Kn

∥∥∥ 1

n
BT

0,SZ
Tε
∥∥∥
∞
≥ C

√
(log p)/n

for some constant C > 0.

Proof. Since this is a specific case of Lemma 8 in Section B.6, the proof is omitted.

B.4 Lemma 6 and its proof

Lemma 6. Under the conditions of Proposition 2 and Lemma 1, there exists some constant

c ∈ (2(qs)−1, 1) such that with asymptotic probability one, |ŜΩ| ≥ cs holds uniformly over all

Ω ∈ A and |S| ≤ Kn, where ŜΩ = {j : WΩ,S
j > T}.

Proof. Again we use C to denote generic positive constants whose values may change from

line to line. By Proposition 2 in Section A.6, we have with probability at least 1−O(p−c1)

that uniformly over all Ω ∈ A and |S| ≤ Kn,

max
1≤j≤p

|β̂j(λ; Ω,S)− β0,j | ≤ C
√
sn−1(log p) and max

1≤j≤p
|β̂j+p(λ; Ω,S)| ≤ C

√
sn−1(log p)

for some constants C, c1 > 0. Thus for each 1 ≤ j ≤ p, we have

WΩ,S
j = |β̂j(λ; Ω,S)| − |β̂j+p(λ; Ω,S)|

≥ −|β̂j+p(λ; Ω,S)| ≥ −C
√
sn−1(log p). (A.6)

On the other hand, for each j ∈ S2 = {j : β0,j �
√
sn−1(log p)} it holds that

WΩ,S
j = |β̂j(λ; Ω,S)| − |β̂j+p(λ; Ω,S)|

≥ |β0,j | − |β̂j(λ; Ω,S)− β0,j | − |β̂j+p(λ; Ω,S)| � C
√
sn−1(log p). (A.7)

Thus in order for any WΩ,S
j , 1 ≤ j ≤ p to fall below −T , we must have WΩ,S

j ≥ T for all

j ∈ S2. This entails that ∣∣∣{j : WΩ,S
j ≥ T}

∣∣∣ ≥ |S2| ≥ cs, (A.8)

which completes the proof of Lemma 6.
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B.5 Lemma 7 and its proof

Lemma 7. Assume that all the conditions of Proposition 2 hold and a2n = an + (L′p +

Kn){(log p)/n}1/2 = o(1). Then it holds that

P

{
sup

Ω∈A, |S|≤Kn

∥∥∥G̃S,S −GS,S

∥∥∥
max
≤ C8a2,n

}
= 1−O(p−c8)

for some constants c8, C8 > 0.

Proof. In this proof, we adopt the same notation as used in the proof of Proposition 2 in

Section A.6. In light of (36), we have G̃ = n−1[X, X̆
Ω

]T [X, X̆
Ω

]. Thus the matrix difference

G̃S,S −GS,S can be represented in block form as

G̃S,S −GS,S =
1

n

(
XT
SXS (X̆

Ω
S )TXS

XT
S X̆

Ω
S (X̆

Ω
S )T X̆

Ω
S

)
−

(
Σ0 Σ0 − diag{s}

Σ0 − diag{s} Σ0

)
S,S

=

 n−1XT
SXS −Σ0,S,S n−1(X̆

Ω
S )TXS −

(
Σ0 − diag{s}

)
S,S

n−1XT
S X̆

Ω
S −

(
Σ0 − diag{s}

)
S,S n−1(X̆

Ω
S )T X̆

Ω
S −Σ0,S,S

 .

Note that the off-diagonal blocks are the transposes of each other. Then we see that ‖G̃S,S−
GS,S‖max can be bounded by the maximum of ‖η1‖max, ‖η2‖max, and ‖η3‖max with

η1 = n−1XT
SXS −Σ0,S,S ,

η2 = n−1XT
S X̆

Ω
S −

(
Σ0 − diag{s}

)
S,S ,

η3 = n−1(X̆
Ω
S )T X̆

Ω
S −Σ0,S,S .

To bound these three terms, we define three events

E5 =
{
‖n−1XTX−Σ0‖max ≤ C

√
(log p)/n

}
,

E6 =
{

sup
|S|≤Kn

∥∥∥n−1BT
0,SZ

TX
∥∥∥
∞
≤ C

√
(log p)/n

}
,

E7 =
{

sup
|S|≤Kn

∥∥∥n−1BT
0,SZ

TZB0,S −BT
0,SB0,S

∥∥∥
max
≤ C

√
(log p)/n

}
.

By Lemma 8 in Section B.6, it holds that P (E6) ≥ 1 − O(p−c) and P (E7) ≥ 1 − O(p−c).

Using Lemma A.3 in [6], we also have P (E5) ≥ 1−O(p−c). Combining these results yields

P (E5 ∩ E6 ∩ E7) ≥ 1−O(p−c)

with c > 0 some constant.

Let us first consider term η1. Conditional on E5, it is easy to see that

‖η1‖max ≤ ‖n−1XTX−Σ0‖max ≤ C
√

(log p)/n. (A.9)
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We next bound ‖η2‖max conditional on E5 ∩ E6. To simplify the notation, denote by B̃
S,Ω

=

(BT
0,SB0,S)−1/2

(
(BΩ
S )TBΩ

S

)1/2
. By the definition of X̆S , we deduce

η2 = n−1XT
S X̆

Ω
S −

(
Σ0 − diag{s}

)
S,S

= n−1XT
SX(I−Ωdiag{s})S + n−1XT

SZB0,SB̃
S,Ω
−
(
Σ0 − diag{s}

)
S,S

=
(
(n−1XTX−Σ0)(I−Ωdiag{s})

)
S,S +

(
diag{s} −Σ0Ωdiag{s}

)
S,S + n−1XT

SZB0,SB̃
S,Ω

≡ η2,1 + η2,2 + η2,3.

We will examine the above three terms separately.

Since Ω is L′p-sparse, ‖I−Ω0diag(s)‖2 ≤ ‖I‖2+‖Ω0diag(s)‖2 ≤ C, and ‖(Ω−Ω0)diag{s}‖2 ≤
Can, we have∥∥∥I−Ωdiag{s}

∥∥∥
1
≤
√
L′p

∥∥∥I−Ωdiag{s}
∥∥∥
2

≤
√
L′p

(∥∥I−Ω0diag{s}
∥∥
2

+
∥∥(Ω−Ω0)diag{s}

∥∥
2

)
≤ C

√
L′p. (A.10)

Thus it follow from (A.10) that conditional on E5,

‖η2,1‖max =
∥∥∥((n−1XTX−Σ0)(I−Ωdiag{s})

)
S,S

∥∥∥
max

≤
∥∥∥(n−1XTX−Σ0)(I−Ωdiag{s})

∥∥∥
max

≤
∥∥∥n−1XTX−Σ0

∥∥∥
max

∥∥∥I−Ωdiag{s}
∥∥∥
1

≤ C
√
L′p
√

(log p)/n. (A.11)

For term η2,2, it holds that

‖η2,2‖max =
∥∥∥(diag{s} −Σ0Ωdiag{s}

)
S,S

∥∥∥
max

≤ C‖I−Σ0Ω‖max ≤ C‖Σ0‖2‖Ω0 −Ω‖2 ≤ Can. (A.12)

Note that by Lemma 2 in Section A.3, we have

‖B̃
S,Ω
‖1 ≤

√
|S|‖B̃

S,Ω
‖2 ≤

√
|S|(‖B̃

S,Ω
− I‖2 + 1) ≤ C

√
|S| ≤ C

√
Kn

when |S| ≤ Kn. Then conditional on E6, it holds that

‖η2,3‖max = ‖n−1XT
SZB0,SB̃

S,Ω
‖max

≤ ‖n−1XT
SZB0,S‖max‖B̃

S,Ω
‖1

≤ C
√
n−1Kn(log p). (A.13)
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Thus combining (A.11)–(A.13) leads to

‖η2‖max ≤ C{an +
√
n−1L′p(log p) +

√
n−1Kn(log p)}. (A.14)

We finally deal with term η3. Some routine calculations show that

η3 = n−1(X̆
Ω
S )T X̆

Ω
S −Σ0,S,S .

= n−1
(
(I−Ωdiag{s})TSXT + (B̃

S,Ω
)TBT

0,SZ
T
)(

X(I−Ωdiag{s})S + ZB0,SB̃
S,Ω)

−Σ0,S,S

=
(
n−1(I−Ωdiag{s})TXTX(I−Ωdiag{s})−Σ0 + BT

0 B0

)
S,S

+ n−1(B̃
S,Ω

)TBT
0,SZ

TX(I−Ωdiag{s})S + (I−Ωdiag{s})TSXTZB0,SB̃
S,Ω

+
(
(B̃
S,Ω

)TBT
0,SZ

TZB0,SB̃
S,Ω
−BT

0,SB0,S
)

≡ η3,1 + η3,2 + ηT3,2 + η3,3.

Conditional on event E5, with some simple matrix algebra we derive

‖η3,1‖ =
∥∥∥(n−1(I−Ωdiag{s})TXTX(I−Ωdiag{s})−Σ0 + BT

0 B0

)
S,S

∥∥∥
max

≤
∥∥∥n−1(I−Ωdiag{s})TXTX(I−Ωdiag{s})−Σ0 + BT

0 B0

∥∥∥
max

≤
∥∥∥(I−Ωdiag{s})T (n−1XTX−Σ0)(I−Ωdiag{s})

∥∥∥
max

+
∥∥∥(I−Ωdiag{s})TΣ0(I−Ωdiag{s})−Σ0 + 2diag{s} − diag{s}Ω0diag{s}

∥∥∥
max

≤ ‖n−1XTX−Σ0‖max‖(I−Ωdiag{s})‖21
+ ‖diag{s}(I−ΩΣ0)‖max + ‖(I−Σ0Ω)diag{s}‖max + ‖diag{s}(Ω0 −ΩΣ0Ω)diag{s}‖max

≤ CL′p
√

(log p)/n+ Can, (A.15)

where the last step used (A.10) and calculations similar to (A.12).

It follows from (A.10) and the previously proved result ‖B̃
S,Ω
‖1 ≤ C

√
Kn for |S| ≤ Kn

that conditional on event E6,

‖η3,2‖ = ‖n−1(B̃
S,Ω

)TBT
0,SZ

TX(I−Ωdiag{s})S‖max

≤ ‖B̃
S,Ω
‖1‖n−1BT

0,SZ
TX‖max‖(I−Ωdiag{s})S‖1

≤ C
√
Kn

√
L′pn

−1(log p)

= C
√
n−1KnL′p(log p). (A.16)
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Finally, by Lemma 2 it holds that conditioned on E7,

‖η3,3‖ =
∥∥∥n−1(B̃S,Ω)TBT

0,SZ
TZB0,SB̃

S,Ω
−BT

0,SB0,S

∥∥∥
max

≤
∥∥∥(B̃

S,Ω
)T (n−1BT

0,SZ
TZB0,S −BT

0,SB0,S)B̃
S,Ω∥∥∥

max

+
∥∥∥(B̃

S,Ω
)TBT

0,SB0,SB̃
S,Ω
−BT

0,SB0,S

∥∥∥
max

≤
∥∥∥n−1BT

0,SZ
TZB0,S −BT

0,SB0,S

∥∥∥
max
‖B̃
S,Ω
‖21 + Can

≤ CKn

√
(log p)/n+ Can. (A.17)

Therefore, combining (A.15)–(A.17) results in

‖η3‖max ≤ Can + C(L′p +Kn +
√
KnL′p)

√
(log p)/n

≤ Can + 2C(L′p +Kn)
√

(log p)/n,

which together with (A.9) and (A.14) concludes the proof of Lemma 7.

B.6 Lemma 8 and its proof

Lemma 8. Under the conditions of Proposition 2, it holds that with probability at least

1−O(p−c),

sup
|S|≤Kn

∥∥∥ 1

n
BT

0,SZ
TX
∥∥∥
max
≥ C

√
(log p)/n,

sup
|S|≤Kn

∥∥∥n−1BT
0,SZ

TZB0,S −BT
0,SB0,S

∥∥∥
max
≥ C

√
(log p)/n

for some constants c, C > 0.

Proof. We still use c and C to denote generic positive constants. We start with proving the

first inequality. Observe that

sup
|S|≤Kn

∥∥∥ 1

n
BT

0,SZ
TX
∥∥∥
max
≤
∥∥∥ 1

n
BT

0 ZTX
∥∥∥
max

.

Thus it remains to prove

P

(∥∥∥ 1

n
BT

0 ZTX
∥∥∥
max
≥ C

√
(log p)/n

)
≤ o(p−c). (A.18)

Let U = ZB0 ∈ Rn×p and denote by Uj the jth column of matrix U. We see that

the components of Uj are i.i.d. Gaussian with mean zero and variance eTj BT
0 B0ej , and

the vectors Uj are independent of ε. Let Ũj = (eTj BT
0 B0ej)

−1/2Uj . Then it holds that

Ũj ∼ N(0, In). Since Xij ∼ N(0,Σ0,jj) and Σ0,jj ≤ Λmax(Σ0) ≤ C with C > 0 some
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constant, it follows from Bernstein’s inequality that for t > 0,

P
(∥∥∥ 1

n
BT

0 ZTX
∥∥∥
max
≥ t‖BT

0 B0‖2
)
≤

p∑
j=1

P
(

1

n

∣∣∣(Uj)
TXi

∣∣∣ ≥ t‖BT
0 B0‖2

)

≤
p∑
j=1

P
(

1

n

∣∣∣(Ũj)
TXi

∣∣∣ ≥ t)
≤ Cp exp(−Cnt2).

Taking t = C
√

(log p)/n with large enough constant C > 0 in the above inequality yields

P
(∥∥∥ 1

n
BT

0 ZTX
∥∥∥
max
≥ C

√
(log p)/n‖BT

0 B0‖2
)
≤ Cp−c

for some constant c > 0. Thus with probability at least 1−O(p−c), it holds that∥∥∥ 1

n
BT

0 ZTX
∥∥∥
max
≤ C

√
(log p)/n‖BT

0 B0‖2

= C
√

(log p)/n‖diag(s)− diag(s)Ω0diag(s)‖2
≤ C

√
(log p)/n,

which establishes (A.18) and thus concludes the proof for the first result.

The second inequality follows from

sup
|S|≤Kn

∥∥∥n−1BT
0,SZ

TZB0,S −BT
0,SB0,S

∥∥∥
max
≤
∥∥∥n−1BT

0 ZTZB0 −BT
0 B0

∥∥∥
max

and Lemma A.3 in [6], which completes the proof of Lemma 8.
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