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Abstract 

 
 There is much interest in implementing more wind power plants in future electric energy systems.   

However, because wind power is unpredictable and difficult to control, large sudden disturbances in wind 

power generation can cause high deviations in frequency and voltage or even transient instabilities.   To 

address these concerns, one possible solution is to add fast energy storage, such as flywheel energy 

storage systems.  Flywheels can respond faster than conventional generators and could stabilize the 

system until slower generators can respond. 

The following approach for transient stabilization using flywheels is proposed.  First, the dynamic 

model for the interconnected system is obtained so that control using the flywheel can be designed and 

tested for provable performance.  Next, flywheels are placed at each bus with wind generators, which are 

the potential disturbance locations.  Then, a variable speed drive controller for flywheels is designed 

using time-scale separation and nonlinear passivity-based control logic.  Switches in the power electronics 

interfacing between the flywheel and the rest of the power grid are controlled in order to regulate both the 

flywheel speed and the power electronic currents.  The controller set points are chosen so that the 

flywheel absorbs the wind power disturbance and the rest of the system is minimally affected.  Finally, 

the power electronics are sized to ensure that the flywheel can handle a certain range of disturbances. 

Due to the complex nature of large interconnected power systems, automated methods are 

implemented for both the modeling and control of power systems.  An automated approach is presented 

for symbolically deriving the dynamic model of power systems using the Lagrangian formulation from 

classical mechanics, where the model is described in terms of the energy functions of the system.  

Another automated method is introduced for symbolically deriving the control law using passivity-based 

control, where the control law is derived from desired closed-loop energy functions.   

Finally, in the actual implementation of flywheels, one major design challenge is to support the high 

speed rotor.  A passive magnetic bearing design is presented and the resultant magnetic fields and forces 

are computed, demonstrating that stable levitation of the flywheel in all directions is achieved.  
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1.   Introduction 

1.1.   Thesis Motivation   

There is much interest in replacing conventional generators, such as coal and nuclear power plants, 

with wind power plants and other renewable energy sources in future electric power systems.   Renewable 

energy sources have the potential to reduce greenhouse gas emissions and reduce the consumption of 

fossil fuels [1].  However, because wind power is difficult to predict and control, there are concerns that 

large sudden disturbances in wind power generation could cause negative impacts on the power system, 

such as transient instabilities, high deviations in frequency and voltage, frequent service interruptions, and 

wear and tear on generators.    

Furthermore, wind generators typically have less inertia than conventional generators and have 

smaller mechanical and electromagnetic time constants.  While power systems with high-inertia machines 

would react very slowly and almost negligibly to fast temporary disturbances, power systems with many 

low-inertia wind power plants would response faster to a given disturbance and be more prone to transient 

instabilities [2]. 

1.2.   State-of-the-Art Industry Practices  

Current industry practices for maintaining stability during large disturbances and faults are either 

inefficient or do not guarantee stability.  Often, in industry today, the power system is operated 

suboptimally in order to improve the stability margin [3].  A system operator first runs an economic 

dispatch optimization to maximize the social welfare using the physical limits in the system as 

constraints.  Next, the system operator performs dynamic simulations to assess the stability for many 

different possible disturbances.  If unstable responses are detected, the system operator runs the economic 

dispatch optimization again with additional constraints to ensure stability for certain disturbances [2].  

The main drawback with this method is that it is very suboptimal during normal conditions.   

Another industrial practice for handling large disturbances is to use Remedial Action Schemes (RAS), 

which reconfigure the grid topology in real-time and disconnect certain components or parts of the system 
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to preserve stability [4].   While the reconfigured grid topology is designed to have a new equilibrium, 

there is no guarantee that the system will converge to this new equilibrium.  The state variables may 

deviate too much prior to the reconfiguration for the system to converge to the new equilibrium since the 

dynamics of the power system are inherently nonlinear.  Other drawbacks are that more components than 

necessary may be disconnected and that building additional infrastructure for reconfiguration, which only 

is used during disturbances and faults, is very expensive and inefficient. 

In industry today, conventional generators have governor control [5] and excitation control with 

power system stabilizers [3].  Both controllers are decentralized and respond only to their own state 

variables.   However, drawbacks with these controllers are that they are relatively slow and can be far 

away from the source of the disturbance.   Additionally, since these controllers are only tuned against 

their static worse-case grid equivalents, it is very hard to guarantee that dynamic interactions will not 

occur within large complex systems.   

1.3.   Flywheel Energy Storage Systems  

An alternative solution for maintaining stability is to add fast energy storage, such as flywheel energy 

storage systems, along with the renewable energy sources into future power grids.  A flywheel energy 

storage system stores mechanical energy by accelerating a rotor called the flywheel to a very high speed.  

The flywheel is connected to an electric machine to control its rotational speed.  Flywheels can respond 

faster than conventional generators and could stabilize the system in response to a large disturbance until 

slower generators can respond.  Additionally, using flywheels would reduce the wear-and-tear on 

generators by decreasing the amount of times the generators have to suddenly change their power output 

and would also allow generators to produce closer to their economically optimal power [6].   

    Flywheels are not an appropriate storage choice for large-scale power system applications, such as 

economic dispatch, because other types of storage, such as pumped hydro, have a much greater energy 

capacity.  However, for small-scale applications, flywheels have many benefits.  They are 

environmentally benign, and they are more efficient and have smaller time constants than most other 
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types of storage [7].  While chemical batteries have roughly the same time constant as flywheels, 

flywheels have approximately twice the lifespan of chemical batteries and, unlike chemical batteries, are 

not limited to a certain number of charge-discharge cycles [7].  Additionally, compared to flexible 

alternating current transmission systems (FACTS) devices [2], flywheels have the benefit of being able to 

store active power in steady-state and hence can handle longer disturbances than FACTS devices [8]. 

1.4.   Thesis Contributions  

Much previous research on the modeling and control of flywheels has been done when assuming the 

flywheel is a standalone device [9,10,11].  However, in practice the dynamics of the rest of the power grid 

are interconnected with the dynamics of the flywheel.  Therefore, in order to fully assess the effectiveness 

of a flywheel controller in transiently stabilizing an interconnected power system in response to wind 

power disturbances, the dynamics of the entire power system must be considered.  Additionally, it should 

be emphasized that nonlinear dynamics and nonlinear control are needed because large sudden wind 

disturbances can displace the system far enough away from equilibrium where linearized models are no 

longer accurate. 

The following approach for transient stabilization using flywheels is proposed in this thesis.  First, the 

nonlinear dynamic model for the interconnected power system is derived in standard state space form, so 

that control using the flywheel can be designed and tested for provable performance.  Next, the potential 

disturbance locations, which are the locations with wind generators, are identified, and flywheels are 

placed at each of these locations.  Then, nonlinear power electronic control logic for the flywheels is 

designed so that the flywheels absorb the wind power disturbances and the rest of the system is minimally 

affected.  Finally, parameters for the power electronics are chosen to ensure that the flywheel can handle a 

certain range of disturbances. 

A novel automated computer-aided method is presented in Chapter 2 for symbolically deriving the 

nonlinear dynamics of an interconnected power system using the Lagrangian formulation from classical 

mechanics where the model is derived from the physical energies of the system.  With this automated 
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approach, the user specifies the power system topology and the code symbolically solves for the dynamics 

in standard state space form using the Lagrangian approach [12].  The automation of this modeling 

process is valuable because even for a small interconnected power system, it is a complex and tedious 

process to derive the state space model by hand.  One advantage of the Lagrangian formulation is that it 

provides a unified energy-based framework for analyzing mixed energy systems [13], such as power 

systems, which contain coupled electrical and mechanical subsystems, and this formulation also explicitly 

captures the coupling between subsystems.  Another advantage is that the Lagrangian formulation has 

been shown to be useful at the nonlinear control design stage.  For the passivity-based control logic [14] 

used in this thesis, closed-loop energy functions with desirable properties are chosen and the control law 

is then derived from those closed-loop energy functions. 

To improve the computational efficiency of the automated modeling of power system dynamics, an 

alternative modular computer-aided method, is described in Chapter 3.  Using this modular approach, first 

the dynamics for each individual module are derived using the Lagrangian approach and expressed in a 

common form, and then, given the interconnection between modules, the state space model of the 

interconnected system is solved for in an automated manner [15].     

Chapter 4 introduces a novel automated computer-aided method for symbolically deriving the control 

law using passivity-based control logic for electrical systems.  Passivity-based control is a nonlinear 

control method where the control law is derived from desired closed-loop energy functions.   In this 

automated method, the control designer specifies the original state space model, the set point equations, 

the desired closed-loop energy function, and the desired closed-loop dissipation function, and the 

automated method symbolically derives the control law [16].  Again, the automation of this process is 

important because deriving the control law by hand for a large system would be very tedious. 

Next, a novel variable speed drive controller for flywheels is developed in Chapter 5 using time-scale 

separation and this automated passivity-based control logic.  Switches in the power electronics are 

controlled in order to regulate the speed of the flywheel (and hence the energy stored in the flywheel) to a 

different frequency than the grid frequency.  To simplify the control design and reduce the amount of 



5 

 

communications needed, this controller takes advantage of the natural time-scale separation between the 

power electronics, the electrical machine variables, and the mechanical machine variables (the power 

electronic dynamics are the fastest while the mechanical machine variable dynamics are the slowest) in 

order to design a nested three-layer controller which can regulate both the flywheel speed and the power 

electronic currents to desired set points [17].   

It should be emphasized that the fast dynamics of the inductors and capacitors in the power 

electronics are included when designing the control.    Much previous literature on flywheels neglects the 

dynamics of the power electronics and models the flywheel as an ideal power source [18,19].  However, 

when using flywheels for transient stabilization on a very fast time-scale, it is necessary to include the fast 

dynamics.  Otherwise, potential instabilities on a very fast time-scale will not be captured. 

Chapter 6 discusses using this flywheel variable speed drive controller for transient stabilization of an 

interconnected power system in response to wind power disturbances.  The controller set points are 

chosen so that the flywheel absorbs the disturbance and the rest of the system is minimally affected [20].  

Three different specific methods for choosing the set points are described and compared.  Chapter 7 then 

examines how changing the parameters of the power electronic inductors, capacitors, and resistors will 

affect the control performance.  Recommendations are given for sizing these components based on the 

size of the disturbance. 

Chapter 8 demonstrates using this controller for transient stabilization of larger power systems, 

consisting of multiple wind generators and multiple flywheels, in response to multiple wind power 

disturbances.  A flywheel controller is placed at each bus with one or more wind generators, and each 

flywheel is responsible for absorbing all the wind power disturbances on that bus so that the rest of the 

system is minimally affected.  It should be emphasized that this is a competitive control strategy, as 

opposed to the cooperative control strategy pursued in [8] where a FACTS controller in one region is used 

to transient stabilize the system in response to a disturbance or fault in a different region.   Simulation 

results are shown demonstrating the effectiveness of flywheels and this control logic for transient 

stabilization of the Sao Miguel island power system using real-world data. 
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Wind power disturbances are considered in this thesis because they are the most common type of 

disturbance in power systems, but it should noted that the flywheel variable speed drive controller could 

be used to transient stabilize the system in response to other types of disturbances as well.  Additionally, 

it should be noted that while flywheels are analyzed in this thesis, most of the modeling and the control 

design in this thesis would be applicable to other types of fast storage as well.  The Lagrangian-based 

modeling of the dynamics and the passivity-based control logic provide a general energy-based 

framework for analyzing systems with different types of energy [21]. 

Finally, in the actual implementation of flywheels, one major design challenge is to support the high 

speed rotor.  It is advantageous to use magnetic bearings to support the flywheel instead of conventional 

mechanical bearings in order to decrease frictional energy losses.  Magnetic bearings are contactless and 

therefore can exhibit a much higher efficiency.  Most commercial magnetic bearings are active magnetic 

bearings, which use position sensors and electronic circuits that control electromagnets to achieve stable 

levitation of the rotating element.  However, active magnetic bearings are more expensive than passive 

magnetic bearings, which do not have any sensors or control. 

 Therefore, in Chapter 9, a novel passive magnetic bearing design is analyzed.  A significant 

challenge with passive magnetic bearings results from Earnshaw’s Theorem, which states that it is not 

possible to stably levitate an object in all directions using any configuration of only permanent magnets. 

To overcome this problem, a Halbach array stabilizer, which induces currents in stabilization coils, is 

added to the levitation magnet system.  The resultant magnetic fields and forces of the magnetic bearing 

system are computed using electromagnetic theory, demonstrating that stable levitation of the flywheel in 

all directions is achieved with this design [22,23,24].  
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2.   Automated Energy-Based Modeling of Power System Dynamics 

In order to design control logic using flywheels and test the control for provable performance, it is 

necessary to first obtain the dynamic model of the power system.  Nonlinear dynamics and nonlinear 

control are needed because large wind disturbances can displace the system far enough away from the 

equilibrium where linearized models are no longer accurate.  For large interconnected power systems 

components, it can be a very tedious and lengthy process to obtain the state space model for the system.  

For this reason, a new automated approach was implemented for symbolically deriving the state space 

model of general power systems, given the power system topology, using the Lagrangian formulation 

from classical mechanics [12,25]. 

Lagrangian mechanics and Hamiltonian mechanics are re-formulations of classical Newtonian 

mechanics [26].  While the dynamic equations of motion in Newtonian mechanics are derived from 

forces, the equations of motion in Lagrangian and Hamiltonian mechanics are derived from the potential 

and kinetic energies of the system. While the Lagrangian and Hamiltonian formulations were originally 

developed for mechanical systems, they can also be applied to other types of systems, as well to mixed 

energy systems, such as power systems, which contain coupled electrical and mechanical subsystems 

[21].   

There are two main advantages to using the Lagrangian or Hamiltonian formulation for deriving the 

dynamics.  First, these formulations provide a unified energy-based framework for analyzing differently 

subsystems in mixed energy systems and explicitly capture the coupling between subsystems.  Second, in 

the passivity-based control described in Chapter 4, desired closed-loop energy functions are chosen, and it 

is necessary to derive the resulting error dynamics from those closed-loop energy functions in order to 

derive the control law. 

When applying the Lagrangian and Hamiltonian formulations to electrical systems or subsystems, the 

magnetic energy stored in inductors is analogous to the kinetic energy for mechanical systems, and the 

electric energy stored in capacitors is analogous to the potential energy for mechanical systems [21].  The 

Lagrangian and Hamiltonian approaches are equivalent, but the electrical state variables resulting from 
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the Lagrangian approach are the capacitor charges and the inductor currents while the electrical state 

variables that arise from the Hamiltonian approach are the capacitor charges and the inductor fluxes.  In 

[27], automated methods were introduced for deriving the dynamic equations of electric circuits using 

each formulation, and the Lagrangian formulation was shown to be more computationally efficient than 

the Hamiltonian formulation.  This is because the Hamiltonian approach requires the inductance matrix of 

the system to be inverted and the constraints for circuits, as well as for power systems, are fundamentally 

in terms of currents, not fluxes [27].  Hence, the Lagrangian formulation is used in this thesis.  

In this chapter, it is first described how the Lagrangian formulation is applied to electrical systems.  

Then, it is demonstrated how the Lagrangian formulation is applied to electromechanical systems, such as 

power systems. 

2.1.   Lagrangian Formulation Applied to Electrical Systems    

Much previous literature describes applying the Lagrangian formulation to electric circuits 

[13,28,29].  Extending this previous work, a novel automated computer-aided method is described in this 

section for symbolically deriving the dynamic equations in standard state space form of an electric circuit 

using the Lagrangian formulation, given user input about the circuit topology.  It should be noted that 

many existing circuit simulators, such as CADENCE Design Systems, SPICE, and PSPICE [30], can 

simulate the behavior of a circuit but do not return the state space model of a circuit.  Hence, these tools 

cannot be used for control design with provable performance.     

This automated method is demonstrated for deriving the state space model of an ac/dc/ac converter.  

Control for this converter will then be developed in Section 4.2 using passivity-based control logic.  

Ac/dc/ac converters are widely used and proposed in variable speed drives for flywheel energy storage 

systems [31,32,33,34].   

2.1.1. Automated State Space Model Derivation Methodology  

The automated method was first introduced in [27] for deriving the state space equations for linear 

electric circuits with any number of voltages sources, resistors, capacitors, and inductors, as well as 
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mutual inductance between inductors.  The automated approach was then extended to include power 

electronic circuits with switches in [16].  This automated method uses the internal MATLAB ‘syms’ and 

‘solve’ commands in order to symbolically solve for the dynamic equations in standard state space form 

given user input about the circuit topology.   

It should be emphasized that the automated method expresses the dynamics in standard state space 

form as an ODE (ordinary differential equation) system.  In order to do this, logic is implemented in the 

automated methods to check for all-inductor cutsets, which occur when one of the inductor currents can 

be expressed as a linear combination of the other inductor currents, and all-capacitor loops, which occur 

when one of the capacitor charges can be expressed as a linear combination of the other capacitor charges.  

When there are all-inductor cutsets or all-capacitor loops, the dynamics will initially be a DAE 

(differential algebraic equation) system.  In order to convert the DAE system to an ODE system, the 

automated method eliminates one of the inductor currents in each all-inductor cutset and one of the 

capacitor charges in each all-capacitor loop using the algebraic relationships.  

It is desired to express the dynamics in standard state space form as an ODE system because this is 

the only form directly useful for applying many existing control techniques [35], such as Linear-

Quadratic Regulator (LQR) control [36].  Also, standard state space form is needed for checking whether 

the system is fully observable and fully controllable, as well as for deciding the placement of sensors for 

control design [35].   Additionally, simulating DAEs with an index greater than one is very difficult, as 

discussed in [37].  

For the automated method, the user should take the following steps to provide information about the 

circuit topology: 

1. For each of the B branches of the circuit, label and define the directions of the currents.  A branch is 

defined as a continuous path where the same current must flow.  (The charge qk on each branch is 

defined by /k kdq dt i .) 
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2. For a circuit with J junctions, choose one arbitrary junction to be ground and label the voltages at 

the other J-1 junctions as λ1 , λ2 ,…,  λJ-1.  (These junction voltages are the Lagrange multipliers 

when applying the Lagrangian equation.)   A junction is defined as the intersection of three or more 

branches.  Write Kirchhoff’s current law (KCL) equations at the non-ground junctions starting with 

the junction labeled λ1 and ending with the junction labeled λJ-1.  Use the following convention 

when writing the KCL equations:   

 into junction out of junction 0i i     (2.1) 

For a power electronic circuit with switches, the KCL equations are a function of the control inputs 

(switch positions) [14]. 

3. Define all parameters and controllable inputs, as well as all the charges and currents on each branch, 

as MATLAB ‘syms’ (symbolic objects). 

4. Form Bx1 symbolic vectors for the current I and the charge Q consisting of the symbolic currents 

and charges on the individual branches.  

5. Form 1xB symbolic vectors for the capacitance vector C, the resistance vector R, and the voltage 

source vector V, consisting respectively of the capacitances, resistances, and voltage sources on 

each branch.  (For the voltage source vector, if the direction of the current is such that it leaves the 

positive terminal of the voltage source, then the sign is positive.  Otherwise, the sign is negative.) 

6. Form a BxB symbolic matrix for the inductance matrix L where the self-inductances of each branch 

are given on the diagonal entries of the matrix and the mutual inductance between branches are 

given on the off-diagonal entries of the matrix. 

7. Form the constraint matrix G, which is a (J-1)xB matrix.  0GI  gives the KCL equations.  For a 

power electronic circuit with switches, G will be a function of the switch positions. 

8. Form the Lagrange multiplier Λ vector, which is a 1x(J-1) symbolic vector, consisting of the 

voltages at the J-1 non-ground junctions. 
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Given the circuit topology defined by the matrices I, Q, C, R, V, L, G, and Λ, the computer solves 

for the dynamic equations by taking the following steps: 

1. Find the total magnetic co-energy Wm’ stored in the inductors of the circuit, which is 

 
T1

'
2

mW  I LI  (2.2) 

For an electrically linear system, the magnetic energy is numerically equal to the magnetic co-

energy, although the magnetic energy is expressed in terms of fluxes while the magnetic co-energy 

is expressed in terms of currents [38]. 

2. Find the total electric energy We stored in the capacitors of the circuit, which is  
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e
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C
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It is important to do the summation for only those branches containing a capacitor to avoid dividing 

by zero. 

3. Find the Lagrangian L, which is 

 'm eW W L  (2.4) 

4. Find the Rayleigh dissipation function R, which is   
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2

B
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 R IR  (2.5) 

5. Form the Lagrange equations of the first kind [28] 
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GI
V

I Q I I

L L R 
 (2.6) 

The Lagrange equations for electric systems specify that the voltage across each branch must be 

equal to the difference between the two junction voltages adjacent to that branch.  The first, second, 

and third terms of (2.6) are the voltage drops across the inductors, capacitors, and resistors of branch 

k respectively.  The fourth term contains the voltage sources on branch k, and the fifth term is the 

voltage difference between the connecting junctions adjacent to branch k.     
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The benefit of using the Lagrange equations rather than the conventional Kirchhoff’s voltage law 

(KVL) equations is that in the passivity-based control described in Chapter 4, closed-loop energy 

functions with desirable properties are chosen.  The Lagrange equations are used to derive the 

resulting error dynamics and then the control law from those closed-loop energy functions.  This 

would not be possible using the KVL equations.      

6. Add the KCL equations, 0GI , to these equations in order to form the initial set of equations. 

7. For branches containing both a capacitor and an inductor, add another equation to the system: 

/k kdq dt i . 

8. For branches containing a capacitor but not an inductor, substitute in /kdq dt for ki . 

At this point, there are B+J-1+Bboth equations and Bnone+2Bind+2Bcap+4Bboth+J-1 unknowns where 

Bnone is the number of branches with neither an inductor nor a capacitor, Bind is the number of 

branches with an inductor but not a capacitor, Bcap is the number of branches with a capacitor but 

not an inductor, and Bboth is the number of branches with both a capacitor and an inductor.  The 

unknowns are the voltages at the non-ground junctions, the currents in branches containing neither 

an inductor nor a capacitor, the currents and the derivatives of currents in branches containing only 

an inductor, the charges and the derivatives of charges in branches containing only a capacitor, and 

the currents, the derivative of the currents, the charges, and the derivative of the charges in branches 

containing both an inductor and a capacitor.  There are Bind+Bcap+2Bboth (the number of storage 

devices) more unknowns than equations. 

If there are no all-inductor cutsets or all-capacitor loops, using the MATLAB ‘solve’ function, the 

Bind+Bcap+2Bboth derivatives of the state variables, as well as the J-1 λ’s and the Bnone currents, can be 

solved for in terms of the Bind+Bcap+2Bboth state variables.  However, if there are all-inductor cutsets 

or all-capacitor loops, the ‘solve’ function will produce a warning saying that no explicit solution 

can be found.  Therefore, all-inductor cutsets and all-capacitor loops must be checked for before 

using the ‘solve’ function. 
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9. Check for any all-inductor cutsets.  An all-inductor cutset occurs when one of the inductor currents 

is dependent and can be expressed as a linear combination of the other inductor currents.  It is not 

sufficient to merely check for all-inductor cutsets at the J-1 junctions where the KCL equations 

were written.  It is possible there could be an algebraic relationship between inductor currents at the 

ground junction or at a supernode.  For a circuit with J junctions, there are 2
J
-2 possible KCL 

equations that can be written [39], J-1 of which are independent.  Half of these possible KCL 

equations are just negatives of each other, so it is necessary to check (2
J
-2)/2 KCL equations for an 

all-inductor cutset.  For each of these KCL equations, an all-inductor cutset occurs when all 

branches in the KCL equation contain an inductor. 

If there is an all-inductor cutset, a current must be substituted by an expression in terms of the other 

currents in the all-inductor cutset.  Also, the derivative of that current must be substituted by the 

derivative of that expression.  Finally, the proper KCL equation must be eliminated from the system 

of equations. 

10. Check for any all-capacitor loops.  An all-capacitor loop occurs when one of the capacitor charges is 

dependent and can be expressed as a linear combination of the other capacitor charges.  All possible 

KVL equations in the circuit (excluding ones that are merely negatives of each other) must be 

checked.  For each of these KVL equations, an all-capacitor loop occurs when all branches in the 

loop contain only a capacitor or a voltage source (not an inductor or a resistor). 

If there is an all-capacitor loop, a charge must be substituted by an expression in terms of the other 

charges and voltages sources in the loop.  Also, the derivative of that charge must be substituted by 

the derivative of that expression as well.  Finally, the Lagrange equation for the branch whose 

charge was substituted for must be eliminated from the system of equations. 

11. At this point, there are B+J-1+Bboth-D equations and Bnone+2Bind+2Bcap+4Bboth+J-1-2D unknowns 

where D is the number of dependent storage devices.  There are Bind+Bcap+2Bboth-D (the number of 

independent storage devices) more unknowns than equations.   
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To solve for the state space model, the derivatives of the state variables need to be expressed in 

terms of only the state variables (not the λ’s or the currents in branches with no storage devices).  

Therefore, the MATLAB ‘solve’ function is used to symbolically solve for the Bind+Bcap+2Bboth-D 

derivatives of the state variables, as well as the J-1 λ’s and the Bnone currents, in terms of the 

Bind+Bcap+2Bboth-D state variables. The solution returned by the MATLAB ‘solve’ function is in the 

general state space form: 

 ( , )x ux f  (2.7) 

where x is the vector of state variables and u is the vector of controllable inputs.  The state variables 

are the independent inductor currents and the independent capacitors charges.  

2.1.2. Example: AC/DC/AC Converter    

As an example for the automated modeling methodology, consider the three-phase ac/dc/ac 

(alternating current/direct current/alternating current) converter shown in Figure 2.1.  There is a three-

phase voltage source at a constant frequency ω1 on the left side of the converter, a dc-link capacitor in the 

middle, and a three-phase constant resistance and inductance load on the right side.  The objective of the 

ac/dc/ac converter is to regulate the currents through the load to desired values at a different frequency 

than the voltage source.  The controllable inputs are the positions of the twelve switches.  For each of the 

six switch pairs, the control is designed so that, at any given time, either the top switch or the bottom 

switch is closed, but not both.  The switching functions 1 1 1 2 2 2, , , , ,and a b c a b cu u u u u u  are defined as 

 
1 closed

1,2 ; , ,
1 closed

ik

ik

ik

S
u i k a b c

S


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
 (2.8) 
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Figure 2.1:  Circuit topology for ac/dc/ac converter. 

Following the automated modeling methodology, first the currents are labeled on each of the eight 

branches of the circuit as shown in Figure 2.1.  There are four junctions in the circuit.  The left junction is 

chosen to be ground and the voltages at the other three junctions are labeled as shown in Figure 2.1.  

Using the convention in (2.1), the KCL equations at the three non-ground junctions are 

1 1 1 2 2 2
1 1 1 2 2 2

-(1 ) (1 ) (1 ) (1 ) (1 ) (1 )
0

2 2 2 2 2 2

a b c a b c
a b c C R a b c

u u u u u u
i i i i i i i i

     
         (2.9) 

1 1 1 2 2 2
1 1 1 2 2 2

-(1 ) (1 ) (1 ) (1 ) (1 ) (1 )
0

2 2 2 2 2 2

a b c a b c
a b c C R a b c

u u u u u u
i i i i i i i i

     
         (2.10) 

 2 2 2 0a b ci i i    (2.11) 

After defining all parameters, switching functions, currents, and charges as symbolic objects, the 

symbolic vectors I and Q are defined as 

  1 1 1 2 2 2

T

a b c C R a b ci i i i i i i iI  (2.12) 

  1 1 1 2 2 2

T

a b c C R a b cq q q q q q q qQ  (2.13) 

The inductance matrix L, the capacitance vector C, the resistance vector R, and the voltage source 

vector V are defined as 
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  0 0 0 0 0 0 0CC  (2.15) 

  2 2 20 0 0 0 CR R R RR  (2.16) 

  1 1 1 0 0 0 0 0a b cV V VV  (2.17) 

The constraint matrix G, which when multiplied by I yields the KCL equations, is 

1 1 1 2 2 2

1 1 1 2 2 2

-(1 ) / 2 -(1 ) / 2 -(1 ) / 2 1 1 -(1 ) / 2 -(1 ) / 2 -(1 ) / 2

-(1- ) / 2 -(1- ) / 2 -(1- ) / 2 1 1 -(1- ) / 2 -(1- ) / 2 -(1- ) / 2

0 0 0 0 0 1 1 1

a b c a b c

a b c a b c

u u u u u u

u u u u u u

      
   
 
 

G  (2.18) 

The Lagrange multiplier matrix Λ, which contains the voltages at the three non-ground nodes, is 

  1 2 3    (2.19) 

Given the circuit topology defined by the matrices I, Q, L, C, R, V, G, and Λ, the automated method 

solves for the dynamic equations using the Lagrangian formulation following the steps below. 

The magnetic co-energy stored in the six inductors is 

    2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1
'

2 2
m a b c a b cW L i i i L i i i       (2.20) 

The electric energy stored in the capacitor is 

 

2
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2
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e
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C
  (2.21) 

The Lagrangian is 

    
2

2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1
'

2 2 2

C
m e a b c a b c

q
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C
        L  (2.22) 

The Rayleigh dissipation function is 

  2 2 2 2

2 2 2 2

1 1

2 2
a b c C RR i i i R i   R  (2.23) 

The Lagrangian equations from evaluating (2.6) are 

 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0a

a a a

di
u V u L

dt
        (2.24) 
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 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0b

b b b

di
u V u L

dt
        (2.25) 

 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0c

c c c

di
u V u L

dt
        (2.26) 
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C
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 2 1 0C RR i     (2.28) 
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 2
1 2 3 2 2 2 2 2(1 ) 2 (1 ) 2 0c
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di
u u L R i
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          (2.31) 

Equations (2.24)-(2.31) and the KCL equations (2.9)-(2.11) form the initial system of equations.   

There are no branches with both an inductor and a capacitor, but there is one branch with a capacitor but 

not an inductor.  Therefore, Ci  is replaced by Cdq dt in (2.9)-(2.11)and (2.24)-(2.31).  There are no all-

capacitor loops, but there are two all-inductor cutsets.  KCL equation (2.11) forms an all-inductor cutset 

so 2ci  is replaced by 2 2a bi i   and (2.11) is removed from the system of equations.  The sum of KCL 

equations (2.9) and (2.10) also forms an all-inductor so 1ci  is replaced by 1 1a bi i  .  Since the all-

inductor cutset occurred in the sum of (2.9) and (2.10), either one could be removed from the system of 

equations.  Equation (2.9) is chosen to be removed.  After making these changes, the new system of 

equations is 

 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0a

a a a

di
u V u L

dt
        (2.32) 

 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0b

b b b

di
u V u L

dt
        (2.33) 
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 1 1
1 1 1 2 1 1(1 ) 2 (1 ) 2 0a b

c c c

di di
u V u L

dt dt
 

 
       

 
 (2.34) 

 
2 1 0Cq

C
     (2.35) 

 2 1 0C RR i     (2.36) 

 2
1 2 3 2 2 2 2 2(1 ) 2 (1 ) 2 0a

a a a

di
u u L R i

dt
          (2.37) 

 2
1 2 3 2 2 2 2 2(1 ) 2 (1 ) 2 0b

b b b

di
u u L R i

dt
          (2.38) 

  2 2
1 2 3 2 2 2 2 2 2(1 ) 2 (1 ) 2 0a b

c c a b

di di
u u L R i i

dt dt
  

 
         

 
 (2.39) 

 
 

 

1 1 1
1 1 1 1

2 2 2
2 2 2 2

-(1 ) (1 ) (1 )

2 2 2

(1 ) (1 ) (1 )
0

2 2 2

a b c C
a b a b

a b c
R a b a b

u u u dq
i i i i

dt

u u u
i i i i i

  
   

  
     

 (2.40) 

In the new system the number of equations, B+J-1+Bboth-D, is 9 while the number of unknowns, 

Bnone+2Bind+2Bcap+4Bboth+J-1, is 14.  (For this example B = 8, Bnone = 1, Bind = 6, Bcap = 1, Bboth = 1, J = 4, 

and D = 2. )  The unknowns are 1ai , 1bi , 2ai , 2bi , Cq , Ri , 1adi dt , 1bdi dt , 2adi dt , 2bdi dt , Cdq dt , 

1 , 2 , and 3 .  The MATLAB ‘solve’ function is used to symbolically solve for the state variable 

derivatives ( 1adi dt , 1bdi dt , 2adi dt , 2bdi dt , Cdq dt ), as well as Ri , 1 , 2 , and 3  in terms of 

the state variables ( 1ai , 1bi , 2ai , 2bi , Cq ).  In the standard state space form given by (2.7), the dynamic 

equations of the ac/dc/ac converter are 

    1
1 1 1 1 1 1

1 1

1
2 2

6 3

a C
a b c a b c

di q
u u u V V V

dt CL L
         (2.41) 

    1
1 1 1 1 1 1

1 1

1
2 2

6 3

b C
a b c a b c

di q
u u u V V V

dt CL L
       (2.42) 
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  2 2
2 2 2 2

2 2

2
6

a C
a b c a

di q R
u u u i

dt CL L
      (2.43) 

  2 2
2 2 2 2

2 2

2
6

b C
a b c b

di q R
u u u i

dt CL L
     (2.44) 

        1 1 2 2
1 1 1 1 2 2 2 2

2 2 2 2

C a b a b C
a c b c a c b c

C

dq i i i i q
u u u u u u u u

dt CR
          (2.45) 

 

The controllable inputs 1 1 1 2 2 2, , , , ,and a b c a b cu u u u u u defined by (2.8) are discrete values.  Since 

analysis of discrete control inputs is complex, one common approach is to use state space averaging 

[14,40,41,42].  Hence for the rest of the thesis, the switching functions 1 1 1 2 2 2, , , , ,and a b c a b cu u u u u u  are 

regarded as duty ratio functions with values in the interval  1,1 . 

2.1.3. Transformation of Dynamic Equations to the αβ Reference Frame 

The equations derived by the automated method are in the stationary three-phase abc reference frame.  

However, for power systems and three-phase power electronics, the rotating two-phase dq (direct-

quadrature) reference frame is often used to express the dynamics of machines because this form is often 

simplest mathematically and most useful for control purposes [43].  Sinusoidal steady-state operation in 

the abc reference frame yields constant steady-state values in the dq reference frame if the dq reference is 

rotating at the same speed as the sinusoidal steady-state frequency.  Therefore, it is important to extend 

the automated derivation of the dynamic equations from the abc reference frame to the dq reference 

frame.  

First, the transformation of the equations to the stationary two-phase αβ reference frame is described, 

and then in the next section the transformation of equations to the rotating dq reference frame is 

described.  Any system with three or more stationary phases can be equivalently modeled as two 

stationary phases [44,45].  The graphical interpretation of the abc to αβ transformation is shown in Figure 

2.2 and this transformation is given by 
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1 1
1

2 2

2 3 3
0

3 2 2

1 1 1

2 2 2

z abc 

 
  

 
 

  
 
 
 
 

x Tx

T
 (2.46) 

The z-phase is independent of the α and β phases and is only used in order to make T invertible. If the 

three phases of the system are balanced, then the a, b, and c phases sum to zero at all times, and the z 

phase is always zero [45].   

 
Figure 2.2:  Graphical interpretation of the αβ and dq transformations. 

 

When the c phase is dependent due to an all-inductor cutset and is replaced as the negative sum of the 

a and b phases (as is the case for 1ci and 2ci  in the ac/dc/ac converter), transformation (2.46) reduces to 

 

2 1
0

3 6

1
2

2

red ab

red

 

 
 

 
 
 
 

x T x

T
 (2.47) 

 For the ac/dc/ac converter, the dynamic equations (2.41)-(2.45) can be re-written in matrix form as 
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 

 
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 (2.48) 

To obtain the differential equations in the αβ reference frame, first the expressions for the derivatives 

of 
1i  and 

2i  are found in terms of the abc quantities. 

 



1 1 1 1

2 2 2 2

3 1 2 1 2

1 1 1

2 2 2

( , )

( , )

( , , , )

red abc abc

red abc ab

C abc abc ab ab

T

T

q f

i i

i i
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  

  

   
   

   
     

 

 

i T f V u

i T f u i

u u i i

i

i

 (2.49) 

Next, to find the expressions for the derivatives of 
1i  and 

2i  in terms of the αβ quantities, the 

MATLAB ‘subs’ command is used to substitute the abc quantities in terms of the αβ quantities. 
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


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1 1
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q f
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  

  
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

 

 

   

   
   

   
   

  

 
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 

 

i T f T V T u

i T f T u T i

T u T u T i T i

V

u

u

i

i  2 2

T

i i  
 

 (2.50) 

Expanding (2.50), the dynamic equations in the αβ reference frame are 

 1 1 1

1 12

Cdi V u q

dt L CL

     (2.51) 
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1 1 1

1 12

Cdi V u q

dt L CL

  
   (2.52) 

 2 2 2
2

2 22

Cdi u q R
i

dt CL L

 
    (2.53) 

 
2 2 2

2

2 22

Cdi u q R
i

dt CL L

 

    (2.54) 

 
1 1 2 21 1 2 2

2 2 2 2

C C

C

i u i udq i u i u q

dt CR

            (2.55) 

2.1.4. Transformation of Dynamic Equations to the dq Reference Frame 

The graphical interpretation of the transformation from the αβ reference frame to the dq reference 

frame is shown in Figure 2.2, and the angle   of the dq reference frame is the angle between the rotating 

d-axis and the stationary α-axis.  The transformation is given by [44] 

 

 

 

0

cos sin 0

sin cos 0

0 0 1

dq z

 

  



 
 

 
 
  

x K x

K
 (2.56) 

Therefore, the transformation from the abc reference frame to the dq reference frame is given by 

 

     

 

0

2 2
cos cos cos

3 3

2 2 2
sin sin sin

3 3 3

1 1 1

2 2 2

dq z abc abc  

 
  

 
   

 

    
     

    
    

         
    

 
 
  

x K x K Tx = P x

P
 (2.57) 

Since the transformation P is defined in such a way that its transpose and inverse are equal, the 

transformation P defined here is power invariant, as in [44,46].  Sometimes in power system literature, the 

dq transformation is defined in such a way that it is not power invariant [43,45,47]. 

Again, when the c phase is dependent and is replaced as the negative sum of the a and b phases (as is 

the case for 1ci and 2ci  in the ac/dc/ac converter), transformation (2.57) reduces to 
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 (2.58) 

For the ac/dc/ac converter, when transforming the quantities on the left side of the converter, a dq 

reference frame rotating at a speed equal to the frequency of the three-phase voltage source ω1 is used (

1t  ).  For transforming the quantities on the right side of the converter, a dq reference frame rotating 

at a speed equal to the desired frequency of the load currents ω2 is used (
2t  ).  

To obtain the differential equations in the dq reference frame, first the expressions for the derivatives 

of 
1dqi  and 

2dqi  are found in terms of the abc quantities. 
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 (2.59) 

Note that since Pred is time-varying, the product rule must be applied when differentiating.  Next, to 

find the expressions for the derivatives of 1dqi  and 
2dqi  in terms of the dq quantities, the MATLAB ‘subs’ 

command is used to substitute the abc quantities in terms of the dq quantities. 
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Expanding (2.60), the dynamic equations in the dq reference frame are 

 1 1 1
1 1

1 12

d d C d
q

di V q u
i

dt L CL
    (2.61) 

 
1 1 1

1 1

1 12

q q C q

d

di V q u
i

dt L CL
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 2 22
2 2 2

2 22

d C d
q d

di q uR
i i

dt L CL
    (2.63) 

 
2 22

2 2 2
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q C q

d q

di q uR
i i

dt L CL
     (2.64) 

 
1 1 2 21 1 2 2

2 2 2 2

q q q qC d d d d C

C

i u i udq i u i u q

dt CR
      (2.65) 

Passivity-based control will be designed for the ac/dc/ac converter in Chapter 4 using these dynamic 

equations.   

2.2.   Lagrangian Formulation Applied to Electromechanical Systems    

The dynamics of mechanical systems can be easily modeled using Newton’s second law of motion 

while the dynamics of electrical systems can be easily modeled using KCL and KVL equations, but the 

difficulty for electromechanical systems is determining the coupling between the subsystems.  For 

example, for an electric machine, an electric torque is applied to the rotor as a result of the coupling 

between the mechanical and electrical subsystems.  Conventionally, the coupling between the electrical 

and mechanical subsystems is determined using conservation of energy [38].   An alternative, perhaps 

easier, approach is to use the Lagrangian formulation, which provides a unified framework for analyzing 

the electrical and mechanical subsystem and explicitly captures the coupling between the subsystems 

[48].  

Very little previous research has been done on applying the Lagrangian formulation to electric power 

systems, especially for multiple interconnected power systems components.   In [49], the dynamics of one 

electric machine connected to an infinite bus are derived using the Lagrangian formulation, but this 
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derivation neglects the dynamics of the electric subsystem.   In [48], the dynamic equations of an electric 

machine connected to an infinite bus are derived using the Lagrangian approach. 

Extending this previous work, an automated computer-aided method was implemented for 

symbolically deriving the state space model for interconnected power systems using the Lagrangian 

approach [12].  The automation of this process is critical because even for relatively small power systems, 

it is very tedious to derive the dynamic equations by hand.  The automated approach is then demonstrated 

for deriving the state space model for a variable speed drive for flywheels.  The variable speed drive uses 

an ac/dc/ac converter to regulate the speed of the flywheel to a different frequency than the power grid 

frequency.  Control for this variable speed drive will be designed in Chapter 5 using passivity-based 

control logic. 

2.2.1. Automated State Space Model Derivation Methodology   

The automated approach can be used to solve for the dynamic equations of power systems with 

conventional power system components, such as synchronous machines, induction machines, 

transmission lines, and loads.  The approach can also be applied to electrostatic machines, which 

Lawrence Livermore National Lab (LLNL) is using for integrating flywheels [50].  In conventional 

magnetic machines the electric torque results from the mutual inductance varying as a function of the 

rotor position, while in electrostatic machines, the electric torque results from the capacitance varying as a 

function of the rotor position.  The Lagrangian formulation explicitly captures this coupling between 

subsystems for both cases.  As with electric circuits, logic is implemented in the automated method to 

check for all-inductor cutsets and all-capacitor loops, so that the power system dynamics can be expressed 

as an ODE system rather than a DAE system.   

The user should take the following steps to input the power system topology: 

1. Draw schematics of the electrical subsystem and the mechanical subsystem.  For each of the B 

branches in the electrical subsystem, label and define the directions of the current.    For each of the 
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M machines in the mechanical subsystem, label and define the direction of the angular velocity of 

the rotor. 

2. For each circuit in the electrical subsystem, choose one arbitrary junction to be ground and label the 

voltages at the other J junctions as λ1 , λ2 ,…,  λJ.   Write KCL equations at the non-ground junctions 

starting with the junction labeled λ1 and ending with the junction labeled λJ.  Use the convention in 

(2.1) when writing the KCL equations.  Again, for systems with power electronic switches, the KCL 

equations are a function of the switch positions. 

3. Define all parameters, controllable inputs, the charge and current on each branch, and the angular 

velocity and angular position of the rotor of each machine as MATLAB ‘syms’. 

4. Form Bx1 symbolic vectors for the current I and the charge Q consisting of the symbolic currents 

and charges on the individual branches. 

5. Form 1xB symbolic vectors for the capacitance vector C, the resistance vector R, and the voltage 

source vector V, consisting respectively of the capacitances, resistances, and voltage sources on 

each branch.  For the voltage source vector, if the direction of the current is such that it leaves the 

positive terminal of the voltage source, then the sign is positive.  Otherwise, the sign is negative. 

6. Form a BxB symbolic matrix for the inductance matrix L where the self-inductances of each branch 

are given on the diagonal entries of the matrix and the mutual inductance between branches are 

given on the off-diagonal entries of the matrix. 

7. Form the constraint matrix G, which is a JxB matrix.  0GI  gives the KCL equations. 

8. Form the Lagrange multiplier vector Λ, which is a 1xJ symbolic matrix, consisting of the voltages 

at the J non-ground junctions. 

9. For the mechanical subsystem, form Mx1 symbolic vectors for the angular velocity Ω and the 

angular position Θ consisting of the symbolic angular velocities and angular positions of each 

individual machine.   
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10. Form 1xM symbolic vectors for the inertia matrix J, the damping matrix B, and the mechanical 

torque matrix M  consisting respectively of the inertias, damping factors, and external mechanical 

torques on each machine.  For the mechanical torque vector, if the direction of the mechanical 

torque is such that it opposes the angular velocity of the machine, then the sign is negative.  

Otherwise, the sign is positive.   

Given the power system input defined by the matrices I, Q, C, R, V, L, G, Λ, Ω, Θ, J, B, and
M , the 

computer solves for the dynamic equations using the Lagrangian approach by taking the following steps: 

1. First the electrical subsystem is considered.  Find the total magnetic co-energy Wm’ stored in the 

inductors of the electrical subsystem, which is given by (2.2). 

2. Find the total electric energy We stored in the capacitors, which is given by (2.3)  

3. Find the Lagrangian for the electrical subsystem Lelec, which is given by (2.4) 

4. Find the Rayleigh dissipation function for the electrical subsystem Relec, which is given by (2.5) 

5. Now consider the mechanical subsystem.  Find the kinetic co-energy KE’ stored in the rotating 

masses of the machines, which is 

 
2

1

1
' ( ) ( )

2

M

k

KE k k


 J   (2.66) 

6. Since there are no springs in electric machines, the potential energy is zero.  Find the Lagrangian for 

the mechanical subsystem Lmech, which is 

 ' 'mech KE PE KE  L  (2.67) 

7. Find the Rayleigh dissipation function for the mechanical subsystem Rmech, which is 

 
2

mech

1

1
( ) ( )

2

M

k

k k


 BR   (2.68) 

8. Combine the Lagrangians and the Rayleigh dissipation functions from the electrical and mechanical 

subsystems. 

 elec mech L L L  (2.69) 
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 elec mech R R R  (2.70) 

9. Form (B+M)x1 vectors for the generalized flow Fgen consisting of the electric currents and the 

mechanical angular velocities and for the generalized charge Qgen consisting of the electric charges 

and the mechanical angular positions. 

 
gen

 
  
 

I
F


 (2.71) 

 
gen

 
  
 

Q
Q


 (2.72) 

10. Form a (B+M)x1 vector for the generalized forcing function F . 

 
M

 
  
 

V
F


 (2.73) 

11. Form the Lagrange equations of the first kind, which for an electromechanical system are [48]  

 
( ) 0

( ) ( ) ( ) ( )

for 1,2,...

gen gen gen gen

d
k

dt k k k k

k B M

 
     

  

   

   

 

GI

F Q F F

L L
F

R 

 (2.74) 

The Lagrange equations for electromechanical systems specify that the voltage across each branch 

must be equal to the difference between the two junction voltages adjacent to that branch and 

specify that the inertia multiplied by the angular acceleration of each machine must equal to the sum 

of the torques on the rotor of the machine (including the electric torque resulting from the coupling 

between the electrical and mechanical subsystems).     

12. Add the KCL equations, 0GI , to these equations in order to form the initial set of equations. 

13. For each machine, add another equation to the system: /k kd dt  .  

14. For branches containing both a capacitor and an inductor, add another equation to the system: 

/k kdq dt i . 

15. For branches containing a capacitor but not an inductor, substitute in /kdq dt for ki . 
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16. Check for any all-inductor cutsets.  If there is an all-inductor cutset, a current must be substituted by 

an expression in terms of the other currents in the all-inductor cutset.  Also, the derivative of that 

current must be substituted by the derivative of that expression.  Finally, the proper KCL equation 

must be eliminated from the system of equations. 

17. Check for any all-capacitor loops.  If there is an all-capacitor loop, a charge must be substituted by 

an expression in terms of the other charges and voltages sources in the loop.  Also, the derivative of 

that charge must be substituted by the derivative of that expression as well.  Finally, the Lagrange 

equation for the branch whose charge was substituted for must be eliminated from the system of 

equations. 

18. At this point, there are 2 bothB M J B D    equations and 2 2 4none ind cap bothB B B B   

2 4J D M   unknowns where D is the number of dependent storage devices, Bnone is the number 

of branches with neither an inductor nor a capacitor, Bind is the number of branches with an inductor 

but not a capacitor, Bcap is the number of branches with a capacitor but not an inductor, and Bboth is 

the number of branches with both a capacitor and an inductor.  There are 

2 2ind cap bothB B B D M     (the sum of the number of independent storage devices and twice 

the number of machines) more unknowns than equations. 

To form the state space model, the derivatives of the state variables need to be solved for in terms of 

only the state variables (not the λ’s or the currents in branches with no storage devices).  Therefore, 

the MATLAB ‘solve’ function is used to symbolically solve for the 2 2ind cap bothB B B D M     

derivatives of the state variables, as well as the J λ’s and the Bnone currents, in terms of the 

2 2ind cap bothB B B D M    state variables. 

The solution returned by the MATLAB ‘solve’ function is in the general state space form 

 ( , )x ux f  (2.75) 
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The electrical state variables are the independent inductor currents and the independent capacitor 

charges.  The mechanical state variables are the angular velocity and the angular position of the 

rotor of each machine.  

 
Figure 2.3:  Topology for flywheel variable speed drive. 

2.2.2. Example: Variable Speed Drive for Flywheels    

As an example of the automated modeling methodology, consider the variable speed drive shown in 

Figure 2.3, where an ac/dc/ac converter drives a synchronous machine with a flywheel energy storage 

system.   There is a three-phase voltage source at a constant frequency ω1 on the left side of the converter, 

a dc-link capacitor in the middle, and the synchronous machine attached to the flywheel on the right side 

of the converter.   The objective of the variable speed drive is to regulate the speed of the flywheel (and 

hence the energy stored in the flywheel) to a different frequency than the grid frequency.  As in Section 

2.1.2, the controllable inputs are again the positions of the twelve switches.  The switching functions 

1 1 1 2 2 2, , , , ,and a b c a b cu u u u u u  are defined using (2.8). 

The schematic of the mechanical subsystem is shown in Figure 2.4.  The synchronous machine is 

assumed to have three phases on the stator and one phase on the rotor, and the angular position of the 

rotor θ2 is defined as angle between the rotor winding and the a-phase of the stator winding, as shown in 

Figure 2.4.  The direction of the angular velocity is chosen to be in the counterclockwise direction. 

As shown by Figure 2.5, the electrical subsystem consists of two coupled circuits: the synchronous 

machine rotor windings and the synchronous machine stator windings which are connected to the ac/dc/ac 

converter.  The mutual inductances between the stator windings and the rotor winding of the synchronous 

machine depend on the angular position θ2 of the rotor.  The mutual inductance between the a-phase 
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stator winding and the rotor winding is given by 2 2cosM  , the mutual inductance between the b-phase 

stator winding and the rotor winding is given by  2 2cos 2 3M   , and the mutual inductance between 

the c-phase stator winding and the rotor winding is given by  2 2cos 2 3M   .  There is also a 

negative mutual inductance, 2SSL , between the three phases of the stator windings.   

  

 
Figure 2.4:  Mechanical subsystem of the variable speed drive shown in Figure 2.3. 

The directions of the currents are labeled on each of the nine branches in the electrical subsystem 

while the three non-ground junctions are labeled λ1-λ3 as shown in Figure 2.4.  Using the convention in 

(2.1), the KCL equations at these three non-ground junctions are 

1 1 1 2 2 2
1 1 1 2 2 2

-(1 ) (1 ) (1 ) (1 ) (1 ) (1 )
0

2 2 2 2 2 2

a b c a b c
a b c C RC S a S b S c

u u u u u u
i i i i i i i i

     
         (2.76) 

1 1 1 2 2 2
1 1 1 2 2 2

-(1 ) (1 ) (1 ) (1 ) (1 ) (1 )
0

2 2 2 2 2 2

a b c a b c
a b c C RC S a S b S c

u u u u u u
i i i i i i i i

     
         (2.77) 

 2 2 2 0S a S b S ci i i    (2.78) 
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Figure 2.5:  Electrical subsystem of the variable speed drive shown in Figure 2.3. 

All parameters, the charges and currents on the nine branches, and the angular positions and angular 

velocities of the machine are defined as MATLAB “syms.”   The symbolic vectors I and Q are defined as 

 1 1 1 1 1 2 2 2 2

T

a b c C R S a S b S c Ri i i i i i i i i I  (2.79) 

 1 1 1 1 1 2 2 2 2

T

a b c C R S a S b S c Rq q q q q q q q q Q  (2.80) 

The inductance matrix L is defined as 

 

1

1

1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 cos

2
0 0 0 0 0 cos

3

2
0 0 0 0 0 cos

3

2 2
0 0 0 0 0 cos cos cos

3 3

S SS SS

SS S SS

SS SS S

R

L

L

L

L L L M

L L L M

L L L M

M M M L









 
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





 


 
   

 

 
   

 

   
    

   

L







 
 
 
 
 
 
 
 
 
 
 

 (2.81) 

The capacitance vector C, the resistance vector R, and the voltage source vector V are  

  10 0 0 0 0 0 0 0CC  (2.82) 

  1 1 1 1 2 2 2 20 C S S S RR R R R R R R RR  (2.83) 

  1 1 1 20 0 0 0 0a b c RV V V VV  (2.84) 

The constraint matrix G, which when multiplied by I, yields the KCL equations (2.76)-(2.78), is 
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1 1 1 2 2 2

1 1 1 2 2 2

-(1 ) / 2 -(1 ) / 2 -(1 ) / 2 1 1 -(1 ) / 2 -(1 ) / 2 -(1 ) / 2 0

-(1- ) / 2 -(1- ) / 2 -(1- ) / 2 1 1 -(1- ) / 2 -(1- ) / 2 -(1- ) / 2 0

0 0 0 0 0 1 1 1 0

a b c a b c

a b c a b c

u u u u u u

u u u u u u

      
   
 
 

G  (2.85) 

The Lagrange multiplier vector Λ, which contains the voltages at the three non-ground junctions, is 

  1 2 3    (2.86) 

The symbolic vector Ω and Θ are defined as 

  2  (2.87) 

  2  (2.88) 

The inertia vector J, the damping vector B, and the mechanical torque vector M  are defined as 

  2JJ  (2.89) 

  2BB  (2.90) 

  2M M   (2.91) 

Given the power system input defined by the matrices I, Q, C, R, U, L, G, Λ, Ω, Θ, J, B, and M , 

the MATLAB code solves for the dynamic model of the circuit through the steps detailed below.   

First the electric subsystem is considered.  The magnetic co-energy stored in the inductors is 

 

   
 

2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1
'

2 2 2
cos( )

cos( 2 / 3) cos( 2 / 3)

m a b c R R S S a S b S c

SS S a S b S a S c S b S c R S a

R S b R S c

W L i i i L i L i i i

L i i i i i i M i i

M i i M i i



   

      

   

   

 (2.92) 

The electric energy stored in the capacitor is 

 

2

11

2

C
e

q
W

C
  (2.93) 

The Lagrangian for the electrical subsystem Lelec is calculated by subtracting We from Wm’. 

The Rayleigh dissipation function for the electrical subsystem is 

    2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1

2 2 2 2
elec a b c C R R R S S a S b S cR i i i R i R i R i i i       R  (2.94) 
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Now the mechanical subsystem is considered.  The kinetic co-energy is 

 
2

2 2

1
'

2
KE J   (2.95) 

The Lagrangian for the mechanical subsystem Lmech is equal to the kinetic co-energy since the 

potential energy of the system is zero. 

The Rayleigh dissipation function for the mechanical subsystem is 

 2

2 2

1

2
mech B R  (2.96) 

The total Lagrangian L and the total dissipation function R are formed by adding Lelec and Lmech and 

by adding Relec and Rmech respectively.  The generalized flow matrix Fgen and the generalized charge 

matrix Qgen are formed using (2.71) and (2.72). The generalized forcing function F is formed using (2.73). 

The Lagrange equations from evaluating (2.74) are 

 1
1 1 1 2 1 1 1 1(1 ) 2 (1 ) 2 0a

a a a a

di
u V u L R i

dt
         (2.97) 

 1
1 1 1 2 1 1 1 1(1 ) 2 (1 ) 2 0b

b b b b

di
u V u L R i

dt
        (2.98) 

 1
1 1 1 2 1 1 1 1(1 ) 2 (1 ) 2 0c

c c c c

di
u V u L R i

dt
         (2.99) 

 1
2 1

1

0Cq

C
     (2.100) 

 2 1 1 1 0C RR i     (2.101) 
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 (2.102) 
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 (2.103) 
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 (2.104) 
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 (2.105) 

 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2
sin sin sin 0

3 3
M R S b R S c R S a

d
J B M i i M i i M i i

dt

  
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 (2.106) 

The last three terms of (2.106) represent the electric torque, which is explicitly captured when 

evaluating the Lagrange equations.   

According to Step 13, the following equation for the synchronous machine must be added to the 

system of equations: 

 2
2 0

d

dt


   (2.107) 

There are no branches with both an inductor and a capacitor, but there is one branch with a capacitor 

but not an inductor.  Therefore, Ci  is replaced by Cdq dt in (2.76)-(2.78) and (2.97)-(2.107).  There are 

no all-capacitor loops, but there are two all-inductor cutsets.  KCL equation (2.78) forms an all-inductor 

cutset, so 2S ci  is replaced by 2 2S a S bi i   and (2.78)  is removed from the system of equations.  The sum 

of KCL equations (2.76) and (2.77) also forms an all-inductor so 1ci  is replaced by 1 1a bi i  .  Since the 

all-inductor cutset occurred in the sum of (2.76) and (2.77), either equation could be removed from the 

system of equations.  Equation (2.76) is chosen to be removed.   

After making these changes, in the new system of equations, the number of equations, 

2 bothB M J B D    , is 12 and the number of unknowns, 2 2 4 2 4none ind cap bothB B B B J D M      , 

is 20.  (For this example B = 9, M = 1, J = 3, Bboth = 0, D = 2, Bnone = 1, Bind = 7, and Bcap = 1.)  The 
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unknowns are 
1ai , 

1bi , 
1Cq , 

1Ri , 2S ai , 2S bi , 2Ri , 2 , 
2 , 1adi dt , 1bdi dt , 1Cdq dt , 

2S adi dt , 

2S bdi dt , 2Rdi dt , 2d dt  , 2d dt , 1 , 2 , and 3 . 

The MATLAB ‘solve’ function is used to symbolically solve for the state variables derivatives (

1adi dt , 1bdi dt , 1Cdq dt , 
2S adi dt , 

2S bdi dt , 
2Rdi dt , 

2d dt , 2d dt ), as well as 
1Ri , 

1 , 
2 , 

and 
3 , in terms of the state variables (

1ai , 
1bi , 

1Cq , 2S ai , 2S bi , 2Ri , 2 , 
2 ).   In the standard state space 

form given by (2.7), the dynamic equations of the variable speed drive are 

    1 1
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 (2.115)  
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The dynamic equations of the variable speed drive can be simplified by transforming to the dq 

reference frame as described in Section 2.1.4.  For transforming the quantities on the left side of the 

converter, a dq reference frame rotating at a speed equal to the frequency of the three-phase voltage 

source ω1 is used ( 1t  ).  For transforming the quantities on the right side of the converter, a dq 

reference frame fixed to the synchronous machine rotor is used ( 2  ).  Choosing a reference frame 

fixed to the synchronous machine rotor eliminates the time-varying mutual inductances in (2.115).  Using 

the dq reference frame, the dynamic equations can be written compactly as 

 1 1 1 11
1 1 1

1 1 1 12

d d C d
q d

di V q uR
i i

dt L L C L
     (2.116) 

 
1 1 1 11

1 1 1

1 1 1 12

q q C q

d q

di V q uR
i i

dt L L C L
      (2.117) 
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q q S q qC d d S d d C

C

i u i udq i u i u q

dt C R
      (2.118) 

  2
2 2 2 2 2 2 2( )

d
inv
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  
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L V R I L I  (2.119) 
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e M Bd
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    
  (2.120) 
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d
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  (2.121)         

where 
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2 2 2

3

2
e R SqM i i   (2.123)         

 
1 21 2

2 2

1 1

,
2 2

C qC d
S d S q

q uq u
v v

C C
   (2.124)             

Passivity-based control will be designed for the variable speed drive in Chapter 5 using these dynamic 

equations. 

2.3.   Summary    

In this chapter, novel automated computer-aided methods were introduced for deriving the dynamic 

model in standard state space form of electric circuits and electric power systems.  These automated 

methods use the Lagrangian formulation from classical mechanics, where the model is obtained from the 

physical energies of the system.  This formulation sets the stage for the passivity-based control in Chapter 

4, where the error dynamics and then the control law are derived from desired closed-loop energy 

functions. 
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3.   Automated Modular Modeling of Power System Dynamics 

For large power systems, the automated approach described in Section 2.2.1 for solving for the state 

space equations can be very computationally intensive since the governing equations for power systems 

are nonlinear.  For this reason, a new automated modular approach for deriving the state space model was 

implemented as described in [15,51].   Using this modular approach, first dynamic models for each power 

system component are derived using the Lagrangian approach and expressed in a common form.  Then 

given the connection between modules, the dynamic models of each module are combined in an 

automated procedure.  This modular approach is particularly useful for power systems because large 

systems contain many of the same types of components, such as synchronous machines, transmission 

lines, and loads.   

Previous work on symbolic modular modeling of power system dynamics was presented in [52].  It 

should be emphasized that, while [52] generates and simulates a DAE system, the automated method 

described in this chapter expresses the power system dynamics in standard state space form as an ODE 

system, so that control can be systematically designed with provable performance. 

Depending on how modules are connected, the interconnection of modules can produce all-inductor 

cutsets, which occur when one of the inductor currents can be expressed as a linear combination of the 

other inductor currents or all-capacitor loops, which occur when one of the capacitor charges can be 

expressed as a linear combination of the other capacitor charges.  In this case, in order to express the 

dynamics of the interconnected system in standard state space form as an ODE system rather than a DAE 

system, it is necessary to eliminate a state variable from one of the modules.  After combining the 

modules, it is shown that each module’s dynamics can be expressed in terms of only its own state 

variables and the state variables of the modules directly connected to that module.   

3.1.   Individual Module Dynamics    

Assuming that all components are modeled using lumped parameter models and all components, 

including transmission lines, are modeled as having dynamics, the dynamics for each module can be 

expressed in the following common form:  
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 ( , , , )k k k k k kx p u mx f  (3.1) 

where xk is the vector of state variables in module k, uk is the vector of controllable inputs to module k, 

mk is the vector of exogenous inputs to module k determined by factors outside the model, and pk is the 

vector of port inputs to module k that will be determined by its connection to the rest of the system.  As 

graphically depicted by Figure 3.1, power system components can have either one port per phase (such as 

synchronous machines and loads) or two ports per phase (such as transmission lines) [5].  

 
Figure 3.1:  Visual representation of one and two port modules. 

 
The dynamic equations for specific power system components used in this thesis are presented in this 

section.  These dynamic equations are developed using the Lagrangian formulation described in the 

previous chapter and then are converted to a rotating dq reference frame at an arbitrary angle   and a 

corresponding velocity  d dt  .  Since the dynamics of each module must be combined, the 

dynamics of each module are expressed relative to the same common reference frame with angle  . 

3.1.1. Synchronous Machine    

Conventional power plants, such as coal power plants, are typically modeled as synchronous machine 

[5].  In this thesis, the synchronous machine is modeled as a smooth-air-gap machine with three phases on 

the stator and one phase on the rotor [53], as shown in Figure 2.4.  The dynamic equations for a 

synchronous machine are given by 

  ( )
d

inv
dt

  
I

L V RI LI  (3.2) 

 e M Bd

dt J

    
  (3.3) 
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dt
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  (3.4) 
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     
3

cos sin
2

e R Sq R SdM i i i i         (3.7) 

As seen by (3.5), the time-varying mutual inductances for the synchronous machine are only 

eliminated when using a dq reference frame fixed to the rotor (  ) [47].  The port inputs to the 

synchronous machine module that will be determined by its connection to the rest of the system are the 

voltages applied to the stator windings.  In the form given by (3.1),  

    , , ,
T

T

k Sd Sq R k R M k k Sd Sqi i i v v v           x u m p  (3.8) 

3.1.2. Induction Machine    

Wind generators are typically modeled as induction machines [54].  In this thesis, the induction 

machine is modeled as a smooth-air-gap machine having three phases on the stator and three phases on 

the rotor [38], as shown in Figure 3.2.  The dynamic equations for an induction machine are given by 

  ( )
d

inv
dt

  
I

L V RI LI  (3.9) 

 M L Bd

dt J

    
  (3.10) 
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d

dt
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  
3

2
e Rd Sq Rq SdM i i i i    (3.14) 

 
As seen by (3.13), the time-varying mutual inductances for the induction machine are eliminated for 

any arbitrary dq reference frame [47].   The exogenous input that is determined by factors outside the 

model is the mechanical torque applied to the induction machine.  The port inputs to the induction 

 
Figure 3.2:  Visual representation of the induction 

machine with three phases on the rotor and three phases 

on the stator. 

 

 
Figure 3.3:  The a-phase of the transmission line using 

the pi model.  The b-phase and c-phase are equivalent. 
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machine module that will be determined by its connection to the rest of the system are the voltages 

applied to the stator windings.  In the form given by (3.1), 

    , , ,T T

k Sd Sq Rd Rq k k M k Sd Sqi i i i v v           x u m p  (3.15) 

3.1.3. Transmission Line    

The transmission line is modeled using the pi model [55] with shunt capacitors, as shown in Figure 

3.3.  The dynamic equations for a transmission line are given by 

 TLLd
InTLLd TLMd TLLq

dq
i i q

dt
    (3.16) 

 
TLLq
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i
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 TLRd
TLRq InTLRd TLMd

dq
q i i

dt
     (3.20) 

 
TLRq

TLRd InTLRq TLMq

dq
q i i

dt
     (3.21) 

The port inputs to the transmission line module that will be determined by its connection to the rest of 

the system are the currents applied to each side of the transmission line.  In the form given by (3.1), 

 
 

 
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T
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   

    

x u

m p
 (3.22) 

3.1.4. Load    

The dynamic equations for a load with a constant resistance RL and a constant inductance LL are  

 Ld Ld L Ld
Lq

L

di v R i
i

dt L


    (3.23) 
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TLMd

L

di v R i
i

dt L


    (3.24) 

The port inputs to the load module that will be determined by its connection to the rest of the system 

are the voltages connected to the load.   In the form given by (3.1), 

    , , ,T T

k Ld Lq k k k Ld Lqi i v v         x u m p  (3.25) 

3.1.5. Synchronous Machine with Governor and Exciter Control    

Most synchronous machines in industry today have governor and exciter controllers.  The governor 

controller adjusts the steam valve position, changing the mechanical torque, in order to regulate the 

angular velocity of the machine to 377 rad/sec (60 Hz) [5].  For interconnected systems with no governor 

control on synchronous machines, the grid frequency depends on the parameters of the system and is not 

necessarily 60 Hz [12].  The exciter controller adjusts the rotor voltage in order to regulate the terminal 

voltage (the magnitude of the stator voltages) to a desired set point [56].  

The dynamic equations used in this thesis for a synchronous machine with governor and exciter 

control are (3.2)-(3.7) and 

 M tM

u

K ad

dt T

 
   (3.26) 

 
 ref

P I Int

g

K K rada

dt T

    
   (3.27) 

 refIntd

dt


    (3.28) 

  2 2refR
e Terminal Sd Sq

dv
K v v v

dt
    (3.29) 

For the governor control, a proportional integral controller is used and a denotes the valve position.  

The integral gain causes ω to converge to 
ref with zero steady-state error.  For the exciter control, a 

simple proportional controller is used in order to regulate the terminal voltage.  Alternate, more complex 

exciter controllers are given in [56].  In the form given by (3.1), 
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    , , ,T T

k Sd Sq Rd Rq Int R k k k Sd Sqi i i i a v v v           x u m p  (3.30) 

3.1.6. Variable Speed Drive for Flywheels   

The dynamic equations for the flywheel variable speed drive controller connected to an infinite bus 

were derived in Section 2.2.2.  Now instead of connecting to an infinite bus, consider connecting the 

variable speed drive to other dynamic components in an interconnected power grid.  The dynamic 

equations are  
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The port inputs to the variable speed drive module that will be determined by its connection to the 

rest of the system are the voltages connected to the variable speed drive.  In the form given by (3.1), 

  1 1 1 2 2 2 2 2 1 1 2 2 1 1, , ,
T

T

k d q C S d S q R k d q d q k k d qi i q i i i u u u u v v              x u m p  (3.40) 

It should be noted that for transforming the quantities on the left side (the power electronics side) of 

the converter, a dq reference frame with an arbitrary angle   and a corresponding velocity  d dt   

is used, as for the previous modules.  However, for the quantities on the right side (the flywheel side) of 

the converter, a dq reference frame fixed to the synchronous machine rotor is used ( 2  ).  It is 

acceptable to use a different frame for the flywheel side than for the rest of the power grid because only 

the power electronics side, not the flywheel side, of the variable speed drive is ever directly connected to 

the rest of the power grid. 

It should also be noted that for the variable speed drive, neither the mechanical torque nor the voltage 

applied to the rotor winding is considered a controllable input.  It is assumed that there is no governor or 

exciter controller for the synchronous machine with the flywheel.  The only controllable inputs for the 

variable speed drive are the duty ratios of the switch positions in the power electronics.   

3.2.   Combining Modules for Interconnected Power System 

When combining the modules, the port inputs to one module are expressed in terms of the state 

variables of its connecting modules.  This allows the dynamics of each module to be expressed as 

 ( , , , )k k k ck k kx x u mx f  (3.41) 

where xck is the vector of state variables in modules adjacent to module k.   
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Figure 3.4:  Example interconnected system.  A junction is defined as the intersection of two or more ports. 

 

The interconnection of modules can be represented as a graph, as shown in Figure 3.4.  A junction is 

defined as the intersection of two or more ports.  For a junction with C connecting ports, there are 2C 

relevant equations.  There is one KCL constraint at each junction, involving each of the port currents of 

the connecting ports.  There are 1C   independent voltage constraints at each junction, setting the port 

voltages of all connecting ports equal.  Finally, there are C dynamic equations, governing the dynamics of 

the port states of all connecting ports.  Let 
qC  denote the number of port state charges and 

iC  denote the 

number of port state currents (where 
q iC C C  ).   At a junction, there can either be an all-inductor 

cutset or an all-capacitor loop.  An all-inductor cutset occurs when all port states at the junction are 

currents.  All-capacitor loops occur when multiple port states at the junction are charges.  In order to 

express the dynamics in the form given by (3.41), it is necessary to iterate through each junction.  For 

each junction, it is first necessary to determine whether there is an all-inductor cutset or all-capacitor loop 

at the junction, and then the procedure outlined below for each case can be followed.      

Case 1: No All-Inductor Cutsets or All-Capacitor Loops This case occurs when 1qC  .  If a junction 

does not contain an all-inductor cutset or an all-capacitor loop, the port inputs at that junction can be re-

expressed in terms of the port states at that junction.   The one KCL constraint can be used to solve for the 

one port input current.  The 1C   voltage constraints can be used to solve for the 1C   port input 

voltages.  Then the expressions for the one port input current and the 1C   port input voltages can be 

substituted into the C dynamic equations. 
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Case 2: All-Capacitor Loops.  This case occurs when 1qC  .  The number of all-capacitor loops at 

the junction is given by 1qC  .  In this case, one port state charge is chosen to be the independent charge 

and the other 1qC  port state charges at that junction are chosen to be dependent charges and must be 

substituted out of the model.  The expression to substitute in for each dependent charge is obtained from 

the voltage constraint equations.  The derivative of each dependent charge must also be replaced by the 

derivative of that expression.  After all dependent charges have been substituted for, a system of 

equations, which consists of the one KCL equation and the 
qC  dynamic equations for the port state 

charges, is obtained.  This system needs to be solved for the derivative of the one independent port state 

charge and the 
qC  port input currents.  This will yield the derivative of the independent charge in terms of 

only the state variables (and not the port input currents).  Next the voltage constraints are used to solve for 

the iC port input voltages in terms of the independent port state charge.  Finally, the expressions for the 

iC  port input voltages are substituted into the dynamic equations for the iC  port state currents. 

Case 3: All-Inductor Cutsets.  This case occurs when 0qC  .  In this case, one port state current is 

chosen to be the dependent current and must be substituted out of the model.  The expression to substitute 

in for the dependent current is obtained from the KCL constraint.  The derivative of the dependent current 

must also be replaced by the derivative of that expression.  After the dependent current has been 

substituted for, a system of equations, which consists of the 1C   voltage constraints equations and the C 

dynamic equations, is obtained.  This system needs to be solved for the derivatives of the 1C   

independent currents and the C port input voltages.  This will yield the derivative of the 1C 

independent port state currents in terms of only the state variables (and not the port input voltages).  

Several advantages of this modular methodology should be noted.  First, this methodology enables 

the system operator to form the state space model for the interconnected system without needing to know 

details of how the individual module dynamics are derived.  This allows for privacy of detailed machine 

design, since the owner of each module needs to only give the system operator the dynamic model in the 
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form given by (3.1) .  Also this approach provides a basis for common information modeling exchange 

between different stakeholders (owners of different components) and entities responsible for dynamic 

operations of the interconnected grid (system operators). 

Also, to convert each module’s dynamics from (3.1) to (3.41) requires only information about the 

dynamics of its connecting modules and not the entire power system.  Hence, that makes this modular 

approach scalable to large systems.  Since the same procedure is repeated for each junction, the 

computational intensity only increases linearly as the number of junctions increases. 

3.3.   Automated Modular State Space Model Derivation Methodology 

The algorithm described in the previous section was implemented in MATLAB using an object-

oriented approach.  Each component type (synchronous machine, induction machine, transmission line, 

etc.) is defined as a MATLAB class, which is a subclass of the class “PowerSystemModule.” The 

properties of the “PowerSystemModule” class are shown in Table 3.1. 

Each subclass has these same properties, although the values and vector sizes of these properties vary 

for each type of component.  The constructor for each subclass takes as input the module index name, 

which is supplied by the user.  For the first nine properties in Table 3.1, symbolic names are already 

defined for each subclass and the module index name is appended to the end of those names.   For 

example, as given in Section 3.1.1, the state variables for the synchronous machine class are iSd, iSq, iR, ω, 

and θ.  Therefore, if a module index name of ‘1’ is given, the property StateVariables for that specific 

synchronous machine object would be iSd1, iSq1, iR1, ω1, and θ1. 

There is also another class called “PowerSystem.”  Its constructor takes as input all the modules and 

the incidence matrix, which describes how the modules are interconnected.  The “PowerSystem” class 

has, in its constructor, a method “ProduceStateSpace,” which solves for the dynamic equations of the 

interconnected power system in the standard state space form shown by (3.41).  The “ProduceStateSpace” 

method follows the methodology described in the previous section.  It should be noted that for 

computational efficiency, only all-capacitor loops are checked for at each junction, not all-inductor 

cutsets.  The reason for this is because, with the models used in this paper, there will never be any all-
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inductor cutsets.  When the pi model of the transmission line is used and there are always transmission 

lines between buses, there will never be any all-inductor cutsets between modules.  When using the pi 

model of the transmission line, the port states of the transmission line are charges.  Hence, for each 

junction, it is guaranteed that  1qC  . 

Table 3.1:  Properties of “PowerSystemModule” class 

Properties Description 

StateVariableDerivatives 
1xN vector with the names of the N state 

variable time derivatives for that module 

StateVariables 
1xN vector with the names of the N state 

variables for that module 

PortInputs 
1xP vector with the names of the P port 

inputs for that module 

Parameters 
a vector with the names of the parameters 

for that module 

ControllableInputs 
a vector with the names of the controllable 

inputs for that module 

PortCurrents 
1xP vector with the names of the P port 

currents for that module 

PortVoltages 
1xP vector with the names of the P port 

voltages for that module 

PortStates 
1xP vector with the names of the P port 

states for that module 

PortStateDerivatives 
1xP vector with the names of the P port 

state derivatives for that module 

PortStateTypes 

1xP vector with the types of state variable 

(either “Charge” or “Current” at each of 

the P ports) 

StateSpace 
Nx1 vector of dynamic equations for that 

module. 

 

To provide information about the power system, the user should take the following steps: 

1. Define a unique index name for each module. 

2. For each module, create an object of the proper class, using the index name, the angular position of 

the dq reference frame, and the angular velocity of the dq reference frame when calling its 

constructor.  (This angular position and velocity should be common for all modules so that the KCL 

and KVL at the junctions between modules hold true.) 

3. Combine all objects into one cell array called Modules.   

4. Form the incidence matrix G, which describes how the ports of the modules are connected.  The 

size of G is the number of junctions between modules by the total number of ports of all modules. 
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5. Create an instance of the “PowerSystem” class, using G and Modules as input when calling its 

constructor.  

This modular method is much more user-friendly than the centralized method presented in the 

previous chapter.  When using the centralized method, it is necessary for the user to specify every branch 

of the electrical subsystem and specify the connection of all branches.  Using the modular approach, it is 

only necessary for the user to specify modules and the connections between modules.   

3.4.   Modular Modeling Examples 

3.4.1. Example without All-Capacitor Loops    

To demonstrate the automated modular approach, first a simple two-bus power system without any 

all-capacitor loops, shown in Figure 3.5, is considered.  This power system can be divided into three 

modules as shown by Figure 3.6.  Index names for each module are assigned as shown in Figure 3.6, and 

for each of the three modules, objects of the appropriate class are created.  The object names for each 

module are also shown in Figure 3.6.  The port inputs to each module are shown in blue while the port 

states of each module are shown in red.  

 
Figure 3.5:  Example power system without any all-capacitor loops on which the modular approach is 

demonstrated. 

 
Next, all the objects are combined into one cell array.  

   = , ,SM TL IMModules  (3.42) 

The incidence matrix G that specifies the interconnection of the modules is given by 

 

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0
 =

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

SM IMTL

 
 
 
 
 
 
 
  

G  (3.43) 
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Figure 3.6:  Division of the power system shown in Figure 3.5 into three modules.  The port inputs to each module 

are shown in blue while the port states of each module are shown in red. 

 

Finally, an object of the “PowerSystem” class is created using Modules and G as inputs.  Figure 3.7 

shows the MATLAB input file used to generate the state space equations for this example. 

 
Figure 3.7:  Input file for the modular method for the example shown in Figure 3.5. 

   

The state space equations for the interconnected power system are symbolically solved for using the 

“ProduceStateSpace” method in the constructor of the “PowerSystem” object.  At each of the four 

junctions, since there is not an all-capacitor loop, using the KCL equation and the voltage constraint 

equation at each junction, the port inputs are found in terms of the state variables of the connecting 

modules. 
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1 2 2 2 1/ ,Sd TLLd TL InLd Sdv q C i i    (3.44) 

 
1 2 2 2 1/ ,Sq TLLq TL InLq Sqv q C i i    (3.45) 

 
3 2 2 2 3/ ,Sd TLRd TL InRd Sdv q C i i    (3.46) 

 
3 2 2 2 3/ ,Sq TLRq TL InRq Sqv q C i i    (3.47) 

After making these substitutions into the differential equations for each module, the form shown by 

(3.41) is obtained.  The CPU time of the automated method is 16 seconds.  By comparison, for the same 

system, using the methodology described in Section 2.2.1, the computational time for deriving the state 

space equations was 13 minutes [12]. 

3.4.2. Example with All-Capacitor Loops    

Next, a larger more complex power system, shown in Figure 3.8, with all-capacitor loops between 

components is considered.  This power system can be divided into seven modules, as shown by Figure 

3.9.  Index names for each module are assigned as shown in Figure 3.9, and for each of the seven 

modules, objects of the appropriate class are created.  The object names for each module are also shown 

in Figure 3.9.  Next, all the objects are combined into one cell array. 

   = 1, 1, 1, 2, 2, 1, 3SM TL IM TL SM Load TLModules  (3.48) 

 
Figure 3.8:  Example power system with all-capacitor loops on which the modular approach is demonstrated. 
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Figure 3.9:  Division of the power system shown in Figure 3.8 into seven modules.  The port inputs to each module 

are shown in blue while the port states of each module are shown in red.  Only the d-phase is shown here, but the q-

phase is equivalent.      . 

 
The incidence matrix G that specifies the interconnection of the modules is given by 

 

1 1 1 21 2 3

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
 =

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1

SM IM Load SMTL TL TL

 
 
 
 
 
 
 
 
 
 
 
 

G
 (3.49) 

An object of the “PowerSystem” class is created using Modules and G as inputs, and the state space 

equations for the interconnected power system are symbolically solved for using the “ProduceStateSpace” 

method.  To demonstrate why it is necessary to check each junction for all-capacitor loops and to remove 

a state variable for each all-capacitor loop, the junction between the d-phases of SM1, TL1, and TL3 is 

considered.  An all-capacitor loop is detected at this junction because two objects at this junction (TL1 

and TL3) have port state charges.  At this junction, the one KCL equation is 

 2 7 1 0InLd InLd Sdi i i    (3.50) 
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The two independent voltage constraint equations are 

 
1 2 2/Sd TLLd TLv q C  (3.51) 

 
2 2 7 7/ /TLLd TL TLLd TLq C q C  (3.52) 

The dynamic equations of the port states at this junction are 

  1

1 1 1,Sd

Sd

di
f v

dt
 x  (3.53) 

  2

2 2 2,TLLd

InLd

dq
f i

dt
 x  (3.54) 

  7

3 7 7,TLLd

InLd

dq
f i

dt
 x  (3.55) 

where x1, x2, and x7 are the state variables of objects SM1, TL1, and TL3 respectively. 

Unlike the previous example, since there is all-capacitor loop, it is not possible to solve (3.50)-(3.52) 

for the port inputs 
1Sdv , 

2InLdi , and 
7InLdi in terms of the state variables. Therefore, it is necessary to 

eliminate a state variable from the all-capacitor loop.  
7TLLdq is chosen to be the state variable removed 

from the model and the following expressions algebraic expressions are obtained for 
7TLLdq  and 7TLLddq

dt
. 

 7

7 2

2

TL

TLLd TLLd

TL

C
q q

C
  (3.56) 

 7 7 2

2

TLLd TL TLLd

TL

dq C dq

dt C dt
  (3.57) 

Substituting (3.57) into (3.55) yields 

  2 2

3 7 7

7

,TLLd TL

InLd

TL

dq C
f i

dt C
 x  (3.58) 

Equations (3.50), (3.54), and (3.58) can now be solved for 2TLLddq

dt
, 2InLdi , and 7InLdi  (in order to yield 

2TLLddq

dt
 independent of the port inputs 2InLdi  and 7InLdi ) .  Finally, substituting (3.51) into (3.53) yields 

1Sddi

dt
 independent of the port input 

1Sdv . 
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This same logic is used for the other five junctions, and the differential equations in the form shown 

by (3.41) are obtained.  Since there are six all-capacitor loops, six port state variables (
7TLLdq ,

7TLLqq ,
7TLRdq ,

7TLRqq ,
4TLRdq , and 

4TLRqq ) are eliminated from the model.  The CPU time of the automated method is 31 

seconds. 

3.5.   Alternate Distributed Computing Implementation 

The automated methodology discussed in Section 3.3 has one centralized object (the “PowerSystem” 

object), which is given the connection between all modules and solves for the interconnected state space 

system.  There are two drawbacks with this approach.  First, even though the same procedure is repeated 

for each junction, this method cannot be run in a distributed manner using multiple processors.  Second, 

this approach requires that the “PowerSystem” object know the connection between all modules in the 

grid.  For large power systems, it may not be realistic that one entity knows the entire power system 

topology.   

In this section, an alternative distributed methodology is described, where each object is run in 

parallel on different processors, and TCP/IP (Transmission Control Protocol/Internet Protocol) 

communication is used to exchange information between the different processors [57] .  Each module 

sends their port information to their connecting buses and each bus, in parallel, solves the KCL and KVL 

equations at that bus in order to re-express the port inputs at that bus in terms of the port states at that bus.  

Communication is only needed between each module and their connecting buses.  Using this distributed 

methodology, each bus only needs to know what modules are connected to that bus, and there is no 

centralized object that needs to know the entire topology of the power system.   

As in Section 3.3, MATLAB classes are defined for each component with their corresponding 

dynamic equations.  The constructor for each dynamic module class takes as input the module index 

name, the rotating reference frame position  , the rotating reference frame speed d dt , and the TCP/IP 

mailboxes that will be used to communicate with other objects on different processors.  
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Now, a “Bus” MATLAB class is also implemented.  The constructor for the bus class takes as input 

the TCP/IP mailboxes that will be used to communicate with other objects. Tables 3.2 and 3.3 show the 

communicated data, the learned data, and the class methods for the “Synchronous Machine” class and the 

“Bus” class respectively.  (The data structures for the other dynamic module classes are similar to the 

“Synchronous Machine” class.)  These tables show the flow of information and communication between a 

dynamic module object and a bus object. 

First, each dynamic module object, in parallel, communicates their port states, port inputs, port 

currents, port voltages, port state types, and port state dynamic equations to their connecting bus objects.  

Then, each bus object uses that information to solve for the port inputs at that bus in terms of the state 

variables using the methodology described in Section 3.2.  Each bus object can do this in parallel.  If there 

is an all-capacitor loop at a bus, then one of the capacitor charges at the bus is a dependent state and must 

be eliminated as a state variable.  The bus object finds an algebraic expression in terms of the independent 

charge to substitute for the dependent charge. 

Table 3.2:  “Synchronous Machine” class data structure 

Communicated 

Data: 

Port States:  iSd, iSq 

Port Inputs:  vSd, vSq 

Port Currents: iSd, iSq 

Port Voltages: vSd, vSq 

Port State Types: “Current”, “Current” 

Port State Dynamic Equations: 
1

2

( , , , ),

( , , , )

Sd
k k k k k

Sq

k k k k k

di
f x p u m

dt

di
f x p u m

dt





 

Learned Data: 

Port Input Expressions:  port input expressions in terms of state variables of 

connecting modules 

Dependent States: state variables which are dependent and can be 

expressed as an algebraic function of state variables of connecting modules 

Dependent State Expressions: expressions for dependent state variables in 

terms of state variables of connecting modules 

Methods: 

ReExpressPortInputs:  substitutes Port Input Expressions for Port Inputs in 

the state space model 

ReExpressDependentState: substitutes Dependent State Expressions for 

Dependent States in the state space model 

EliminateDependentState: eliminates dynamic equations for Dependent 

States in the state space model 
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Table 3.3:  “Bus” class data structure 

Communicated 

Data: 

Port Input Expressions:  port input expressions in terms of state variables of 

connecting modules 

Dependent States: state variables which are dependent and can be expressed 

as an algebraic function of the state variables of connecting modules 

Dependent State Expressions: expressions for dependent state variables in 

terms of state variables of connecting modules 

Learned Data: 

Port States: all port state variables at the bus 

Port Inputs: all port inputs at the bus  

Port Voltages: all port voltages at the bus 

Port Currents: all port currents at the bus 

Port State Types: all port state variable types (“Charge” or “Current”) at the 

bus 

Port State Dynamic Equations: all port state dynamic equations at the bus 

Methods: 

CheckForAllCapacitorLoop:  Determines if there is an all-capacitor loop at 

the bus.  If there is, this method solves for the dependent state charges in 

terms of the independent state charges and then communicates Dependent 

States and Dependent State Expressions to the proper dynamic modules at 

the bus 

ReExpressPortInputs: Uses the KCL and KVL equations to solve for Port 

Inputs at the bus in terms of Port States at the bus.  This method then 

communicates Port Input Expressions to each connecting dynamic module. 

 

The bus objects then communicate to the connecting dynamic module objects either the port input 

expressions or the dependent states and the dependent state expressions.  Finally, each dynamic module 

object uses that information to substitute their port inputs in terms of the port input expressions in the 

state space model or to, if necessary, eliminate a dependent state variable from the state space model.  

Each dynamic module object can also do this in parallel. 

This distributed method is demonstrated on the two-bus power system example shown in Figure 3.5 

and discussed in Section 3.4.1.  This power system can be divided into three dynamic module objects and 

two bus objects as shown by Figure 3.10.  Objects of the appropriate class are created on different 

processors.  The object names for all dynamic modules and buses, as well as the index names for each 

dynamic module, are shown in Figure 3.10. 
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Figure 3.10:  Division of the power system shown in Figure 3.5 into three dynamic module objects and two bus 

objects. 

   

Bus object B1 communicates with dynamic module objects SM and TL while bus object B2 

communicates with dynamic module objects TL and IM through TCP/IP communication.  Figure 3.11 

shows the initialization of all the objects in MATLAB, as well as the initialization of their TCP/IP 

communication. 

 
Figure 3.11:  Initialization of all objects in Figure 3.10 and the initialization of the TCP/IP communication. 
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The same interconnected state space model is formed as in Section 3.4.1, and (3.44)-(3.47) are used in 

order to express the port inputs at each bus in terms of the port states at each bus.  The computational time 

of the automated distributed method is 29 seconds.  It should be noted that all processors were run on one 

computer, so the computational time could be improved by using multiple computers. 

3.6.   Summary    

This chapter presented a new automated modular approach for deriving the state space model for 

power systems.  Using this modular approach, first dynamic models for each power system component 

are derived using the Lagrangian approach and then given the connection between modules, the dynamic 

models of each module are combined in an automated procedure.  This modular approach is much more 

computationally efficient and suitable for large power systems than the centralized approach described in 

Chapter 2.  This chapter concludes the discussion of the modeling of power systems, and the next five 

chapters will discuss the control design using flywheels. 
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4.   Automated Passivity-Based Control 

Once the dynamic model of the power system has been obtained, the next step is design the control 

using flywheels.  This chapter introduces passivity-based control, as well as details a novel automated 

method for symbolically deriving the passivity-based control law.  Chapter 5 will describe a variable 

speed drive controller for flywheels using passivity-based control logic.   

In industry today, most controllers in power systems and power electronics use linearized models of 

nonlinear dynamics and linear control logic [5,46,58,59].  While these linearized models are accurate for 

small disturbances, large disturbances can perturb the system far away from the equilibrium where 

linearized models are no longer accurate.  Some common nonlinear control techniques include variable 

structure control [9], Lyapunov-based control [60], and feedback linearization [61].  However, none of 

these nonlinear control techniques take advantage of the intrinsic physical structure and energy properties 

of the system dynamics.   

Passivity-based control exploits these intrinsic energy properties when designing control for 

stabilization or regulation [14] and for this reason, enhanced robustness against parameter uncertainty and 

simplified controller implementation are achieved with passivity-based control compared to feedback 

linearization, due to the avoidance of exact cancellation of nonlinearities [41].  Previous work on 

passivity-based control has been demonstrated for robot arms [14], dc/dc converters [14,62,63], one-phase 

ac/dc converters [64], three-phase ac/dc converters [41], torque regulation of induction motors [14,65], 

and speed regulation of Boost-converter driven dc-motors [66]. 

As outlined in [67], two basic approaches for passivity-based control have been explored in previous 

literature.  In the first approach, the desired closed-loop storage function is chosen first and then the 

controller is designed to ensure this objective [14].  In the second, newer approach, the closed-loop 

storage function is obtained as a result of the interconnection of the controller and the plant to be 

controlled [68].  Using this approach, the plant and the controller can be both modelled as Port-

Hamiltonian systems, and the resulting closed-loop storage function has the nice physical interpretation of 

the sum of the energy of the plant to be controlled and the energy of the controller [68].  Unfortunately, 
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this approach hinges on the ability to solve a partial differential equation (PDE) and explicit conditions 

for the existence of solutions to the PDE cannot be found in general [68].  As a result, no automated or 

systematic procedure can be designed to derive the control law.  Therefore, the first approach, where the 

desired closed-loop energy functions are chosen beforehand, is used in this thesis because that approach 

lends itself to a systematic and automated procedure for deriving the control law.  The ability to automate 

the control law derivation is strongly desired because it is allows for quick testing of different closed-loop 

system behavior and different set point equations, and deriving the control law by hand is a complex and 

tedious procedure even for small systems. 

Extending the previous literature on passivity-based control, this chapter describes a novel automated 

method for symbolically deriving the passivity-based control law for electrical systems.  This is the first 

computer-aided tool for symbolically designing passivity-based control.  In the automated method, the 

user specifies the original state space model, the set point equations, the desired closed-loop energy 

function, and the desired closed-loop dissipation function, and the automated method symbolically 

derives the control law.     

The automated method is then demonstrated for regulation of the three-phase ac/dc/ac converter, 

which was introduced in Section 2.1.2.  Simulation results are shown demonstrating the effectiveness of 

the passivity-based control for this example, and finally, the stability limits and the switch feasibility 

limits for this controller are derived and interpreted.  The control logic derived for the ac/dc/ac converter 

is important because having a nonlinear state space representation of the dynamics and mathematical 

expressions for the duty ratios of the switches allow for control with provable performance. 

4.1.   Automated Control Law Derivation Methodology 

For the automated control design methodology introduced in [16], the control designer specifies the 

original state space model, the set point equations, the closed-loop energy functions (the closed-loop 

magnetic co-energy and the closed-loop electric energy), and the closed-loop dissipation function, and the 

automated method symbolically derives the control law.  The Lyapunov function for the closed-loop 

system is the sum of the closed-loop magnetic co-energy and the closed-loop electric energy.  If the 
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closed-loop energy and dissipation functions are chosen so that the Lyapunov function is positive definite 

and the time derivative of the Lyapunov function is negative definite, then the error dynamics will be 

asymptotically stable and the state variables will converge to their desired values [69].  A function ( )f x   

is positive definite if (0) 0f   and ( ) 0 0f x x   , and ( )f x  is negative definite if (0) 0f   and 

( ) 0 0f x x   .        

To specify the desired closed-loop behavior, the control designer should take the following steps:  

1. Enter the original state space model ( , )x ux f . 

2. Choose a desired closed-loop magnetic co-energy  'mW x  and a desired closed-loop electric 

energy  eW x  where 
D x x x and

D
x denotes the desired state variables.  For an underactuated 

system (a system with less control inputs than state variables), these desired state variables cannot 

be all arbitrarily selected, but rather will be determined later from the set point equations and the 

error dynamics [14].  The Lyapunov function of the closed-loop system is 

     'm eV W W x x x , so  'mW x  and  eW x  should be chosen so that  V x  is positive 

definite.  It should be noted that the choices for  'mW x  and  eW x are not unique. 

3. Choose a desired closed-loop dissipation function  xR  which will ensure that  V x , computed 

in Step 4 by the computer, is negative definite.  Again the choice for  xR  is not unique. 

4. Form symbolic vectors for the current I and the charge Q  of the closed-loop system.  

5. Form the constraint matrix G  for the closed-loop system.  0GI  will give the KCL equations. 

6. Form the Lagrange multiplier vector   for the closed-loop system, consisting of the voltages at the 

non-ground junctions. 

7. Specify a vector of set point equations ( )D

r x f r where 


r is a vector of external set points and 

specify which desired state variables are being directly controlled.  The number of set point 
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equations, as well as the number of directly controlled state variables, should match the number of 

controllable inputs in the systems. 

Given the original state-space model ( , )x ux f , the set point equations ( )D

r x f r , and the desired 

closed-loop behavior specified by matrices  'mW x ,  eW x , I , Q , G , and  , the computer solves for 

the passivity-based control law by taking the following steps: 

1. Calculate the closed-loop Lagrangian 

      'm eW W x x xL  (4.1) 

2. Obtain the error dynamic equations for the closed-loop system by evaluating the Lagrange equations 

of the first kind 

 ( ) 0
( ) ( ) ( )( )

d
k

dt k k kk

   

  

 
     

 

GI
V

I I IQ

L L R 
 (4.2) 

 0GI  (4.3) 

( )kV  is set to zero for all k because in order to make the error dynamics asymptotically stable there 

should be no closed-loop forcing function [41].  It should also be noted that because the Lagrange 

equations (4.2) do not hold in a rotating reference frame [70], the automated method converts L  

and R  to the stationary αβ reference frame, then evaluates the Lagrange equations, and finally 

converts the dynamic equations back to the dq rotating reference frame.  

3. Re-express the error dynamics given by (4.2) and (4.3) in standard state space form. 

 ( , )x ux f  (4.4)    (25)   

4. Compute and display the Lyapunov function and the time-derivative of the Lyapunov function  

      'm eV W W x x x  (4.5)  

  
 V

V 




x
x x

x
 (4.6)    (25)   
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In order to ensure that 0x  (
Dx x ),  V x  should be a positive definite function and  V x  

should be a negative definite function.  If this is not the case, the control designer can abort the 

automated method at this point and re-enter different closed-loop energy and dissipation functions.    

5. Substitute in 
Dx x for x  in the error dynamics given by (4.4) 

 ( , )D Dx x u  x x f  (4.7)  

6. Using the original state-space model, substitute ( , )x uf  in for x    

 ( , ) ( , )D Dx u x x u  f x f  (4.8)  

For a system with N state variables and M controllable inputs, the controller has N+M degrees of 

freedom (the M inputs and the N desired values 
D

x ).  N equations result from (4.8) and the 

remaining M equations are the set point equations ( )D

r x f r .    

7. Solve (4.8) and the set point equations for the M inputs, the M directly controlled state variables, 

and the N-M derivatives of the non-directly controlled desired state variables. 

 ( , , )Dnx x r 1u g  (4.9)  

 ( , , )Dn Dnx x r 2x g  (4.10)  

 
3( , , )Dd Dnx x rx g  (4.11)  

where 
Dd

x and 
Dn

x  represent the directly controlled desired state variables and the non-directly 

controlled desired state variables respectively.  Since with an underactuated system all state 

variables cannot be controlled, the non-directly controlled desired state variables have dynamics.  

By adding (4.9) and (4.10) to the original state space model ( , )x ux f , the closed-loop dynamics 

of the system with the controller can be simulated.    

4.2.   Example: AC/DC/AC Converter 

Now the automated computer-aided control law derivation methodology is demonstrated for the 

ac/dc/ac converter, whose dynamics were derived in Section 2.1.2.  The state-space model in the dq 
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reference frame for the ac/dc/ac converter is given by (2.41)-(2.45). The desired closed-loop magnetic co-

energy and electric energy are chosen to be   

    2 2 2 2

1 1 1 2 2 2

1 1
'

2 2
m d q d qW L i i L i i     (4.12) 

 

2
1

2

C
e

q
W

C
  (4.13) 

The desired closed-loop dissipation is chosen to be 

    2 2 2 2 2

1 1 1 2 2 2

1 1 1

2 2 2
d q d q C RR i i R i i R i    R  (4.14) 

Note that R1 is damping injected to the closed-loop system in order to make the time derivative of the 

Lyapunov function negative definite, as will be shown by (4.30).   

The symbolic vectors I and Q  for the closed-loop system are defined as  

 
1 1 2 2

T

d q C R d qi i i i i i   I  (4.15) 

 
1 1 2 2

T

d q C R d qq q q q q q   Q  (4.16) 

The constraint matrix G for the closed-loop system is 

 
1 21 21 1

2 2 2 2

q qd d
u uu u 

     
 

G  (4.17) 

The Lagrange multiplier vector   for the closed-loop system is 

  1  (4.18) 

As shown by (2.41)-(2.45), the ac/dc/ac converter is an underactuated system with five state variables 

( 1di , 1qi , 
D

Cq , 2di , and 2qi ) and four controllable inputs ( 1du , 1qu , 2du ,and 2qu ).  Therefore 1

D

di , 1

D

qi , 2

D

di , 

and 2

D

qi are chosen to be the four directly controlled desired state variables, meaning that 
D

Cq will have 

dynamics. The specified set point equations are  

 
*

1 1

D

d di i  (4.19) 
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*

1 1

D

q qi i  (4.20) 

 
*

2 2

D

d di i  (4.21) 

 
*

2 2

D

q qi i  (4.22) 

where 
*

1di , 
*

1qi , 
*

2di , and 
*

2qi  are the controller set points. 

Given these specifications by the control designer, the automated method derives the control law.  

The closed-loop Lagrangian is calculated as 

    
2

2 2 2 2

1 1 1 2 2 2

1 1 1
'

2 2 2

C
m e d q d q

q
W W L i i L i i

C
      L  (4.23) 

After evaluating (4.2) and (4.3) and re-expressing the error dynamics in standard state space form  

 1 11
1 1 1

1 12

d C d
q d

di q uR
i i

dt L CL
    (4.24) 

 
1 11

1 1 1

1 12

q C q

d q

di q uR
i i

dt L CL
     (4.25) 

 
1 1 2 21 1 2 2

2 2 2 2

q q q qC d d d d C

C

i u i udq i u i u q

dt CR
      (4.26) 

 2 22
2 2 2

2 22

d C d
q d

di q uR
i i

dt L CL
    (4.27) 

 
2 22

2 2 2

2 22

q C q

d q

di q uR
i i

dt L CL
     (4.28) 

The Lyapunov function and the time derivative of the Lyapunov function are  

    
2

2 2 2 2

1 1 1 2 2 2

1 1 1
'

2 2 2

C
m e d q d q

q
V W W L i i L i i

C
        (4.29) 

    
2

2 2 2 2

1 1 1 2 2 2 2

C
d q d q

C

qV d
V R i i R i i

dt C R


   


  
x

x
 (4.30) 

It is apparent that (4.29) is positive definite and (4.30) is negative definite, so the automated control 

law derivation is continued.  (Without the added damping R1 in the closed-loop system, (4.30) would only 
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be negative semidefinite, not negative definite.)  After applying Steps 5 and 6, (4.24)-(4.28) become in 

terms of desired values 

  1 1 11
1 1 1 1

1 1 12

D D
D Dd d C d
q d d

di V q uR
i i i

dt L L CL
      (4.31) 

  1 1 11
1 1 1 1

1 1 12

D D

q q C qD D

d q q

di V q uR
i i i

dt L L CL
      (4.32) 

 
1 1 2 21 1 2 2

2 2 2 2

D DD D D D
q q q qC d d d d C

C

i u i udq i u i u q

dt CR
      (4.33) 

 2 22
2 2 2

2 22

D D
D Dd C d
q d

di q uR
i i

dt L CL
    (4.34) 

 
2 22

2 2 2

2 22

D D

q C qD D

d q

di q uR
i i

dt L CL
     (4.35) 

Solving (4.31)-(4.35) and the set point equations (4.19)-(4.22) for 1du , 
1qu , 2du , 

2qu ,

D

Cdq

dt
,

1

D

di , 1

D

qi , 

2

D

di , and 2

D

qi , the following control law is obtained. 

 
 * *

1 1 1 1 1 1 1 1

1

2 d d d q

d D

C

CV CR i CR i CL i
u

q

  
  (4.36) 

 
 * *

1 1 1 1 1 1 1 1

1

2 q q q d

q D

C

CV CR i CR i CL i
u

q

  
  (4.37) 

 
 * *

2 2 2 2 2

2

2 d q

d D

C

CR i CL i
u

q

 
  (4.38) 

 
 * *

2 2 2 2 2

2

2 q d

q D

C

CR i CL i
u

q

 
  (4.39) 

       
2

2 * * 2 * 2 * 2 2 * 2 * 2 * *

1 1 1 1 2 2 2 1 1 1 1 1 1 1

DD
C C d d q q C d q C d q d d q qC

D

C C

q C R V i V i C R R i i C R R i i i i i idq

dt CR q

       
   (4.40) 
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4.2.1. Simulation Results    

The dynamic equations given by (2.41)-(2.45) and the control equations given by (4.36)-(4.40) are 

simulated using the MATLAB differential equation solver ‘ode45.’  The parameters, the set points, and 

the initial conditions used in the simulation are given in Table 4.1, Table 4.2, and Table 4.3 respectively.   

Table 4.1:  Parameters for ac/dc/ac converter 

Symbol Quantity Value 

V0 Magnitude of three-phase 

voltage source 

80 V 

ω1 Frequency of three-phase 

voltage source 

377 rad/sec 

C Capacitance of dc-link 

capacitor   

200 μF
 

L1 Inductance on line with 

voltage source 

0.5 mH 

L2 Inductance of three-phase 

load 

5 mH 

RC Resistance of resistor in 

parallel with capacitor 

25 Ω  

R2 Resistance of three-phase 

load 

0.1 Ω 

 

Table 4.2:  Controller set points for ac/dc/ac converter 

Symbol Quantity Value 

R1 Injected resistance for 

controller 

0.1 Ω  

ω2 Desired frequency of load 

currents 

300 

rad/sec 
*

1di  Set point for direct 

component of source current 

10 A 

*

1qi  Set point for quadrature 

component of source current 

0 A 

*

2di  Set point for direct 

component of  load current 

8 A 

*

2qi  Set point for quadrature 

component of load current 

1 A 

 

 
 

Table 4.3:  Initial conditions for ac/dc/ac converter 

Symbol Quantity 
Initial 

Condition 

1di  Direct component of 

the source current 

11 A 

1qi  Quadrature 

component of source 

current 

-1 A 

2di  Direct component of 

load current 

9 A 

2qi  Quadrature 

component of load 

current 

-1 A 

Cq  Charge of dc-link 

capacitor  

0.03 C 

D

Cq  Desired charge of dc-

link capacitor 

0.04 C 

 

 
Figure 4.1:  Source currents as a function of time for the 

ac/dc/ac converter using passivity-based control. 

 
 

The source currents and the load currents as a function of time are shown in Figures 4.1 and 4.2 

respectively, and it is evident that these currents converge to their set points.  The capacitor charge and 
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the desired capacitor charge as a function of time are plotted in Figure 4.3, demonstrating that the desired 

capacitor charge reaches a stable equilibrium and the actual capacitor charge converges to the desired 

charge.  Finally, the duty ratios for the two switches are shown in Figures 4.4 and 4.5.  As will be shown 

in Section 4.2.3, these duty ratios are within feasible limits. 

 
Figure 4.2:  Load currents as a function of time for the 

ac/dc/ac converter using passivity-based control 

 

 
Figure 4.3:  Capacitor charge and the desired capacitor 

charge as a function of time for the ac/dc/ac converter using 

passivity-based control. 

  

4.2.2. Controller Stability Limits    

To ensure internal stability with passivity-based control, it is necessary to check the stability of the 

zero dynamics of the non-directly controlled desired state variables [14,41].  As tracking of 

1 1 2 2, , , andd q d qi i i i  is achieved (
*

1 1d di i ,
*

1 1q qi i ,
*

2 2d di i , and 
*

2 2q qi i ) , the dynamics of 
D

Cq  

given by (4.40) become 

 
 * * * 2 * 2

1 1 1 1 2 2 2 2
D D

d d q q d qC C

D

C C

C V i V i R i R idq q

dt q CR

  
   (4.41) 
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Figure 4.4:  Duty ratios of switch 1 as a function of time 

for the ac/dc/ac converter using passivity-based control 

 

 
Figure 4.5:  Duty ratios of switch 2 as a function of time 

for the ac/dc/ac converter using passivity-based control. 

 

Examining (4.41), it is apparent that the resistance CR  in parallel with the capacitor is necessary or 

there would be no possible equilibrium for
D

Cq .  Figure 4.6 shows a plot of the zero dynamics of 
D

Cq   

using the parameters given in the previous section.  It is evident that there is a stable equilibrium because 

the slope at the x-intercept in Figure 4.6 (where 0D

Cdq dt  ) is negative. 

 
Figure 4.6:  Plot of the zero dynamics for the desired capacitor charge showing that there is a stable equilibrium. 
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 To calculate the condition for when (4.41) has a stable equilibrium, let 2 CM CR   and

 * * * 2 * 2

1 1 1 1 1 2 2 2 2d d q q d qM C V i V i R i R i    .  The equilibrium solution 
D

Cq  to (4.41) is 

 
1 2

D

Cq M M   (4.42) 

Since M2 is always negative, there is only an equilibrium when M1 is positive.  This happens when 

 
* * * 2 * 2

1 1 1 1 2 2 2 2d d q q d qV i V i R i R i    (4.43) 

This condition can be interpreted as the set points must be chosen such that the power supplied by the 

voltage source is greater than the power output supplied to the load.   

To check the stability of the equilibrium given by (4.42), (4.41) is linearized around the equilibrium. 

 

 
 1

2

2

1
D

D DC
C C

D

C

dq M
q q

dt Mq

 
   

 
 

 (4.44) 

This linearized differential equation is stable if   

 

 
1

2

2

1
0

D

C

M

Mq


   (4.45) 

Substituting in the expression for 
D

Cq  given by (4.41), it is apparent that condition (4.45) is always 

satisfied since M2 is always negative.  Therefore, as long as condition (4.43) is met and an equilibrium 

exists, this equilibrium is always stable. 

4.2.3. Switch Feasibility Limits    

Also, in order for the controller to be physically realizable, it is necessary for the switch duty ratios to 

stay within their feasible limits.  For analyzing the feasibility limits of the duty ratios in the dq reference 

frame, the easiest approach is to use the switching function space vector [60,71].  For the switches on the 

left side of the ac/dc/ac converter, the switching function space vector is defined as 

  2

1 1 1
2

3 a b cU u au a u    (4.46) 
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where 
2 3ja e   [60,71] .  All eight possible switching vectors are shown in Figure 4.7.  There are six 

non-zero space vector (U1-U6) and two zero space vectors (U7-U8).  When using state-space averaging, 

the average switching vector must remain within the dotted hexagon shown in Figure 4.7 [60].   

 
Figure 4.7:  Switching function space vectors for ac/dc/ac converter. 

 

Therefore, for sinusoidal steady-state operation, the switching functions u1d and u1q must satisfy 

 2 2

1 1 2d qu u   (4.47) 

The feasibility condition for the switches on the right side of the ac/dc/ac converter can be similarly 

derived to be 

 2 2

2 2 2d qu u   (4.48) 

Looking at Figures 4.4 and 4.5, it is evident that conditions (4.47) and (4.48) are met for the example 

in Section 4.2.1.  It is also of interest to calculate the conditions for which the duty ratios are feasible in 

terms of the parameters and set points of the system.  Conditions (4.47) and (4.48) are met when 
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    
 

2

2 2
* *

1 1 1 1 1 1 1 1 2
0

2

D

C

d q q d

q
V L i V L i

C
       (4.49) 

    
 

2

2 2
* * * *

2 2 2 2 2 2 2 2 2 2 2
0

2

D

C

q d d q

q
L i R i L i R i

C
        (4.50)   

4.3.   Summary    

A new automated method for deriving the passivity-based control law for electrical systems was 

introduced in this chapter.    Since deriving the passivity-based control law by hand is a complex and 

lengthy procedure, the automation of this control law derivation is valuable because it allows for quick 

testing of different closed-loop system behavior and different set point equations.  As mentioned in 

Section 4.1, while the closed-loop energy and dissipation functions should be chosen so that the 

Lyapunov function is positive definite and the time derivative of the Lyapunov function is negative 

definite, the choice of these closed-loop functions is not unique.  The effect of varying these closed-loop 

functions and finding optimal closed-loop functions based on the cost of control are open questions for 

future work.   

The automated method was demonstrated on an ac/dc/ac converter in this chapter, and controller 

stability limits and switch feasibility limits were derived for this example.  The next chapter will discuss 

the design of a variable drive controller for flywheels using time-scale separation and this automated 

passivity-based control logic.  
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5.   Variable Speed Drive Controller for Flywheels 

Building upon the automated passivity-based control law derivation introduced in Chapter 4, this 

chapter applies passivity-based control to the flywheel variable speed drive, whose dynamic equations 

were derived in Section 2.2.2.   The switch positions of the power electronics are controlled in order to 

regulate the speed of the flywheel (and hence the energy stored in the flywheel) to a different speed than 

the grid frequency. 

Previous work for machine speed control takes advantage of the natural time-scale separation 

between the mechanical and electrical variables but assumes that the stator voltages of the machine are 

directly controllable inputs [43,47].  This technique can be used to design control for stand-alone 

machines, but cannot be applied for interconnected power systems since the stator voltages are not 

directly controllable in interconnected systems.  Also much previous literature on flywheels neglects the 

fast dynamics of the power electronics interfacing between the flywheel and the rest of the grid and 

models the flywheel as an ideal power source or current source [18,19].  However, when using flywheels 

for transient stabilization on a very fast time-scale, it is necessary to include the fast power electronic 

dynamics or else potential instabilities on a very fast time-scale will not be captured. 

Extending this previous work, a novel passivity-based controller using three time-scale separations is 

introduced in this chapter for the variable speed drive.   As described in Section 2.2.2, the stator voltages 

of the flywheel are not assumed to be directly controllable, and the only directly controllable inputs are 

the switch positions in the power electronics, which allows the controller to be applicable to 

interconnected power systems.  Also, the fast dynamics of the inductors and capacitors in the power 

electronics are included, as shown in the dynamic model given in Section 2.2.2.  Therefore, a third time-

scale for the fast power electronic dynamics is added to the time-scale separation between the mechanical 

and electrical machine variables in  [43,47], and therefore a third layer is added to the controller.   

This chapter demonstrates the ability of the variable speed drive controller to regulate both the 

flywheel speed and the power electronic currents to desired set point values.  Chapter 6 will then describe 
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several options for choosing these set point values in order to transiently stabilize power systems against 

large sudden wind power disturbances using this flywheel variable speed drive controller.  

5.1.   Time-Scale Separation of the Variable Speed Drive 

The automated passivity-based control methodology from Section 4.1 could be generalized from 

electrical systems to electromechanical systems and then applied to the full dynamic model for the 

variable speed drive given by (2.116)-(2.124).  However, to simplify the control design and reduce the 

amount of communications needed, the controller takes advantage of the natural time-scale separation 

between the mechanical machine state variables, the electric machine state variables, and the power 

electronic state variables.   

Three different time-scales for the variable speed drive are defined, as shown in Table 5.1.  The 

slowest time-scale is the mechanical machine time-scale, the middle time-scale is the electrical machine 

time-scale, and the fastest time-scale is the power electronics time-scale.  Each of these time-scales will 

be used to derive the control law for a layer of the controller described in the next section.   

Table 5.1:  Time-scale separation of variable speed drive 

Time-Scale 
Mechanical Machine 

State Variables 2 2( , )   

Electrical Machine  State 

Variables 
2 2 2( , , )R S d S qi i i  

Power Electronics State 

Variables 
1 1 1( , , )d q Ci i q  

Mechanical machine 

time-scale 

(Slowest) 

Dynamic Instantaneous Instantaneous 

Electrical machine 

time-scale 

(Middle) 

Frozen Dynamic Instantaneous 

Power electronics 

time-scale 

(Fastest) 

Frozen Frozen
 

Dynamic 

 

5.1.1. Mechanical Machine Time-Scale    

In the mechanical machine time-scale, the mechanical machine state variables 2 2( , )   have 

dynamics, and the electrical machine state variables 2 2 2( , , )R S d S qi i i  and the power electronic state 

variables 1 1 1( , , )d q Ci i q  are assumed to be instantaneous because their time constants are much smaller.  

Therefore, the dynamics in the mechanical machine time-scale are 
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 2 2 2 22

2

e M Bd

dt J

    
  (5.1) 

 2
2

d

dt


  (5.2)  

In this time-scale, the electric torque 2e , which is a product of the machine currents, is assumed to be 

directly controllable, because the electrical machine dynamics are much faster. 

5.1.2. Electrical Machine Time-Scale    

In the electrical machine time-scale, the electrical machine state variables have dynamics.  The 

mechanical machine state variables are assumed to be frozen because their time constants are much larger 

while the power electronic state variables are assumed to be instantaneous because their time constants 

are much smaller.  Therefore, the dynamics in the electrical machine time-scale are 

  2
2 2 2 2 2 2 2( )

d
inv

dt
  

I
L V R I L I  (5.3) 

where 
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i v R
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  
     
          

 
    

    
  
   

  

I V R

L 

 (5.4) 

In this time-scale, 2  is assumed to be frozen because the dynamics of the mechanical machine 

variables are much slower while the stator voltages 2S dv  and 2S qv  are assumed to be directly 

controllable, because the power electronic dynamics are much faster. 
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5.1.3. Power Electronics Time-Scale    

In the power electronics time-scale, the power electronics state variables have dynamics while the 

mechanical and electrical machine state variables are assumed to be frozen because their time constants 

are much larger.  Therefore, the dynamics in the power electronics time-scale are 

 1 1 1 11
1 1 1

1 1 1 12

d d C d
q d

di V q uR
i i

dt L L C L
     (5.5) 

 
1 1 1 11

1 1 1

1 1 1 12

q q C q

d q

di V q uR
i i

dt L L C L
      (5.6) 

 
1 1 2 21 1 1 2 2 1

1 12 2 2 2

q q S q qC d d S d d C

C

i u i udq i u i u q

dt C R
      (5.7) 

In this time-scale, iS2d and iS2q are assumed to be frozen because the dynamics of the electrical 

machine variables are much slower. The controllable inputs are the same as for the full model, the duty 

ratios of the switches u1d, u1q, u2d, and u2q. 

5.2.   Three-Layer Control Methodology 

The three-layer controller shown in Figure 5.1 was introduced in [17] to regulate both the speed of the 

flywheel 2  and the current into the power electronics, 1di and 
1qi .  The outermost controller is the speed 

controller, which uses the slowest time-scale model to regulate the speed of the synchronous machine to a 

set point specified by the control designer.  The torque controller then uses the middle time-scale model to 

control the electric torque to the reference value specified by the speed controller.  This control strategy 

relies on the fact that the torque controller can regulate the electric torque much faster than the reference 

electric torque changes.  The innermost controller is the power electronics controller ,which uses the 

fastest time-scale model to control the stator voltages to the reference values specified by the torque 

controller, as well as to control the power electronics currents to set points specified by the control 

designer.  Finally, in order to test the control logic, the switch duty ratios determined by the power 

electronics controller are fed into the full dynamic model for the variable speed drive given by (2.116)-

(2.124).    
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Figure 5.1:  Block diagram for the three-layer variable speed drive controller. 

5.2.1. Speed Controller    

The speed controller uses the dynamic model in the slowest time-scale, the mechanical machine time-

scale, to control the speed of the synchronous machine to a set point 
2

ref .  Since the dynamic model in 

the slowest time-scale is a very simple linear system, a proportional integral controller is used.  The 

control law for the electric torque is given by 

 
 

2 2 2 2

2 2 2

e

ref ref

P I Int

ref

Int

K K   

  

  

 

 (5.8) 

where PK is the proportional gain, and IK  is the integral gain specified by the control designer.  The 

integral gain causes the steady-state error to be zero.   The speed controller then gives the value of 
2e

ref  to 

the torque controller, which uses 
2e

ref as a set point.  It should be noted that the gains should not be made 

too large, or else the time-scale separation of the open-loop dynamics may not hold true for the closed-

loop system and hence the reference electric torque may change faster than the torque controller can 

regulate the electric torque. 

5.2.2. Torque Controller 

The torque controller uses the dynamic model in the middle time-scale, the electrical machine time-

scale, to control the electric torque to the set point specified by the speed controller,
2e

ref .  Passivity-based 
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control logic is used for the torque controller, applying the automated method introduced in Section 4.1.  

The desired closed-loop magnetic co-energy and electric energy are chosen to be   

   2 2 2

2 2 2 2 2 2

1 1
'

2 2
m S SS S d S q R RW L L i i L i     (5.9) 

 0eW   (5.10) 

The desired dissipation function is chosen to be 

  2 2 2

2 2 2 2 2

1 1

2 2
S S d S q R RR i i R i  R  (5.11) 

The vector of currents I and the vector of charges Q   for the closed-loop system are defined as  

 
2 2 2

T

S d S q Ri i i   I  (5.12) 

 
2 2 2

T

S d S q Rq q q   Q  (5.13) 

The constraint matrix G and the Lagrange multiplier vector   for the closed-loop system are empty 

matrices since there are no KCL equations. 

Since there are two controllable inputs, 2S dv  and 
2S qv , in the electrical machine time-scale model, 

regulation of two reference signals can be achieved.  Since the electric torque 2e  is a product of 2Ri  and 

2S qi  as shown by (2.123), 2Ri and 
2S qi  are chosen to be regulated to set points 

2

ref

Ri and 2

ref

S qi ,  which satisfy 

the reference torque 
2e

ref  given by the speed controller. 

 
2 2

D ref

R Ri i  (5.14) 

 2

2 2

2 23 2

e

ref

D ref

S q S q ref

R

i i
M i


   (5.15) 

Since 2

D

Ri and 2

D

S qi  are chosen to be the directly controlled desired state variables.  This means 2

D

S di

will have dynamics [14]. 
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Given the state-space model specified by (5.3)-(5.4), the set point equations (5.14)-(5.15), and the 

desired closed-loop behavior specified by matrices  'mW x ,  eW x , I , Q , G , and  , the computer 

derives the control law for the torque controller by taking the following steps: 

The desired Lagrangian is calculated as 

   2 2 2

2 2 2 2 2 2

1 1
'

2 2
m e S SS S d S q R RW W L L i i L i     L  (5.16) 

After evaluating (4.2) and (4.3) and re-expressing the error dynamics in standard state space form 

 2 2
2 2 2

2 2

 S d S
S q S d

S SS

di R
i i

dt L L
 


 (5.17) 

 
2 2

2 2 2

2 2

 
S q S

S d S q

S SS

di R
i i

dt L L
  


 (5.18) 

 2
2

R R
R

R

di R
i

dt L
   (5.19) 

The Lyapunov function and the time derivative of the Lyapunov function are  

   2 2 2

2 2 2 2 2 2

1 1
'

2 2
m e S SS S d S q R RV W W L L i i L i       (5.20) 

  2 2 2

2 2 2 2 2S S d S q R R

V d
V R i i R i

dt
   





x

x
 (5.21) 

It is apparent that the Lyapunov function is positive definite and the time derivative of the Lyapunov 

function is negative definite.  After substituting in 
Dx x for x  and substituting ( , )x uf  in for x ,  (5.17)

-(5.19) become in terms of desired values 

 

 

 
 

2 2 2 2 2 2 2 2 2 22

2

2 2 2 2 2

2 2

2 2 2

2 2

2 6 2

3  2   2

D
R S d R R R R S S d S qS d

R S R SS

D

S S d S dD

S q S q

S SS

L v M v R i L R i idi

dt M L L L L

R i i
i i

L L





   


  


  



 (5.22) 

 
2 2 2 2 2 22

2 2

3
2

DD
S S q S q RS q D

S d

S SS

R i v M idi
i

dt L L




 
  


 (5.23) 
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      

 

2 2 2 2 2 2 2 2 2 2 2 2 22

2

2 2 2 2 2

2 2

2 6  6

3  2   2

 -  

D
S SS R R R Sd S Sd S q S SSR

R S R SS

D

R R R

R

L L R i v M v R i M i L Ldi

dt M L L L L

R i i

L

     
 

  



 (5.24) 

Solving (5.22)-(5.24) and the set point equations (5.14)-(5.15) for the two control inputs ( 2S dv  and 

2S qv ), the two directly controlled desired state variables (
2

D

S qi  and 
2

D

Ri ),  and the derivative of the one 

non-directly controlled desired state variable ( 2

D

S ddi

dt
), the following control law is obtained. 

 

    

  

 

2 2 2 2 2 2 2

2

2

2 2 2 2 2 2 2 2

2

2 2 2 2 2 2

2 2

6 2   2

6

6 6 6

6

6 3 3

6

ref

SS S R R SS S Rref

S d

ref

S S d SS S S d

ref

R R R R

R

L L R i L L v
v

M

M R i L L M i

M

M R i M R i

L M



  
 

  





 (5.25) 

   2 2
2 2 2 2 2 2 2 2

2 2

6
3 2

3

ref
ref D S e
S q S SS S d R ref

R

R
v L L i M i

M i


      (5.26) 

 

       

 

   

 

2

2 2 2 2 2 2 2 2 2 2 2 22

2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

6 6 6

3

ref ref refD
S SS e S SS R R S SS R RS d

ref

R S SS

ref D ref

S R S d S d S SS R S q

ref

R S SS

L L L L R i L L v idi

dt M i L L

R i i i L L i i

i L L

 



    




  




 (5.27) 

As described in the previous chapter, in order to ensure internal stability with passivity-based control, 

it is necessary to check the stability of the zero dynamics of the desired state variables [14,41].  As 

tracking of 2 2 2, , andS d S q Ri i i  is achieved (
2 2

ref

S q S qi i , 2 2

ref

R Ri i , and 2 2

D

S d S di i ) , the dynamics of 

2

D

S di  given by (5.27) become 

 
 2 2 22

2 2

6

3

refD
R R RS d

ref

R

v R idi

dt M i


  (5.28) 
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Examining (5.28), it is apparent that there is only a stable equilibrium for 
2

D

S di  if and only if 

2
2

2

ref R
R

R

v
i

R
 .  Therefore, 2Ri  cannot actually be controlled to an arbitrary set point, and 2

2

2

ref R
R

R

v
i

R
  will be 

used for all subsequent simulations in this thesis. 

5.2.3. Power Electronics Controller    

The power electronics controller uses the dynamic model in the fast time-scale, the power electronics 

time-scale to control the stator voltages to the set points specified by the torque controller, 
2

ref

S dv  and 2

ref

S qv  

as well as to regulate the currents to set points specified by the control designer, 
1

ref

di  and 1

ref

qi .  In order 

for the power electronics to achieve regulation of the reference stator voltages, the following algebraic 

expressions for the duty ratios of the second switch must be used: 

 1 2
2

1

2 ref

S d
d

C

C v
u

q
  (5.29) 

 
1 2

2

1

2 ref

S q

q

C

C v
u

q
  (5.30) 

Substituting in these expressions, the dynamic model in the fast time-scale becomes 

 1 1 1 11
1 1 1

1 1 1 12

d d C d
q d

di V q uR
i i

dt L L C L
     (5.31) 

 
1 1 1 11

1 1 1

1 1 1 12

q q C q

d q

di V q uR
i i

dt L L C L
      (5.32) 

 
 1 2 2 2 21 11 1 1 1

1 1 12 2

ref ref

S d S d S q S qq qC d d C

C C

C i v i vi udq i u q

dt q C R


     (5.33) 

Since the dynamics described by (5.31)-(5.33) are nonlinear, the automated passivity-based control 

methodology is again used.  The desired closed-loop magnetic co-energy and electric energy are chosen 

to be  

  2 2

1 1 1

1
'

2
m d qW L i i   (5.34) 
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2

1

1

1

2

C
e

q
W

C
  (5.35) 

The desired closed-loop dissipation is chosen to be 

  2 2 2

1 1 1 1 1

1 1

2 2
d q C RR i i R i  R  (5.36) 

The symbolic vectors I and Q   for the closed-loop system are defined as  

 
1 1 1 1

T

d q C Ri i i i   I  (5.37) 

 
1 1 1 1

T

d q C Rq q q q   Q  (5.38) 

The constraint matrix G for the closed-loop system is 

 
11 1 1

2 2

qd
uu 

   
 

G  (5.39) 

The Lagrange multiplier vector   for the closed-loop system is 

  1  (5.40) 

Since there are two remaining controllable inputs in (5.31)-(5.33), 
1

D

di  and 1

D

qi  are chosen to be the 

directly controlled desired state variables.  This means 1

D

Cq will have dynamics. The set point equations 

are given by 

 1 1

D ref

d di i  (5.41) 

 1 1

D ref

q qi i  (5.42) 

Given these specifications by the control designer, the automated method derives the control law for 

the power electronics controller. The closed-loop Lagrangian is calculated as 

  
2

2 2 1
1 1 1

1

1 1
'

2 2

C
m e d q

q
W W L i i

C
    L  (5.43) 

After evaluating (4.2) and (4.3)  and re-expressing the error dynamics in standard state space form 
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 1 1 11
1 1 1

1 1 12

d C d
q d

di q uR
i i

dt L C L
    (5.44) 

 
1 1 11

1 1 1

1 1 12

q C q

d q

di q uR
i i

dt L C L
     (5.45) 

 
1 11 1 1 1

1 12 2

q qC d d C

C

i udq i u q

dt C R
    (5.46) 

The Lyapunov function and the time derivative of the Lyapunov function are 

  
2

2 2 1
1 1 1

1

1 1
'

2 2

C
m e d q

q
V W W L i i

C
      (5.47) 

  
2

2 2 1
1 1 1 2

1 1

C
d q

C

qV d
V R i i

dt C R
    




x

x
 (5.48) 

It is apparent that (5.47) is positive definite and (5.48) is negative definite.  After substituting in 

Dx x for x  and substituting ( , )x uf  in for x , (5.44)-(5.46) become in terms of desired values 

 1 1 1 11
1 1 1

1 1 1 12

D D
D Dd d C d
q d

di V q uR
i i

dt L L C L
     (5.49) 

 
1 1 1 11

1 1 1

1 1 1 12

D D

q q C qD D

d q

di V q uR
i i

dt L L C L
     (5.50) 

 
 1 2 2 2 21 11 1 1 1

1 1 12 2

ref refDD D D
S d S d S q S qq qC d d C

C C

C i v i vi udq i u q

dt C R q


     (5.51) 

Solving (5.49)-(5.51) and (5.41)-(5.42) for 1du , 
1qu , 1

D

Cdq

dt
 ,

1

D

di  , and 1

D

qi  the following control law is 

obtained. 

 
 1 1 1 1 1 1 1 1 1

1

1

2 ref ref

d d q

d D

C

C V C R i C L i
u

q

 
  (5.52) 

 
 1 1 1 1 1 1 1 1 1

1

1

2 ref ref

q q d

q D

C

C V C R i C L i
u

q

 
  (5.53) 
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   

    

2
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1 1 1 1 2 2 2 2 1
1

1 1 1 1
2 2

2

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

D ref ref D
D

C C C S d S d S q S q C
C

D

C C C

ref ref ref ref

C d d q q d q C

D

C C C

q q C R v i v i qdq

dt C R q q

C R V i V i R i R i q

C R q q
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 

   
  

 (5.54) 

Checking the zero dynamics of
1

D

Cq ,  as 
1 1

ref

d di i , 1 1

ref

q qi i , and 1 1

D

C Cq q , the dynamics of 
1

D

Cq  

given by (5.54) become 

 
    2 2

1 1 1 1 1 1 1 1 1 2 2 2 2
1 1

1

ref ref ref ref ref ref
D Dd d q q d q S d d S q q
C C

D

C C

C V i V i R i R i v i v i
dq q

dt q CR

    
   (5.55)   (75) 

Examining (5.55), there is only a stable equilibrium for 
1

D

Cq  when the numerator of the first term is 

positive.  This happens when 

    
2 2

1 1 1 1 1 1 1 1 2 2 2 2

ref ref ref ref ref ref

d d q q d q S d d S q qV i V i R i R i v i v i      (5.56)   (75) 

This condition can be interpreted as the power input to the power electronics after the resistor R1 must 

be greater than the power output of the power electronics.  Additionally, as was derived in Section 4.2.3, 

in order for the control logic to be physically realizable, the switch duty ratios 1du , 
1qu , 2du , and 

2qu  

must satisfy (4.47) and (4.48). 

5.3.   Simulation Results 

This variable speed drive is simulated using the full dynamic model given in Section 2.2.2 by (2.116)-

(2.124) and the control equations given by (5.8), (5.25)-(5.27), (5.29)-(5.30), and (5.52)-(5.54).  The 

parameters used in the simulation are given in Tables 5.2 and 5.3 while the controller set points and gains 

are given in Table 5.4.  In this section, the set points are just chosen arbitrarily in order to demonstrate the 

effectiveness of the variable speed drive controller.  In Chapter 6, it will be explored how set points 

should be chosen in order to use this controller for transient stabilization of interconnected power 

systems.     
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Table 5.2:  Power electronics parameters 

Symbol Quantity Value 

V0 Magnitude of three-

phase voltage source 

10 V 

ω1 Frequency of three-

phase voltage source 

377 rad/sec 

C1 Capacitance of dc-link 

capacitor  

10 mF
 

L1 Inductance on line with 

voltage source 

0.5 μH 

R1 Resistance on line with 

voltage source  

0.1 mΩ 

RC1 Resistance of resistor in 

parallel with capacitor  

25 Ω  

 

Table 5.3:  Flywheel parameters 

Symbol Quantity Value 

LR2 Self-inductance of the rotor 

winding   

5 μH 

LS2 Self-inductance of the stator 

windings   

5 μH 

LSS2 Mutual inductance between 

the stator windings 

1 μH 

M2 Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR2 Resistance of the rotor 

winding   

2x10
-2

  Ω 

RS2 Resistance of the stator 

windings   

1x10
-3

  Ω 

VR2 Voltage applied to the rotor 

winding 

1  V 

J2 Inertia of the rotor 5x10
-4

  kg 

m
2
 

B2 Damping coefficient of the 

rotor 

2x10
-4

  N 

m s 

τM2 Mechanical torque applied 

to the rotor 

0  N m 

 

 

Table 5.4:  Variable speed drive set points and gains 

Symbol Quantity Value 

2

ref  Set point for the speed of the 

flywheel 

750 rad/sec for t < 0.5 sec 

760 rad/sec for t > 1 sec 

2

ref

Ri  Set point for the direct component 

of the stator current of the 

synchronous machine  

50 A 

1

ref

di  Set point for direct component of 

source current 

100 A for t < 0.5 sec 

130 A for t > 0.5 sec 

1

ref

qi  Set point for quadrature component 

of source current 

50 A for t < 0.5 sec 

40 A for t > 0.5 sec 

KP Proportional gain in the speed 

controller 

0.05 

KI Integral gain in the speed controller 1 

 

The angular speed of the flywheel as a function of time is shown in Figure 5.2, demonstrating that the 

speed converges to its set point, which changes from 750 rad/sec to 760 rad/sec at 0.5 seconds.  The 

synchronous machine currents and the desired direct stator current as a function of time are shown in 

Figure 5.3.  It is apparent that the desired quadrature stator current reaches a stable equilibrium and the 

actual quadrature stator current converges to the desired current. 
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Figure 5.2:  Flywheel speed as a function of time for the 

variable speed drive controller. 

 

 
Figure 5.3:  Synchronous machine currents and the 

desired quadrature stator current as a function of time for 

the variable speed drive controller. 

 

Figure 5.4 shows the power electronic currents as a function of time, and it is evident that they 

converge to their set points, which also change after 0.5 seconds.  The capacitor charge and the desired 

capacitor charge as a function of time are plotted in Figure 5.5, demonstrating that the desired capacitor 

charge reaches a stable equilibrium and the actual capacitor charge converges to the desired charge.  The 

duty ratios for the two switches are shown in Figure 5.6, and it is evident that these duty ratios are within 

the feasible limits given by (4.47) and (4.48).  

Finally, Figure 5.7 shows the input and output power of the power electronics.  It is observed that in 

steady-state, the power input after the resistor R1 is greater than the power output of the power electronics 

(the power delivered to the flywheel) for both the set points before 0.5 seconds and the set points after 0.5 

seconds.  Hence stability of 
1

D

Cq  is achieved as described in Section 5.2.3.  It should be noted that for 

these set points, the majority of the power input to the power electronics is dissipated rather than supplied 

to the flywheel.  In Chapter 6, it will be described how the flywheel speed set point should be chosen so 

that the majority of the power input to the power electronics is supplied to the flywheel rather than 

dissipated. 
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Figure 5.4:  Power electronic currents as a function of 

time for the variable speed drive controller. 

 

 
Figure 5.5:  Power electronic capacitor charge and the 

desired capacitor charge as a function of time for the 

variable speed drive controller. 

  

 
Figure 5.6:  Duty ratios of the two switches as a 

function of time for the variable speed drive controller. 

 

 
Figure 5.7:  Input and output power of the power 

electronics as a function of time for the variable speed 

drive controller. 
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chapter will analyze how to choose these set points in order to use the flywheel controller for transient 

stabilization of power systems in response to wind power disturbances.   

While the fast dynamics of the inductors and capacitors were considered in this chapter, the switches 

were assumed to be ideal.  Further research could involve analyzing the effect of switching losses and 

delays on the control.  Designing alternate variable speed drive topologies requiring less infrastructure 

while maintaining stability is another open question for future work.  For example, it would be interesting 

to examine if the power electronic ac/dc/ac converter could be redesigned as an ac/ac converter without 

needing the dc-link capacitor. 
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6.   Transient Stabilization Using Flywheels 

In this chapter, it is explored how the variable speed drive controller described in the previous chapter 

can be used to transiently stabilize interconnected power systems against large sudden wind power 

disturbances.  This is the first time passivity-based control has been applied for transient stabilization of 

power systems using flywheels.   

Flywheels are placed at each bus with one or more wind generators, which are the potential 

disturbance locations.  It is desired to choose set points for the variable speed drive controller such that 

the flywheel absorbs the wind power disturbance and the rest of the system is minimally affected.  Three 

different methods for choosing the set points are described in this chapter and each method is 

demonstrated and compared on a simple two-bus system.  The control will then be demonstrated for 

larger systems with multiple flywheels and multiple wind generators in Chapter 8. 

It should be noted that while the control logic in Chapter 5 was derived for the variable speed drive 

connected to an infinite bus, the control logic is also applicable for interconnected system for two reasons.  

First, the dynamics of the transmission line voltages connected to the power electronics evolve at a much 

slower time-scale than the power electronics.  Hence, when designing fast control at the power electronics 

time-scale, the transmission line voltages can be assumed to be frozen using time-scale separation.  

Second, the set point logic for the power electronic currents regulates the transmission line voltages to 

their pre-disturbance values.      

6.1.   Power Electronic Current Set Points 

Three different methods are described in this section for choosing the power electronic current set 

points for the variable speed drive controller described in Chapter 5.   

6.1.1. Constant Current Source Method 

The first method explored is to choose the power electronic current set points such that, in closed-

loop, the aggregate of the power electronics and all the wind generators on the bus behaves as a constant 

current source.  The set point power electronic currents are 
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  1

ref ref

d Totd Wdi i i   (6.1) 

 1

ref ref

q Totq Wqi i i   (6.2) 

where 
ref

Totdi and 
ref

Totqi  are the direct and quadrature components of the constant current source.  Wdi is 

the sum of the direct components of the stator currents for all wind generators at the bus and Wqi  is the 

sum of quadrature components of the stator currents for all wind generators at the bus. 

6.1.2. Instantaneous Load Method 

The second method considered is to choose the power electronic current set points such that, in 

closed-loop, the aggregate of the power electronics and all the wind generators on the bus behaves as an 

instantaneous load with an effective resistance Reff and an effective inductance Leff .  An instantaneous load 

means that the dynamics of the load can be neglected since they are much faster than the rest of the 

system.  Using this method, the set point power electronic currents are 

  1

ref ref

d Totd Wdi i i   (6.3) 

 1

ref ref

q Totq Wqi i i   (6.4) 

where 

 
2 2 2

eff TLd eff TLqref

Totd

eff eff

R v L v
i

L R

 


 
 (6.5) 

 
2 2 2

eff TLq eff TLdref

Totq

eff eff

R v L v
i

L R

 


 
 (6.6) 

where TLdv and TLqv are the direct and quadrature components of the transmission line capacitor voltage 

adjacent to the power electronics.  The expressions for  
ref

Totdi and 
ref

Totqi  are derived from taking the dynamic 

equations for the load given in Section 3.1.4 and setting the time derivatives equal to zero since the 

dynamics are instantaneous. 
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Compared to the constant current source method, the advantage of the instantaneous load method is 

that the effective resistance Reff  in closed-loop at Bus 2 provides additional stability for the closed-loop 

interconnected system.   The disadvantage is that this control method requires slightly more 

communication than the constant current source method because the adjacent voltages of the transmission 

line shunt capacitor must now be communicated to the controller. 

6.1.3. Passivity-Based Control Method 

The third method explored is to choose the power electronic current set points in order to achieve 

passivity-based control of the adjacent transmission line capacitor voltages.  Assume that the right side of 

the transmission line is adjacent to the power electronics.  (If the left side is adjacent instead, an 

analogous procedure can be used.)  The dynamic equations, given in Section 3.1.3, for the capacitor 

charges on the right side, are 

 TLRd
TLRq InTLRd TLMd

dq
q i i

dt
     (6.7) 

 
TLRq

TLRd InTLRq TLMq

dq
q i i

dt
     (6.8) 

  Since the power electronic dynamics are much faster than the rest of the grid, the port input currents 

InTLRdi  and InTLRqi  can be treated as directly controllable at the time-scale in which the dynamics of the 

rest of the grid evolves.  To obtain the reference values for InTLRdi  and InTLRqi , the automated passivity-

based control described in Section 4.1 is again used.  The desired closed-loop magnetic co-energy and 

electric energy are chosen to be   

 ' 0mW   (6.9) 

 

22
1 1

2 2

TLRqTLRd
e

TL TL

qq
W

C C
   (6.10) 

The desired closed-loop dissipation is chosen to be 

 2 21 1

2 2
a TLRd a TLRqR i R i R  (6.11) 
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Note that Ra is damping injected to the closed-loop system in order to make the time derivative of the 

Lyapunov function negative definite, as will be shown by (6.20).   

The symbolic vectors I and Q  for the closed-loop system are defined as  

 
T

TLRd TLRqi i   I  (6.12) 

 
T

TLRd TLRqq q   Q  (6.13) 

The constraint matrix G and the Lagrange multiplier vector   for the closed-loop system are empty 

matrices since there are no KCL equations.   

The specified set point equations are  

 
D ref

TLRd TL TLRdq C v  (6.14) 

 
D ref

TLRq TL TLRqq C v  (6.15) 

Given these specifications by the control designer, the automated method derives the control law.  

The closed-loop Lagrangian is calculated as 

 

22
1 1

'
2 2

TLRqTLRd
m e

TL TL

qq
W W

C C
    L  (6.16) 

After evaluating (4.2) and (4.3) and re-expressing the error dynamics in standard state space form  

 TLRd TLRd
TLRq

TL a

dq q
q

dt C R
    (6.17) 

 
TLRq TLRq

TLRd

TL a

dq q
q

dt C R
    (6.18) 

The Lyapunov function and the time derivative of the Lyapunov function are  

 

22
1 1

'
2 2

TLRqTLRd
m e

TL TL

qq
V W W

C C
     (6.19) 

 
22

2 2

TLRqTLRd

TL a TL a

qqV d
V

dt C R C R





  

x

x
 (6.20) 



95 

 

It is apparent that (6.19) is positive definite and (6.20) is negative definite.  In terms of desired values, 

(6.17) and (6.18) become 

 
D D

DTLRd TLRd TLRd
InTLRd TLMd TLRq

TL a

dq q q
i i q

dt C R


     (6.21) 

 

D D

TLRq TLRq TLRqD

InTLRq TLMq TLRd

TL a

dq q q
i i q

dt C R


     (6.22) 

Solving (6.21)-(6.22) and the set point equations (6.14)-(6.15) for InTLRdi , 
InTLRqi , 

D

TLRdq , and
D

TLRqq , 

the following control law is obtained. 

 

ref
ref refTL TLRd TLRd
InTLRd TLMd TL TLRq

TL a

C v q
i i C v

C R


    (6.23) 

 

ref

TL TLRq TLRqref ref

InTLRq TLMq TL TLRd

TL a

C v q
i i C v

C R


    (6.24) 

The set point power electronic currents must then be chosen so that the references for the total current 

into the transmission line are satisfied. 

 1

ref ref

d InTLRd d
i i i    (6.25) 

 
1

ref ref

q InTLRq q
i i i    (6.26) 

where di is the sum of the direct components of the currents for all components at the bus besides the 

transmission line and the power electronics and qi  is the sum of quadrature components of the 

currents for all components at the bus besides the transmission line and the power electronics.  Adding the 

controller for the transmission line voltages to the variable speed drive controller given in Chapter 5, the 

block diagram shown in Figure 6.1 is obtained. 
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Figure 6.1:  Block diagram for the transmission line passivity-based controller combined with the variable speed 

drive controller. 

   

While this method is able to regulate the transmission line voltages, the disadvantage is that more 

communication is needed than with the constant current source method or the instantaneous load method.  

However, it should be noted that communication is still only needed between neighboring components. 

  
6.2.   Flywheel Speed Set Point 

The flywheel speed set point should be chosen so that most of the power entering the power 

electronics is absorbed by the flywheel, rather than stored in the dc-capacitor and dissipated by the 

resistor is parallel with the capacitor.  When connected to the shunt capacitor of a transmission line, the 

stability condition of the power electronics controller derived in Section 5.2.3 becomes 

    
2 2

1 1 1 1 1 1 2 2 2 2

ref ref ref ref ref ref

TLd d TLq q d q S d d S q qv i v i R i R i v i v i      (6.27) 

where TLdv and TLqv are the direct and quadrature components of the transmission line capacitor voltage 

adjacent to the power electronics.  Based on conservation of energy in steady-state, (6.27) can be re-

written as 

      
2 2

2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

ref ref ref ref

TLd d TLq q d q R R S S d S q R Rv i v i R i R i R i R i i B v i         (6.28) 

The following steady-state values are observed for the flywheel: 

 
2 2

ref   (6.29)  
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 2
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R
R

R

v
i

R
  (6.30)   (75) 

 2 2 2
2

2 23 / 2

ref

R
S q

R

B v
i

M R


  (6.31) 

 
2 2 _ 0S d S di i  (6.32) 

The steady-state value for 2S di  is the initial condition 
2 _ 0S di  because as shown in Figure 5.2, 2Sdi has 

no closed-loop dynamics.  Substituting (6.29)-(6.32) into (6.28), the following restraint is obtained for 

2

ref . 

 
   

2 2
2

2 2 1 1 2 2 _ 0 1 1 1 1

2 2
2 2 2

2 2 2 2 2 2

3

3 2

ref ref ref ref

R TLd d TLq q S S d d qref ref max

R S R

M v v i v i R i R i R i

B M v B R R
 

   
 


 (6.33)  

One possible approach would be to set 
2

ref to a large percentage of
2

ref max , such as   

2 2

ref ref max   where   is a constant close to one.  However, the problem with this approach is that 

2

ref would then change very fast since 
2

ref max  is an algebraic function of  
1

ref

di and 
1

ref

qi , which can 

change very fast in response to a sudden disturbance.  As described in Chapter 6, the variable speed drive 

controller relies on the fact that the inner torque controller can regulate the electric torque much faster 

than the outer speed controller changes the reference electric torque 
2

ref

e .  If 
2

ref is changing very fast, 

then 
2

ref

e will also change very fast, and the torque controller will not be able to regulate the electric 

torque faster than the reference torque changes.   

To solve this problem,  
2

ref is made a state variable with dynamics  

  2
2 2

ref
ref ref max

S

d
K

dt


     (6.34)  



98 

 

A positive gain SK  ensures 
2

ref  converges to 
2

ref max  in steady-state.  However, since  
2

ref has 

dynamics, it does not change nearly as fast as
2

ref max .  Hence, the time-scale separation in the variable 

speed drive controller still applies. 

In addition to the flywheel speed limit from the power electronics controller stability limit, there is 

also a maximum speed resulting from the tensile strength of the flywheel material [7].  A typical value for 

the maximum flywheel speed is 36,000 rpm (3770 rad/sec) [72].  

6.3.   Two-Bus Example Simulation Results 

The three methods for choosing the power electronic set points described in Section 6.1, along with 

the method for choosing the flywheel speed set point described in Section 6.2, are demonstrated on the 

two-bus system shown in Figure 6.2.   

 
Figure 6.2:  Two-bus system on which the flywheel control is demonstrated 

The parameters used in the simulations are given in Appendix A.  The synchronous machine on Bus 1 

has governor and exciter control, as described in Section 3.1.5., in order to regulate the frequency of the 

system to 60 Hz.  The wind generator on Bus 2 is modeled as an induction machine, as described in 

Section 3.1.2, and there is a sudden prolonged disturbance in the mechanical torque applied to the rotor of 

the wind generator, as shown by Figure 6.3.   
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Figure 6.3:  Mechanical torque disturbance applied to 

the wind generator. 

 

 
Figure 6.4:  Bus 1 and Bus 2 voltages without controller. 

 

 

Figure 6.4 shows the voltages at Bus 1 and Bus 2 when there is no control (constant values are used 

for the power electronic duty ratios).  High voltage deviations occur due to the disturbance, and the 

voltages take a few seconds to return to their pre-disturbance values once the disturbance ends.  The 

simulations for each of the three set points methods start in steady-state prior to the disturbance shown in 

Figure 6.3, although it should be noted that the steady-state values are different depending on which 

control method is used.   

6.3.1. Constant Current Source Method Set Points 

First, simulation results are shown using the constant current source method described in Section 

6.1.1.  The constant current source values used are 1ref
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Totqi  .  As shown by Figure 6.5, the 

flywheel reference speed 
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ref increases during the disturbance since the absolute of the mechanical 

torque increases and there is more power coming out of the wind generator during the disturbance.  As 

discussed in Section 6.2,  
2

ref  changes much slower than 
2

ref max  so that the time-scale separation in the 

variable speed drive controller still applies.   
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Figure 6.5:  Flywheel speed as a function of time using 

the constant current source method set points. 

 

 
Figure 6.6:  Wind generator stator currents as a function 

of time using the constant current source method set 

points. 

 

Figure 6.6 shows the wind generator stator currents, which, as expected, settle to different values after 

the disturbance in the mechanical torque applied to the wind generator.  Figure 6.7 shows the sum of the 

power electronic currents and the wind generator stator currents, as well as the reference total currents, 

demonstrating that with the control logic, the power electronics and the wind generator together behave 

very nearly as a constant current source.  The reason there are small deviations from the constant current 

reference is that the power electronic dynamics, while very fast, are not instantaneous. 

The duty ratios of the two switches are shown in Figure 6.8, and it is evident that they are within the 

feasible limits given by (4.47) and (4.48).  Figure 6.9 and Figure 6.10 show the Bus 1 and Bus 2 voltages 

with and without the control, demonstrating that, due to the controller, the effect of the disturbance on the 

rest of the system is very minimal and lasts only a very short time.  The oscillations are much smaller 

with the control than without the control, and also the voltages quickly return to their pre-disturbance 

values (even though the disturbance is still ongoing) with the control, unlike without the control.  
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Figure 6.7:  Sum of the power electronic currents and 

the wind generator stator currents, compared to the 

reference total currents, as a function of time using the 

constant current source method set points. 

 

 
Figure 6.8:  Duty ratios of the two switches as a function 

of time using the constant current source method set 

points. 

 

 
Figure 6.9:  Bus 1 voltages as a function of time using 

the constant current source method set points compared 

to without using any control. 

 

 
Figure 6.10:  Bus 2 voltages as a function of time using 

the constant current source method set points compared 

to without using any control. 
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components of the voltages and currents using the instantaneous p-q theory [73].  The real and reactive 

power into an object are 

 
d d q qP v i v i   (6.35) 

 
q d d qQ v i v i   (6.36) 

where dv  and dv  are the direct and quadrature components of the bus connected to the object, and di  and 

qi  are the direct and quadrature components of the currents into the object. 

As shown by Figure 6.11, the real power out of the wind generator increases as a result of the 

disturbance, which causes the real power into the power electronics and the real power into the flywheel 

to also increase.  Due to the control, which isolates the effect of the disturbance, the real power produced 

by the synchronous generator and the real power consumed by the load remain almost completely 

constant.   

Several observations for the reactive power flow shown in Figure 6.12 should be noted.  Due to the 

large capacitor on the dc-link of the power electronics, the reactive power into the power electronics is 

negative (the power electronics actually supplies reactive power to the grid) in steady-state.  The reactive 

power out of the wind generator is also negative in steady-state because an induction machine, even when 

operating as a generator, always consumes reactive power [74].   During the disturbance, the reactive 

power consumed by the wind generator increases, which causes the reactive power supplied by the power 

electronics to increase as well.  Due to the control, which isolates the effect of the disturbance, the 

reactive power out of the synchronous generator and the reactive power consumed by the load remain 

almost completely constant. 
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Figure 6.11:  Real power flow as a function of time 

using the constant current source method set points. 

 

 
Figure 6.12:  Reactive power flow as a function of time 

using the constant current source method set points. 

 

6.3.2. Instantaneous Load Method Set Points 

Now, it is examined how transient stabilization of the power grid against the wind disturbance can be 

achieved using instantaneous load method described in Section 6.1.2.  The effective resistance and 

inductance of the load used are 0.1effR    and 
610effL H .   

As shown by Figure 6.13, the flywheel speed converges well to the reference speed 
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ref , which 

again increases after the disturbance.  Figure 6.14 shows the sum of the power electronic currents and the 

wind generator stator currents, as well as the reference total currents.  In contrast to the constant current 

source method analyzed in the previous section, the reference total current no longer is a constant.  Figure 

6.15 and Figure 6.16 show the Bus 1 and Bus 2 voltages with and without the control, demonstrating that, 

due to the controller, the effect of the disturbance on the rest of the system is very minimal and lasts only 

a very short time.  The oscillations are much smaller with the control than without the control, and also 

the voltages quickly return to their pre-disturbance values with the control, unlike without the control. 
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Figure 6.13:  Flywheel speed as a function of time using 

the instantaneous load method set points. 

 

 
Figure 6.14:  Sum of the power electronic currents and 

the wind generator stator currents, compared to the 

reference total currents, as a function of time using the 

instantaneous load method set points. 

  

6.3.3. Passivity-Based Control Method Set Points 
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transmission line voltages on Bus 2 are given by 0.073ref

TLRdv V  and 1.98 .ref
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injected to the closed-loop system is 0.01aR   . 
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again increases after the disturbance.  Figure 6.18 shows the total current out of Bus 2 (the sum of the 

power electronics current, the wind generator current, and the load current), compared to the reference 

total current.  In contrast to the constant current source method, the reference total current is no longer a 

constant.  Figure 6.19 and Figure 6.20 show the Bus 1 and Bus 2 voltages with and without the control.  

There are larger oscillations immediately following the disturbance with the control than without the 
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instantaneous load method, is able to regulate the transmission line voltages to set points, it is evident that 

there are higher oscillations resulting from the disturbance when using the passivity-based control method 

than when using the constant current source method or the instantaneous load method.   

 
Figure 6.15:  Bus 1 voltages as a function of time using 

the instantaneous load method set points compared to 

without using any control. 

 

 
Figure 6.16:  Bus 2 voltages as a function of time using 

the instantaneous load method set points compared to 

without using any control. 

 

 
Figure 6.17:  Flywheel speed as a function of time using 

the passivity-based control method set points. 

 

 
Figure 6.18:  Total current out of Bus 2, compared to the 

reference total current, as a function of time using the 

passivity-based control method set points. 
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Figure 6.19:  Bus 1 voltages as a function of time using 

the passivity-based control method set points compared 

to without using any control. 

 

 
Figure 6.20:  Bus 2 voltages as a function of time using 

the passivity-based control method set points compared 

to without using any control. 

 

6.4.   Summary    
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disturbance and the rest of the system is minimally affected.  Simulation results were shown 
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demonstrated for larger systems in Chapter 8.  Further research could involve developing additional 
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7.   Choosing Power Electronic Sizes 

This chapter analyzes how changing the size of the power electronic inductors, capacitors, and 

resistors affects the performance of the flywheel variable speed driver controller for transient 

stabilization.  The effect of changing the parameters is examined for the simulations in Section 6.3.1 

using the constant current source set point method, and recommendations are made for sizing these 

components.  

7.1.   Power Electronics Inductor  

The inductance L1 should be made as small as possible, in order to make the power electronic 

dynamics fast and to minimize the effect of the disturbance on the rest of the grid.  For the simulation in 

Section 6.3.1, if L1 is increased from 0.01 μH to 0.1 μH, then  1di and 1qi  do not converge to their set 

points as quickly, and as a result, there is more of an effect from the disturbance on the rest of the system, 

as shown by Figure 7.1 and Figure 7.2.   

 
Figure 7.1:  Bus 1 voltages as a function of time with 

varying power electronics inductor sizes. 

 

 
Figure 7.2:  Bus 2 voltages as a function of time with 

varying power electronics inductor sizes. 
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rest of the system.  In theory, the inductor should be made as small as possible.  However, there exists a 

practical limit because the wire itself in the power electronics will have some effective inductance, 

usually in the nH range, which is a function of the wire length and diameter [75].  

7.2.   Power Electronics Capacitor  

The dc-link capacitance C1 needs to be made large enough in order to keep the duty ratios within the 

feasible limits during transients following the disturbance.  If C1 is too small, the magnitude of the 

capacitor charge 1Cq  can decrease sharply during transients following the disturbance.  As shown by 

(5.52), (5.53), (5.29), and (5.30), if the magnitude of the capacitor charge decreases, then the absolute 

values of the duty ratios increase.  In order for the control to be feasible, the duty ratios need to remain 

within the physical limits given by (4.47) and (4.48).  Therefore, if C1 is too small, this can cause the duty 

ratios to go outside of the feasible limits during transients.  Once the duty ratios hit saturation, there is no 

guarantee the control will work successfully. 

This problem is demonstrated by decreasing C1 from 2 F to 0.25 F for the simulation in Section 6.3.1.  

Figure 7.3 shows that the capacitor voltage decreases much more during transients when using the smaller 

capacitance, and Figure 7.4 shows that this, in turn, causes the duty ratios of the switches to increase 

beyond the feasible limits.  

For a larger disturbance, a larger capacitor is needed to ensure that the duty ratios will stay within 

their feasible limits and that the transient stabilization will work successfully.  In sizing the capacitor, 

there exists a trade-off between the size of disturbance the flywheel controller can handle and the 

economic cost of making a large capacitor.   
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Figure 7.3:  Power electronic capacitor voltage as a 

function of time with varying power electronics 

capacitor sizes. 

 

 
Figure 7.4:  Simulation showing that the duty ratios of the 

switch positions can increase beyond feasible limits in 

transients when the size of the capacitor is decreased. 

7.3.   Power Electronics Resistance in Parallel with Capacitor  
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1 2.5CR   .  This in turn causes the duty ratios to be outside feasible limits during steady-state, as 

shown by Figure 7.6. 

 
Figure 7.5:  Power electronic capacitor voltage as a 

function of time with varying resistor sizes. 

 

 
Figure 7.6:  Simulation showing that the duty ratios of 

the switch positions can increase beyond feasible limits 

when the size of the resistor is decreased. 

 

Mathematical limits for 1CR  can be found. Substituting the duty ratios expressions for 1du , 
1qu , 2du , 

and 
2qu  given by (5.52), (5.53), (5.29), and (5.30) respectively into the duty ratio limits given by (4.47) 

and (4.48), the following expressions are obtained 
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Using (7.1), (7.2) and (7.3) can be re-written in terms of 1CR  
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While a sufficiently large resistor is needed to keep the duty ratios within feasible limits, it should 

also be noted that too large of a resistor could cause voltage breakdown of the capacitor.  As given by 

(7.1),  as 1CR  increases, the capacitor charge 1Cq (and hence the capacitor voltage) increases as well.  

There exists a maximum breakdown voltage of the capacitor, where very large electric fields between the 

capacitor plates cause the dielectric to become conductive and the resulting large currents may damage 

the capacitor [76].  Typical values for capacitor breakdown voltage range from a few Volts to a few kV, 

depending on the gap between the plates and other capacitor design factors [77].   

7.4.   Percentage of Maximum Flywheel Reference Speed 

As given by (6.34), the flywheel reference speed 
2

ref converges to 
2

ref max  in steady-state where 

  is a constant close to 1 and 
2

ref max  is the maximum reference speed based on the passivity-based 

control law stability condition given by (6.27).  As   increases, the power sent to the flywheel increases 

and the power dissipated by RC1 decreases.  As shown in (7.1),  if 1RCP  decreases, then 1Cq decreases, 

which in turn causes the duty ratios to increase.  Therefore, just like decreasing the resistor RC1, increasing

 can cause the duty ratios of the switches to increase beyond feasible limits.  This issue is demonstrated 

by increasing  from 0.95 to 0.99 for the simulation in Section 6.3.1.  Figure 7.7 shows that the steady-

state voltage across the power electronic capacitor is much lower when 0.99  .  This in turn causes the 

duty ratios to be outside feasible limits during steady-state, as shown by Figure 7.8.  

In terms of  , the power dissipated by the resistor is    
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Figure 7.7:  Power electronic capacitor voltage as a 

function of time with varying percentages of maximum 

flywheel reference speed. 

 

 
Figure 7.8:  Simulation showing that the duty ratios of 

the switch positions can increase beyond feasible limits 

when the percentage of the flywheel maximum reference 

speed is increased. 

 

Substituting (7.6) into (7.4) and (7.5), the following restraints are obtained. 
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It is evident from (7.7) and (7.8) that as  increases, 1CR  must increase as well in order to keep the 

switch duty ratios from hitting saturation.  However, it should be noted that, in practice, there is a limit to 

how large 1CR  can be.  In a real capacitor, the dielectric between the plates has a small, but non-zero, 

conductivity, which is modelled as an ideal capacitor in parallel with a large leakage resistor [78].  

Typical values for the leakage resistance of a capacitor range from 1 MΩ to 100,000 MΩ [78].  The shunt 

resistance 1CR  of the capacitor can be made smaller than the internal leakage resistance by adding an 

additional wire in parallel with the capacitor, but 1CR  cannot be made any larger than the leakage 
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resistance.  Therefore, the optimal strategy for maximizing the efficiency of the flywheel controller would 

probably be to set   as high as possible, given the leakage resistance limit of 1CR , in order to still 

maintain the switch duty ratios within feasible limits.     

7.5.   Summary    

This chapter analyzes the effect of changing the power electronic parameters on the control 

performance and discusses how these parameters should be sized.  The power electronic inductor should 

be made as small as practically possible given the effective wire inductance.  In sizing the dc-link 

capacitor, there is a trade-off between the size of disturbance the flywheel controller can handle without 

the switch duty ratios reaching saturation during transients and the cost of making a large capacitor.  

Finally, it is shown that in order to increase the percentage of power entering the power electronics that is 

sent to the flywheel, the resistor in parallel with the capacitor must increase as well in order for the duty 

ratios to remain within feasible limits during steady-state.  There is, however, a limit to how large the 

resistance can be, due to the internal shunt leakage resistance of a real capacitor.       
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8.   Demonstration of Flywheel Controller on Larger Systems 

Chapter 6 introduced using the flywheel variable speed drive controller for transient stabilization of a 

simple two-bus system with one flywheel and one wind generator with a disturbance.  This chapter 

discusses and demonstrates transient stabilization of larger power systems with multiple flywheels and 

multiple wind generators with different disturbances.  Flywheels are placed at each bus with one or more 

wind generators, which are the potential disturbance locations.  Each flywheel controller is responsible for 

absorbing the disturbances on that bus so that the rest of the system is minimally affected, using the set 

point logic described in Chapter 6.    

If a bus has more than one wind generator (a wind farm), still only one flywheel is needed for that 

bus, as the flywheel is responsible for absorbing all the wind power disturbances at that bus.  This is 

demonstrated for the three-bus example described in Section 8.1.  Next, in Section 8.2, the Sao Miguel 

island power system is considered using real-world data.  It is proposed to replace the three diesel 

generators on Sao Miguel with wind generators since diesel generators emit harmful environmental 

pollutants.   Flywheels are added along with each wind generator, and it is shown that the flywheel 

controllers help maintain the power system stability and reduce the voltage oscillations in response to 

persistent wind power disturbances.  

8.1.   Three-Bus Power System with a Wind Farm    

Consider the three-bus system shown in Figure 8.1.  The parameters used in this example are given in 

Appendix B.  Again, the synchronous machine has governor and exciter control in order to regulate the 

frequency of the system to 60 Hz, and the four wind generators are modeled as induction machines.  

There is a wind farm on Bus 2 with three wind generators and another wind generator on Bus 3, which all 

have mechanical torque disturbances, as shown in Figure 8.2.  While the three wind generators on Bus 2 

have the same parameters and the same pre-disturbance mechanical torques, each wind generator has 

different disturbances of varying magnitude and length, as shown by Figure 8.2.  The flywheel on Bus 2 

is responsible for absorbing the disturbances of the three wind generators on Bus 2 while the flywheel on 



115 

 

Bus 3 is responsible for absorbing the disturbance of the wind generator on Bus 3.  The constant current 

source method described in Section 6.1.1 for choosing the controller set points is used for this example.  

The system starts in steady-state prior to the disturbances beginning at 0.1 seconds. 

 
Figure 8.1:  Three-bus power system with a wind farm on Bus 2. 

 
Figure 8.2:  Mechanical torque disturbances of the four 

wind generators. 

 

 
Figure 8.3:  Speed of the flywheel on Bus 2 as a function 

of time. 
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maximum reference flywheels speeds  1 2,ref max ref max

F F   so that the time-scale separation in the variable 

speed drive controllers still applies.  While 
2F settles to a new steady-state during the disturbance, 1F

never reaches a new steady-state value during the disturbance due to the fast-changing mechanical torque 

3W  of the third wind generator on Bus 2 shown in Figure 8.2.  

 
Figure 8.4:  Speed of the flywheel on Bus 3 as a 

function of time. 

 

 
Figure 8.5:  Sum of the power electronic currents and the 

wind generator stator currents on Bus 2, compared to the 

reference total currents, as function of time. 

 

 

In this case, one flywheel on Bus 2 is sufficient for absorbing all three wind generator disturbances.  

However, with more wind generators on the bus or larger disturbances, it may be necessary to add 

multiple flywheels on the bus due to the maximum flywheel speed limit resulting from the tensile strength 

of the flywheel material, as discussed in Section 6.2 

Figure 8.5 and Figure 8.6 show the sum of the power electronic currents and the wind generator stator 

currents, as well as the reference total currents, for Bus 2 and Bus 3 respectively.  Due to the controller, 

the power electronics and the wind generator together behave very nearly as a constant current source, 

even with the wind power disturbances.  Since the power electronic dynamics are not instantaneous, there 
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are some fast oscillations in the total currents after each disturbance, but the total currents quickly return 

to their reference values.   

 
Figure 8.6:  Sum of the power electronic currents and 

the wind generator stator currents on Bus 3, compared to 

the reference total currents, as function of time. 

 

 
Figure 8.7:  Bus 1 voltages as a function of time with 

control compared to without control. 

 

 
Figure 8.8:  Bus 2 voltages as a function of time with 

control compared to without control. 

 

 
Figure 8.9:  Bus 3 voltages as a function of time with 

control compared to without control. 

 

The Bus 1, Bus 2, and Bus 3 voltages are shown in Figure 8.7, Figure 8.8, and Figure 8.9 

respectively, both with and without the control.  (In the case with no control, constant values are used for 

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

c
u
rr

e
n
t(

A
)

Power Electronic and Wind Currents on Bus 3

 

 
i
PE2d

+i
W4d

i
Tot2d
ref

0 0.2 0.4 0.6 0.8 1
29.6

29.8

30

30.2

30.4

t(sec)

c
u
rr

e
n
t(

A
)

 

 i
PE2q

+i
W4q

i
Tot2q
ref

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98
Bus 1 Voltages

v
o
lt
a
g
e
(V

)

 

 

V
1d

 (Control)

V
1d

 (No Control)

0 0.2 0.4 0.6 0.8 1
9.9

9.95

10

t(sec)

v
o
lt
a
g
e
(V

)
 

 V
1q

 (Control)

V
1q

 (No Control)

0 0.2 0.4 0.6 0.8 1
0.92

0.94

0.96

0.98
Bus 2 Voltages

v
o
lt
a
g
e
(V

)

 

 

V
2d

 (Control)

V
2d

 (No Control)

0 0.2 0.4 0.6 0.8 1
9.9

9.95

10

10.05

10.1

t(sec)

v
o
lt
a
g
e
(V

)

 

 V
2q

 (Control)

V
2q

 (No Control)

0 0.2 0.4 0.6 0.8 1
0.94

0.96

0.98

1
Bus 3 Voltages

v
o
lt
a
g
e
(V

)

 

 

V
3d

 (Control)

V
3d

 (No Control)

0 0.2 0.4 0.6 0.8 1
9.9

9.95

10

10.05

10.1

t(sec)

v
o
lt
a
g
e
(V

)

 

 V
3q

 (Control)

V
3q

 (No Control)



118 

 

the switch duty ratios.)   Due to the controller, the effect of the disturbance on the rest of the system is 

very minimal and lasts only a very short time.  The oscillations are much smaller with the control than 

without the control, and also, with the control, the voltages quickly return to their pre-disturbance values 

after each disturbance, unlike without the control. 

8.2.   Sao Miguel Power System Example    

Next, the Sao Miguel island power system, which was analyzed in [79] and is shown in Figure 8.10, 

is considered using real-world data.  Sao Miguel is the largest of the nine Azores Archipelago islands 

located in the middle of the North Atlantic Ocean.  The Sao Miguel power system has fifteen buses, three 

diesel generators, two geothermal generators, and ten hydro generators.    

 
Figure 8.10:  Sao Miguel power system topology. 

Since diesel generators emit harmful environmental pollutants [80], it is proposed in this section to 

replace the three diesel generators with wind generators.   Since wind power is difficult to predict and 
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control, flywheels are added along with each wind generator.  Again, the variable speed drive controller 

described in Chapter 5 and Chapter 6 is used so that the flywheel absorbs the wind power variation and 

the rest of the system is minimally affected.  The flywheels help the system maintain stability and 

minimize voltage and frequency deviations in response to the persistent wind power deviations.   

The dynamics of all components are modelled, including the loads and the transmission lines.  The 

hydro generators are modelled as synchronous machines with governor and exciter control in order to 

regulate the frequency of the system to 50 Hz.  (The Azores island use 50 Hz grid frequency, as Europe 

does, rather than the 60 Hz grid frequency used in North America.)  The geothermal generators are 

modelled as synchronous machines without governor or exciter controllers [19].  The wind generators are 

again modelled as induction machines.  

 
Figure 8.11:  Mechanical torque disturbances of the four 

wind generators. 

 

 
Figure 8.12:  Speed of the flywheel on Bus 1 as a 

function of time. 

 

The parameters used for the three wind generators and the three flywheels are given in Appendix C.  

The parameters for the rest of the system are based on real-world data and are given in [79].    The 

mechanical torque disturbances of the three wind generators are shown in Figure 8.11.  The constant 

current source method described in Section 6.1.1 for choosing the controller set points is again used for 

this example.  The system starts in steady-state prior to the disturbances beginning at 0.1 seconds. 
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Figure 8.13:  Speed of the flywheel on Bus 2 as a 

function of time. 

 

 
Figure 8.14:  Speed of the flywheel on Bus 3 as a 

function of time. 

 

 

Figure 8.12, Figure 8.13, and Figure 8.14 show the speeds of the flywheels on Bus 1, Bus 2 and Bus 3 

respectively.  Due to the persistent wind generator disturbances, the flywheel speeds never settle to a new 

steady-state value following the first disturbance. 

Figure 8.15, Figure 8.16, and Figure 8.17 show the sum of the power electronic currents and the wind 

generator stator currents, as well as the reference total currents, for Bus 1, Bus 2, and Bus 3 respectively.  

Due to the controller, the power electronics and the wind generator together on each bus behave very 

nearly as a constant current source, even with the wind power disturbances.  For comparison, Figure 8.15, 

Figure 8.16, and Figure 8.17 also show the sum of the power electronic currents and the wind generator 

stator currents on each bus without the controller.  (In the case with no control, constant values are used 

for the switch duty ratios.)  

The Bus 1, Bus 2, and Bus 3 voltages are shown in Figure 8.18, Figure 8.19, and Figure 8.20 

respectively, both with and without the control.   The voltage oscillations without the controller are 

relatively small in this case, but it is evident that the flywheel controller still reduces the oscillations. 
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Figure 8.15:  Sum of the power electronic currents and 

the wind generator stator currents on Bus 1 with and 

without control, as well as the reference total currents, as 

function of time. 

 

 
Figure 8.16:  Sum of the power electronic currents and 

the wind generator stator currents on Bus 2 with and 

without control, as well as the reference total currents, as 

function of time. 

 

 

 
Figure 8.17:  Sum of the power electronic currents and 

the wind generator stator currents on Bus 3 with and 

without control, as well as the reference total currents, as 

function of time. 

 

 
Figure 8.18:  Bus 1 voltages as a function of time with 

control compared to without control. 

 

 

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

c
u
rr

e
n
t(

A
)

Power Electronic and Wind Currents on Bus 1

 

 
i
PE1d

+i
W1d

  (Control)

i
Tot1d
ref

i
PE1d

+i
W1d

  (No Control)

0 0.2 0.4 0.6 0.8 1

-120

-110

-100

t(sec)

c
u
rr

e
n
t(

A
)

 

 

i
PE1q

+i
W1q

  (Control)

i
Tot1q
ref

i
PE1q

+i
W1q

  (No Control)

0 0.2 0.4 0.6 0.8 1
-300

-250

-200

-150

-100

-50

c
u
rr

e
n
t(

A
)

Power Electronic and Wind Currents on Bus 2

 

 

i
PE2d

+i
W2d

  (Control)

i
Tot2d
ref

i
PE2d

+i
W2d

  (No Control)

0 0.2 0.4 0.6 0.8 1
-120

-100

-80

-60

t(sec)

c
u
rr

e
n
t(

A
)

 

 

i
PE2q

+i
W2q

  (Control)

i
Tot2q
ref

i
PE2q

+i
W2q

  (No Control)

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

c
u
rr

e
n
t(

A
)

Power Electronic and Wind Currents on Bus 3

 

 
i
PE3d

+i
W3d

  (Control)

i
Tot3d
ref

i
PE3d

+i
W3d

  (No Control)

0 0.2 0.4 0.6 0.8 1
-70

-65

-60

-55

-50

-45

t(sec)

c
u
rr

e
n
t(

A
)

 

 

i
PE3q

+i
W3q

  (Control)

i
Tot3q
ref

i
PE3q

+i
W3q

  (No Control)

0 0.2 0.4 0.6 0.8 1
656

656.2

656.4

656.6

656.8
Bus 1 Voltages

v
o
lt
a
g
e
(V

)

 

 
V

1d
 (Control)

V
1d

 (No Control)

0 0.2 0.4 0.6 0.8 1
2075

2075.5

2076

2076.5

2077

t(sec)

v
o
lt
a
g
e
(V

)

 

 
V

1q
 (Control)

V
1q

 (No Control)



122 

 

 
Figure 8.19:  Bus 2 voltages as a function of time with 

control compared to without control. 

 

 
Figure 8.20:  Bus 3 voltages as a function of time with 

control compared to without control. 

 

 

8.3.   Summary    

This chapter demonstrated transient stabilization of larger power systems with multiple flywheels and 

multiple wind generators.  Flywheels are placed at each bus with one or more wind generators, which are 

the potential disturbance locations.  Further research could involve designing transient stabilization 

control using fewer flywheels.  For example, instead of placing one flywheel at each bus with a wind 

generator, it would be interesting to examine if one flywheel could be responsible for absorbing the 

disturbance at its bus and also the disturbance at a neighboring bus with a wind generator.    This would 

require designing cooperative control logic, as in [2]. 
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9.   Passive Magnetic Bearing Design 

One main design challenge in the actual implementation of flywheels is to support the high-speed 

rotor.  It is advantageous to use magnetic bearings instead of conventional mechanical bearings in order to 

decrease frictional energy losses.  Magnetic bearings are contactless and therefore can exhibit near-zero 

losses.  Magnetic bearings can either be active or passive.  Active magnetic bearings use position sensors 

and electronic circuits that control electromagnets to achieve stable levitation of the rotating element.  In 

contrast, passive magnetic bearings do not have any sensors or control. Most commercial magnetic 

bearings are active, but active magnetic bearings have a far higher cost than passive magnetic bearings.     

A significant challenge with passive magnetic bearings is achieving stable magnetic levitation of an 

object in all directions. An object can be levitated using either attractive or repulsive magnetic levitation, 

but both methods are inherently unstable in one direction.  For example, a magnet can be levitated using 

the repulsive force from a lower magnet.  There is an equilibrium position, where the downward 

gravitational force on the upper magnet exactly equals the upward magnetic levitation force, but while 

this equilibrium is stable to vertical displacements, it is not stable to lateral displacements.  Inevitably, the 

upper magnet will slide sideways.  Alternatively, a magnet can be levitated using the attractive force from 

an upper magnet.  There is again an equilibrium position, where the downward gravitational force exactly 

equals the upward magnetic levitation force, but while this equilibrium is stable to lateral displacements, 

it is not stable to vertical displacements.  This problem is generalized further in Earnshaw’s Theorem, 

which states that it is not possible to stably levitate an object in all directions using any configuration of 

only permanent magnets and fixed currents [81]. 

A possible approach using passive magnetic bearings pursued by Argonne National Laboratory is to 

use superconducting elements [82].  Because superconductors have diamagnetic properties, they evade 

Earnshaw’s Theorem and can stably levitate an object in all directions. Diamagnets are materials with a 

relative magnetic permeability less than one.  However, since superconductors must be kept at very low 
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temperatures (below -150 ˚C), it is not practical to employ superconductor passive magnetic bearings for 

flywheel energy storage systems. 

Another possible solution pursued by Lawrence Livermore National Lab (LLNL) is to add a Halbach 

array stabilizer, which induces currents in stabilization coils, to the levitation magnet system [83].  

Previous literature on computing the forces and stiffness for passive magnetic bearings relies on several 

simplifications, such as neglecting the curvature of the geometry and neglecting the higher order 

harmonics of the magnetic fields [83].  This chapter provides a novel, more accurate analysis which does 

not make these simplifying assumptions.   

A passive magnetic bearing system for flywheels, based on an early LLNL design, which can stably 

levitate the flywheel in all directions, is shown in Figure 9.1.  The resultant magnetic fields and forces for 

this magnetic bearing system are computed in this chapter using electromagnetic theory, demonstrating 

that stable levitation is achieved in all directions with this design.   

 
Figure 9.1:  Cross-sectional view of the passive magnetic bearing geometry 
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9.1.   Levitation Magnet System    

Magnets 1-4 form the levitation magnet system.   Magnets 1 and 4 are stationary while Magnets 2 and 

3 are attached to the bottom and top of the rotating flywheel respectively.  Neodymium permanent 

magnets (NdFeB) with a remanent field Br of 1.35 T are used for all four magnets, and each magnet has 

the shape of an annular ring, as portrayed by Figure 9.2.  For the specific example that is shown, each ring 

has a height h of 1.27 cm, an inner radius a of 14.48 cm, and an outer radius b of 19.56 cm.  When the 

radial displacement of the axis of the flywheel, lat disp, is zero, the rotor magnets are co-axial with the 

stationary magnets.  When the axial displacement of the flywheel, vert disp, is zero, the upper attracting 

magnets are 0.88 cm closer to each other than the lower repelling magnets, 

The upper levitation magnet pair exerts an attracting upward force on the flywheel while the lower 

levitation magnet pair exerts a repelling upward force on the flywheel.  At the equilibrium position (when 

vert disp = 0 cm and lat disp = 0 cm), the total upward magnetic force exactly equals the total downward 

gravitational force on the flywheel, 2046 N.   Since the upper attracting magnets are closer than the lower 

repelling magnets, the levitation magnet system is stable in the lateral direction but unstable in the vertical 

direction.   

 
Figure 9.2:  Shape of each levitation magnet 

9.1.1. Magnetic Fields from Permanent Magnets    

In order to calculate the magnetic levitation force from each magnet pair, it is first necessary to 

compute the magnetic fields from a permanent magnet.  A permanent magnet can be modeled as two 

uniform charged surfaces using the coulombian approach [84] or equivalently as two sheets of uniform 

current density using the amperian current approach [85].  Using the coulombian approach, since each 

permanent magnet has a known magnetization, its contribution to the total field can be calculated from 
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patches of magnetization surface charge density at the surfaces where the magnetization is discontinuous 

[86].  The magnetization surface charge density at the boundary between regions 1 and 2 is 

 1 212 0
ˆ ( )sm na M M      (9.1) 

where 12
ˆ

na is the unit normal vector from region 1 to 2,  1M and 2M  are the magnetization vectors in 

regions 1 and 2, and µ0 is the permeability of free space: 
74 x 10 H/m 

.  The units of ρsm are Vsec/m
2
. 

Therefore, an annular ring magnet that is polarized in the positive vertical direction can be modeled as 

a patch of positive surface charge density on the top surface of the ring and a patch of negative surface 

charge density on the bottom surface of the ring.  Both surfaces have the shape of annuli. 

In the most general formulation, the magnetic field from a patch of magnetization surface charge can 

be obtained by numerically integrating 

 
2

0

ˆH  
4

sm
R

S

p
a ds

R
   (9.2) 

where S is the surface of magnetic charge, ρsm is the magnetic surface charge density, R is the distance 

from the differential surface element to the observation point, and ˆ
Ra  is the unit vector pointing from the 

differential surface element to the observation point.  This formulation is analogous to Coulomb’s Law 

for electric charge density. 

For an annular surface of charge, while no closed-form expression can be found, the double integral 

in (9.2) can be simplified to a single integral, as expressed in [22], which is more computationally 

efficient.  To numerically evaluate the single integral, the MATLAB numerical integration function 

‘quad’ is used with an error tolerance of 1e-2.  The total field from an annular ring magnet is computed by 

summing the contributions from the two annular patches.  The magnetic flux density B  can then be 

easily obtained from the constitutive relationship 

 0B     (H  M)   (9.3) 
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9.1.2. Magnetic Forces between Permanent Magnets    

As described in [22], the force exerted by Magnet 1 on Magnet 2 is calculated by summing the 

individual force on each of the two magnetization surface charge patches on Magnet 2.  While no closed-

form expression can be found, the force on a patch of surface charge is computed by numerically 

integrating 

 

2

1 2 12on sm

S

F H ds   (9.4) 

 

where S2 is the surface of magnetic charge on Magnet 2, 1H  is the magnetic field from Magnet 1, and ρsm2 

is the magnetic surface charge density of the patch on Magnet 2.  This formulation is analogous to 

Coulomb’s Law for electric charge density.  To numerically evaluate the double integral, the MATLAB 

‘dblquad’ function is used with an error tolerance of 1e-3.  When Magnet 2 is coaxial to Magnet 1, there 

is only a vertical force.  However, if the axis of Magnet 2 is displaced off the axis of Magnet 1, then there 

is also a lateral force in the direction of displacement.   

The force exerted by Magnet 4 on Magnet 3 is calculated using the same procedure.  The total force 

exerted on the flywheel from the levitation magnet system is the sum of the force exerted by Magnet 1 on 

Magnet 2 and the force exerted by Magnet 4 on Magnet 3.  Even though Magnets 2 and 3 are rotating in 

the azimuthal direction, since all the levitation magnets are symmetric in the azimuthal direction, the 

force is constant with time. 

Figure 9.3 shows the vertical forces as a function of vert disp at several values of lat disp and Figure 

9.4 shows the lateral forces as a function of lat disp at several values of vert disp.  At the equilibrium 

position (vert disp = 0 cm, lat disp = 0 cm), there is no lateral force and the upward magnetic vertical 

force exactly equals the downward gravitational force of 2046 N on the flywheel.  The equilibrium is 

stable in the lateral direction because a small increase in lateral displacement causes a negative force in 

the direction of displacement, which acts to move the flywheel back to its equilibrium position.  However, 

the equilibrium is unstable in the vertical direction because a small increase in vertical displacement 
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causes an increase in vertical force, which acts to move the flywheel further from its equilibrium position.  

The instability of the levitation magnet system in one direction is consistent with Earnshaw’s Theorem. 

 

 
Figure 9.3:  Vertical forces as a function of vertical 

displacement for the levitation magnets 

 

 
Figure 9.4:  Lateral forces as a function of lateral 

displacement for the levitation magnets. 

 

9.2.   Halbach Array Stabilizer   

The Halbach array stabilizer shown in Figure 9.1 is designed to stabilize the system in the vertical 

direction.   The stabilizer consists of two stationary stabilization coils centered in the vertical direction 

between two Halbach arrays attached to the rotating flywheel.  In a Halbach array, the magnetizations 

rotate from one magnet to the next in order to augment the field on one side of the array while nearly 

cancelling the field on the other side. 

Top views of the upper and lower Halbach arrays are shown in Figure 9.5.  In each array, there are 24 

wavelengths and 96 magnets.  The magnetizations of the individual magnets rotate between the vertical 

(z) direction and the azimuthal (φ) direction.  For the upper Halbach array, the rotation of magnetizations 

causes the strong side field to be below the array while for the lower Halbach array, the rotation of 

magnetizations causes the strong side field to be above the array.  The inner radius of each array is 14.48 

cm while the outer radius of each array is 19.56 cm.  The height of each array (not shown by the top view) 
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is 1.27 cm. Neodymium permanent magnets are again used, and each individual magnet has the shape of a 

trapezoidal prism. 

Figure 9.6 shows a top view of the two stabilization coils, which also consists of 24 wavelengths.  

The second stabilization coil is identical to the first coil and is placed in the same vertical plane, but the 

second coil is rotated one quarter of a wavelength in the counter-clockwise direction with respect to the 

first coil.  Each stabilization coil consists of 48 straight segments and 48 semi-circular loops.  There are 

24 wavelengths around each coil, and the wavelength of each coil equals the wavelength of the Halbach 

arrays.  The inner radius of each coil is 14.6 cm while the outer radius is 20.3 cm.  The radius of the inner 

semi-circles is 0.9 cm while the radius of the outer semi-circles is 1.33 cm. 

 
Figure 9.5:  Top view of the upper and lower Halbach arrays 

 

 
Figure 9.6:  Top view of the stabilization 

coils 

 

If the stabilization coils are exactly centered between the two Halbach arrays in the vertical direction, 

the flux through the coils from the upper array cancels the flux from the lower array and no current is 

induced.  If, however, the flywheel is displaced in the vertical direction, the stabilization coils will no 

longer be exactly centered and the time-varying flux will induce a current in each coil.  This current then 

interacts with the magnetic field of the Halbach arrays to provide a net stabilizing force in the vertical 

direction. 

As will be shown in this chapter, the force as a function of time exerted by each stabilization coil on 

the Halbach arrays consists of a double frequency sinusoidal component and a constant component.  Two 
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stabilization coils are used, so that the constant parts of the force exerted by each coil add together while 

the double frequency sinusoidal components cancel.  Due to the mutual inductance between the two coils, 

the sinusoidal components do not exactly cancel, but the total force is much closer to a constant than it 

would be using only one coil. 

9.2.1. Magnetic Fields from Halbach Arrays    

A magnet in the Halbach array with polarization in the azimuthal direction is modeled as a patch of 

positive surface charge at the side wall where the magnetization vector terminates and a patch of negative 

surface charge at the side wall where the magnetization vector initiates.  Both patches are rectangles and 

the surface charge density of each patch is determined using (9.1).  For the magnetic field resulting from a 

rectangular patch of charge, a closed form expression of the double integral in (9.2) can be found and is 

given in [86].   

A magnet that is polarized in the positive vertical direction is modeled as a patch of positive surface 

charge density on the top surface of the trapezoidal prism and a patch of negative surface charge density 

on the bottom surface of the prism.  Both patches are trapezoids, and the surface charge density of each 

trapezoid is again determined using (9.1).   Since a trapezoid is the sum of a rectangle and two triangles, 

the total magnetic field from a trapezoidal patch of charge is found by summing the contributions from 

the rectangular patch and the two triangular patches.  For a triangular patch of charge, a closed form 

expression for the magnetic field can be found and is given in [24].  The total field from both Halbach 

arrays is computed by summing the contributions from each of the 192 rectangular patches and the 192 

trapezoidal patches. 

9.2.2. Magnetic Flux through Stabilization Coils    

The magnetic flux from the arrays through each coil is computed by numerically integrating 

 
,

Coil
Arrays Coil Arrays

S
B ds    (9.5) 

where SCoil is the inner surface enclosed by the coil and ArraysB  
is the total magnetic flux density from both 

arrays.   
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Since the surface normal to the stabilization coil is in the z-direction, only the z-component of the 

magnetic flux density needs to be integrated.  The flux through each wavelength can be obtained by 

integrating the magnetic flux density over two triangular regions and two semicircular regions.  As 

portrayed by Figure 9.7, the total flux through one wavelength is equal to the sum of the flux through 

regions 1, 2, and 3 minus the flux through region 4.  To numerically compute the surface integrals, the 

“quad2d” function in MATLAB is used with an error tolerance of 1e-7.  

 
Figure 9.7:  Flux through one wavelength of the stabilization coil is equal to the sum of the flux through regions 1, 

2, and 3 minus the flux through region 4 

If the stabilization coil is exactly centered between the two arrays (vert disp = 0 cm), the flux through 

the coil from the upper array cancels the flux from the lower array and there is zero net flux through the 

coil.  When vert disp is non-zero, there is a time-varying flux through the coil since the arrays are rotating 

in the azimuthal direction and the arrays are not axially symmetric.  The flux is, however, periodic with a 

period of the time it takes the arrays to rotate one wavelength.  In all the simulations shown, the arrays are 

rotating at 1000 rpm, so the period is 2.5 ms.   

When the lateral displacement of the arrays is zero, the flux through each wavelength of the coil is the 

same by symmetry, so it is sufficient to calculate the flux through one wavelength and then multiply by 

24, the number of wavelengths, to obtain the total flux.  When the arrays are displaced in the lateral 

direction, however, the flux through each wavelength of the coil is different, so it is necessary to compute 

the flux through each of the 24 wavelengths.   
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Additionally, since the second stabilization coil is rotated one quarter of a wavelength in the counter-

clockwise direction with respect to the first coil, when the lateral displacement is zero, the flux through 

the second coil lags the flux through the first coil by exactly 90˚.  When the lateral displacement is non-

zero, this is no longer true, although for small lateral displacements, this is still a good approximation. 

As an example, Figure 9.8 shows the flux through each of the stabilization coils as a function of time 

for one period when the arrays are rotating at 1000 rpm, vert disp = 0.1 cm, and lat disp = 0.2 cm. 

 
Figure 9.8:  Flux as a function of time through each 

stabilization coil with vert disp = 0.1 cm, lat disp = 0.2 

cm, and the arrays rotating at 1000 rpm 

 

 
Figure 9.9:  Induced current as a function of time through 

each stabilization coil with vert disp = 0.1 cm, lat disp = 

0.2 cm, and the arrays rotating at 1000 rpm 

 

9.2.3. Induced Currents in Stabilization Coils    

The time-varying magnetic flux induces a current in each of the stabilization coils, as described by 

 
1 2 , 1

1

Coil Coil Arrays Coil

Coil

dI dI d
RI L M

dt dt dt


     (9.6) 

 
2 1 , 2

2

Coil Coil Arrays Coil

Coil

dI dI d
RI L M

dt dt dt


     (9.7) 

where R is the resistance of each coil, L is the self-inductance of each coil, and M is the mutual inductance 

between the two coils.  Calculations of these parameters are described in [24].   
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If the mutual inductance were neglected, the induced current in the 2
nd

 coil would merely lag the 

induced current in the 1
st
 coil by 90˚.  However, the mutual inductance causes the amplitude of the 

induced current in the second stabilization coil to be slightly greater than the current in the first coil. 

As an example, Figure 9.9 shows the induced current in each of the stabilization coils as a function of 

time for one period when the arrays are rotating at 1000 rpm, vert disp = 0.1 cm, and lat disp = 0.2 cm. 

9.2.4. Magnetic Forces on Halbach Arrays    

The induced current interacts with the magnetic field of the Halbach arrays to provide a net 

stabilizing force in the vertical direction.  The most computationally efficient way to calculate the 

restoring force on the Halbach arrays is to first calculate the force on the stabilization coil using the 

Lorentz Force Law.  The force on the Halbach arrays exerted by each stabilization coil is computed by 

numerically integrating 

 

Coil

CoilOnArrays ArraysOnCoil ArraysCoil

C

F F I dl B      (9.8) 

where ICoil is the current in the stabilization coil, ArraysB  is the magnetic flux density from both arrays, and 

CCoil is the contour of the stabilization coil. 

For a nominal flywheel rotational speed of 1000 rpm, the vertical and lateral forces are periodic with 

period 2.5x10
-3

 s, the amount of time it takes the arrays to rotate one wavelength.  As an example, Figure 

9.10 and Figure 9.11 show the vertical and lateral forces exerted by each coil on the Halbach arrays as a 

function of time for one period when vert disp = 0.1 cm, lat disp = 0.2 cm, and the flywheel is rotating at 

1000 rpm.   If the mutual inductance between the two stabilization coils were neglected, the total force 

exerted by both coils would be a constant.  However, the unequal current amplitudes due to the mutual 

inductance cause the total force to still have a double frequency sinusoidal component, whose amplitude 

is much smaller than the constant part. 
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Figure 9.10:  Vertical force exerted by each coil on the 

arrays with vert disp = 0.1 cm,  lat disp = 0.2 cm, and 

the arrays rotating at 1000 rpm 

 

 
Figure 9.11:  Lateral force exerted by each coil on the 

arrays with vert disp = 0.1 cm,  lat disp = 0.2 cm, and 

the arrays rotating at 1000 rpm. 

 

 
Figure 9.12:  Vertical forces as a function of vertical 

displacement for the Halbach array stabilizer 

 

 
Figure 9.13:  Lateral forces as a function of lateral 

displacement for the Halbach array stabilizer 

 

Since the sinusoidal component of the force exerted by both stabilization coils is small and the 

frequency is high, time-average forces are used to analyze the force from the stabilizer as a function of 

vertical or lateral displacements.  The total force on the flywheel is the sum of the forces from the 

levitation magnets and from the Halbach array stabilizer.  Figure 9.12 shows the time-average vertical 

force as a function of vert disp at several different values of lat disp while Figure 9.13 shows the time-

average lateral forces as a function of lat disp at several different values of vert disp.  While the Halbach 

0 0.5 1 1.5 2 2.5

x 10
-3

-150

-100

-50

0

50

100

t(sec)

F
o
rc

e
(N

)
Vertical Force on Arrays

 

 
1st Coil

2nd Coil

Both Coils

0 0.5 1 1.5 2 2.5

x 10
-3

-15

-10

-5

0

5

10

15

20

25

30

t(sec)

F
o
rc

e
(N

)

Lateral Force on Arrays

 

 
1st Coil

2nd Coil

Both Coils

-0.2 -0.1 0 0.1 0.2
-150

-100

-50

0

50

100

150

vert disp(cm)

F
o
rc

e
 (

N
)

Halbach Array Stabilizer: Vertical Force

 

 

lat disp = 0 cm

lat disp = 0.2 cm

lat disp = 0.4 cm

0 0.1 0.2 0.3 0.4
-5

0

5

10

15

20

lat disp(cm)

F
o
rc

e
 (

N
)

Halbach Array Stabilizer: Lateral Force

 

 

vert disp = 0 cm

vert disp = -0.1 cm

vert disp = 0.1 cm



135 

 

array stabilizer provides a stabilizing force to vertical displacements, it actually provides a destabilizing 

force to lateral displacements from the equilibrium.  However, since the levitation magnet system is stable 

in the lateral direction, the total magnetic bearing system consisting of both the levitation magnets and the 

Halbach array stabilizer is stable to lateral displacement, as will be shown in the next section 

9.3.   Entire Magnetic Bearing System   

The total force for the entire magnetic bearing system consisting of both the levitation magnets and 

the Halbach array stabilizer can now be analyzed.  The total force on the flywheel is the sum of the force 

on the flywheel from the levitation magnets calculated in Section 9.1.2 and the force on the flywheel from 

the Halbach array stabilizer calculated in Section 9.2.4.  Figure 9.14 shows the total time-average vertical 

force as a function of vert disp at several different values of lat disp while Figure 9.15 shows the total 

time-average lateral force as a function of lat disp at several different values of vert disp. 

 
Figure 9.14:  Vertical forces as a function of vertical 

displacement for the entire bearing system 

 

 
Figure 9.15:  Lateral forces as a function of lateral 

displacement for the entire bearing system 

 

The equilibrium position occurs when vert disp = 0 cm and lat disp = 0 cm.  At this position, there is 

no lateral force and the upward magnetic vertical force exactly equals the downward gravitational force of 

2046 N.  The equilibrium is stable in the lateral direction because a small increase in lateral displacement 

causes a negative force in the direction of displacement, which acts to move the flywheel back to its 

equilibrium position.   The equilibrium is also stable in the vertical direction because a small increase in 
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vertical displacement causes a decrease in vertical force, which acts to move the flywheel back to its 

equilibrium position. 

9.4.   Summary    

This chapter presented a novel, more accurate analysis of a passive magnetic bearing design that can 

stably levitate the flywheel in all directions.  The bearing system consisted of levitation magnets coupled 

with a Halbach array stabilizer, which induces currents in stabilization coils, in order to overcome the 

inherent instability of a system composed only of permanent magnets.  Electromagnetic theory was used 

to compute the magnetic fields, forces, and stability of the bearing system.  

Further research could involve combining the magnetic forces computed in this chapter with the 

gyroscopic dynamics of the flywheel to assess the tilt stability of the magnetic bearing system.  Further 

research could also include an analysis of the drag torque on the flywheel, which adds to the frictional 

losses of the system.  The drag torque occurs only when the flywheel is displaced in the vertical direction 

and currents are induced in the stabilization coils.  In order to increase the efficiency of the flywheel, the 

drag torque should be made as low as possible.  In this design, Halbach arrays are used for the stabilizer 

in order to make the stabilizer very stiff to vertical displacements from the equilibrium position.  This 

serves to keep the stabilization coils very close to the null flux plane, which minimizes the losses from 

induced currents in the stabilization coils 
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10.   Conclusions and Future Work 

Since wind power is difficult to predict and control, large sudden disturbances in wind power 

generation can cause high deviations in frequency and voltage or even transient instabilities  Current 

industry practices for transient stabilization are inefficient or do not guarantee stability.  A potential 

solution examined in this thesis is to add flywheel energy storage systems, along with the renewable 

energy sources, into future power grids.  Flywheels can respond faster than conventional generators and 

could stabilize the system in response to wind power disturbances until slower generators can respond.   

The work in this thesis analyzes the design, modeling, and power electronic control for using flywheels 

for transient stabilization of power grids.   

The following approach for transient stabilization using flywheels is described.  First, the state space 

model for the interconnected system is obtained so that control using the flywheel can be designed and 

tested for provable performance.  Next, flywheels are placed at each bus with wind generators, which are 

the potential disturbance locations.   Then, a novel variable speed drive controller for flywheels is 

developed using passivity-based control logic in order to minimize the effect of the large sudden wind 

power disturbances on the rest of the system.  New contributions are also made in determining the size of 

the power electronic parameters, given a certain range of disturbances.  Due to the complex nature of 

large interconnected power systems, novel computer-aided methods are implemented both for 

symbolically deriving the state space model of the interconnected system and for symbolically deriving 

the passivity-based control law given desired closed-loop energy functions. 

A variable speed drive controller for flywheels is developed using time-scale separation and this 

automated passivity-based control logic.  Switches in the power electronics interfacing between the 

flywheel and the rest of the power grid are controlled in order to regulate both the flywheel speed and the 

power electronic currents to desired set points.  When using this controller for transient stabilization of an 

interconnected power system in response to wind power disturbances, the controller set points are chosen 

so that the flywheel absorbs this disturbance and the rest of the system is minimally affected.  Simulation 

results are shown demonstrating the effectiveness of flywheels and this control logic for transient 
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stabilization of interconnected power systems in response to large sudden wind power disturbances for 

several examples, including the real-world Sao Miguel power system. 

Finally, a novel analysis of a passive magnetic bearing design for flywheels is presented, where 

currents are induced in stabilization coils in order to achieve stable levitation of the flywheel in all 

directions.  Passive magnetic bearings have far less frictional energy losses than mechanical bearings and 

are less expensive than active magnetic bearings because sensors and feedback control systems are not 

necessary to install. 

This thesis assumed that the locations of the disturbances were known (the locations with the wind 

generator).  Additional research is needed to design a more general flywheel controller for situations 

where the locations of the disturbances are not known.  For example, short circuits could potentially 

happen anywhere on the grid.  This would require designing cooperative control, as in [2], where a 

flywheel in one region could be used to transiently stabilize the grid in response to a disturbance or fault 

in another region.   Further research could also involve combining the fast dynamics and control in this 

thesis with a higher level feedforward control, such as economic dispatch at the market level.  In this case, 

the controller set points for the flywheel variable speed drive controller would be determined based on 

optimal power flow determined by the market.   Also, assessing the effect of state estimation error on the 

proposed control methods is another open question for future work.  In this thesis, it was assumed that all 

state variables could be sensed perfectly. 

 

 

.    
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Appendices 

A.   Parameters Used in Two-Bus Power System Example 

 The parameters used for the two-bus transient stabilization example in Chapter 6 are given in Table 

A.1-Table A.8. 

Table A.1:  Synchronous generator parameters 

Symbol Quantity Value 

LR Self-inductance of the rotor 

winding   

5 μH 

LS Self-inductance of the stator 

windings   

5 μH 

LSS Mutual inductance between 

the stator windings 

1 μH 

M Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR Resistance of the rotor 

winding   

2x10
-2

  Ω 

RS Resistance of the stator 

windings   

1x10
-3

  Ω 

J Inertia of the rotor 3x10
-2

  kg 

m
2
 

B Damping coefficient of the 

rotor 

1x10
-3

  N 

m s 
 

Table A.2:  Governor and exciter controllers for 

synchronous generator 

Symbol Quantity Value 

ref  Reference speed for 

governor controller 

377 

rad/sec 

PK  Proportional gain for 

governor controller  

1
 

IK  Integral gain for 

governor controller 

20 

uT  Time-constant for the 

mechanical torque 

0.01 

gT  Time-constant for the 

valve position 

0.001 

tK  Gain for the 

mechanical torque 

400 

r  Gain for the valve 

position 

200 

ref

Terminalv  Terminal reference 

voltage for exciter 

controller  

2 V
 

eK  Gain for exciter 

controller 

500 

 

 

 

Table A.3:  Transmission line parameters 

Symbol Quantity Value 

LTL Self-inductance of the 

transmission line   

1x10
-6

  H 

RTL Resistance of the 

transmission line   

1x10
-4

  Ω 

CTL Shunt capacitance of the 

transmission line   

1x10
-2

  F 

 

Table A.4:  Load parameters 

Symbol Quantity Value 

LL Self-inductance of the 

load   

1x10
-4

  H 

RL Resistance of the load 1x10
-2

  Ω 
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Table A.5:  Wind generator parameters 

Symbol Quantity Value 

LR Self-inductance of 

the rotor windings   

2x10
-5

  H 

LRR Mutual inductance 

between the rotor 

windings   

4x10
-6

  H 

LS Self-inductance of 

the stator windings   

2x10
-5

  H 

LSS Mutual inductance 

between the stator 

windings 

2x10
-6

  H 

M Mutual inductance 

between the stator 

and rotor windings 

when parallel 

1x10
-5

  H 

RR Resistance of the 

rotor winding   

2x10
-3

  Ω 

RS Resistance of the 

stator windings   

1x10
-3

  Ω 

J Inertia of the rotor 4x10
-5

  kg m
2
 

B Damping 

coefficient of the 

rotor 

1x10
-4

  N m s 

 

Table A.6:  Flywheel parameters  

Symbol Quantity Value 

LR2 Self-inductance of the rotor 

winding   

5 μH 

LS2 Self-inductance of the stator 

windings   

5 μH 

LSS2 Mutual inductance between 

the stator windings 

1 μH 

M2 Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR2 Resistance of the rotor 

winding   

2x10
-3

  Ω 

RS2 Resistance of the stator 

windings   

1x10
-3

  Ω 

VR2 Voltage applied to the rotor 

winding 

1  V 

J2 Inertia of the rotor 1x10
-4

  kg 

m
2
 

B2 Damping coefficient of the 

rotor 

2x10
-5

  N 

m s 

τM2 Mechanical torque applied 

to the rotor 

0  N m 

 

 

Table A.7:  Power electronics parameters 

Symbol Quantity Value 

C1 Capacitance of dc-link 

capacitor  

2 F
 

L1 Inductance of power 

electronics inductor 

0.01 μH 

R1 Resistance in series with 

inductor 

0.01 mΩ 

RC1 Resistance of resistor in 

parallel with capacitor  

25 Ω  

 

Table A.8:  Flywheel controller gains 

Symbol Quantity Value 

KP Proportional gain in the 

speed controller 

0.03 

KI Integral gain in the speed 

controller 

0.3 

KS Gain for the flywheel 

speed set point dynamics 

30 

ρ Percent of maximum 

reference speed 
2

ref max

that is desired to obtain 

95% 
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B.   Parameters Used in Three-Bus Power System Example 

 The parameters used for the three-bus transient stabilization example in Chapter 8 are given in Table 

B.1-Table B.10. 

Table B.1:  Synchronous generator parameters 

Symbol Quantity Value 

LR Self-inductance of the rotor 

winding   

5 μH 

LS Self-inductance of the stator 

windings   

5 μH 

LSS Mutual inductance between 

the stator windings 

1 μH 

M Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR Resistance of the rotor 

winding   

2x10
-2

  Ω 

RS Resistance of the stator 

windings   

1x10
-3

  Ω 

J Inertia of the rotor 3x10
-2

  kg 

m
2
 

B Damping coefficient of the 

rotor 

1x10
-3

  N 

m s 
 

Table B.2:  Governor and exciter controllers for 

synchronous generator 

Symbol Quantity Value 

ref  Reference speed for 

governor controller 

377 

rad/sec 

PK  Proportional gain for 

governor controller  

1
 

IK  Integral gain for 

governor controller 

20 

uT  Time-constant for the 

mechanical torque 

0.01 

gT  Time-constant for the 

valve position 

0.001 

tK  Gain for the 

mechanical torque 

400 

r  Gain for the valve 

position 

200 

ref

Terminalv  Terminal reference 

voltage for exciter 

controller  

2 V
 

eK  Gain for exciter 

controller 

500 

 

 

 

Table B.3:  Parameters for all three transmission lines 

Symbol Quantity Value 

LTL Self-inductance of the 

transmission line   

1x10
-6

  H 

RTL Resistance of the 

transmission line   

1x10
-4

  Ω 

CTL Shunt capacitance of the 

transmission line   

1x10
-2

  F 

 

Table B.4:  Parameters for both loads 

Symbol Quantity Value 

LL Self-inductance of the 

load   

1x10
-4

  H 

RL Resistance of the load 1x10
-2

  Ω 
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Table B.5:  Parameters for the three wind generators on 

Bus 2 

Symbol Quantity Value 

LR Self-inductance of 

the rotor windings   

2x10
-5

  H 

LRR Mutual inductance 

between the rotor 

windings   

4x10
-6

  H 

LS Self-inductance of 

the stator windings   

2x10
-5

  H 

LSS Mutual inductance 

between the stator 

windings 

2x10
-6

  H 

M Mutual inductance 

between the stator 

and rotor windings 

when parallel 

1x10
-5

  H 

RR Resistance of the 

rotor winding   

2x10
-3

  Ω 

RS Resistance of the 

stator windings   

1x10
-3

  Ω 

J Inertia of the rotor 4x10
-5

  kg m
2
 

B Damping 

coefficient of the 

rotor 

1x10
-4

  N m s 

 

Table B.6:  Parameters for the wind generator on Bus 3 

Symbol Quantity Value 

LR Self-inductance of 

the rotor windings   

2x10
-5

  H 

LRR Mutual inductance 

between the rotor 

windings   

4x10
-6

  H 

LS Self-inductance of 

the stator windings   

2x10
-5

  H 

LSS Mutual inductance 

between the stator 

windings 

2x10
-6

  H 

M Mutual inductance 

between the stator 

and rotor windings 

when parallel 

1x10
-5

  H 

RR Resistance of the 

rotor winding   

2x10
-3

  Ω 

RS Resistance of the 

stator windings   

1x10
-3

  Ω 

J Inertia of the rotor 4x10
-4

  kg m
2
 

B Damping 

coefficient of the 

rotor 

1x10
-4

  N m s 

 

 

Table B.7:  Bus 2 flywheel parameters  

Symbol Quantity Value 

LR2 Self-inductance of the rotor 

winding   

5 μH 

LS2 Self-inductance of the stator 

windings   

5 μH 

LSS2 Mutual inductance between 

the stator windings 

1 μH 

M2 Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR2 Resistance of the rotor 

winding   

2x10
-3

  Ω 

RS2 Resistance of the stator 

windings   

1x10
-3

  Ω 

VR2 Voltage applied to the rotor 

winding 

1  V 

J2 Inertia of the rotor 1x10
-4

  kg 

m
2
 

B2 Damping coefficient of the 

rotor 

5x10
-5

  N 

m s 

τM2 Mechanical torque applied 

to the rotor 

0  N m 

 

Table B.8:  Bus 3 flywheel parameters  

Symbol Quantity Value 

LR2 Self-inductance of the rotor 

winding   

5 μH 

LS2 Self-inductance of the stator 

windings   

5 μH 

LSS2 Mutual inductance between 

the stator windings 

1 μH 

M2 Mutual inductance between 

the stator and rotor 

windings when parallel 

4 μH 

RR2 Resistance of the rotor 

winding   

2x10
-3

  Ω 

RS2 Resistance of the stator 

windings   

1x10
-3

  Ω 

VR2 Voltage applied to the rotor 

winding 

1  V 

J2 Inertia of the rotor 1x10
-4

  kg 

m
2
 

B2 Damping coefficient of the 

rotor 

7x10
-5

  N 

m s 

τM2 Mechanical torque applied 

to the rotor 

0  N m 
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Table B.9:  Power electronics parameters on both Bus 2 

and Bus 3 

Symbol Quantity Value 

C1 Capacitance of dc-link 

capacitor  

2 F
 

L1 Inductance of power 

electronics inductor 

0.01 μH 

R1 Resistance in series with 

inductor 

0.01 mΩ 

RC1 Resistance of resistor in 

parallel with capacitor  

25 Ω  

 

Table B.10:  Flywheel controller gains on both Bus 2 

and Bus 3 

Symbol Quantity Value 

KP Proportional gain in the 

speed controller 

0.03 

KI Integral gain in the speed 

controller 

0.3 

KS Gain for the flywheel 

speed set point dynamics 

30 

ρ Percent of maximum 

reference speed 
2

ref max

that is desired to obtain 

95% 

 

 

 

  



144 

 

C.   Parameters Used in Sao Miguel Power System Example 

 The parameters used for the three wind generators and the three flywheels in the Sao Miguel power 

system are given in Table C.1-Table C.4.  The parameters for the rest of the system are based on real-

world data and are given in [79]. 

   
Table C.1:  Parameters for the three wind generators  

Symbol Quantity Value 

LR Self-inductance of 

the rotor windings   

2 mH 

LRR Mutual inductance 

between the rotor 

windings   

0.4 mH 

LS Self-inductance of 

the stator windings   

2 mH 

LSS Mutual inductance 

between the stator 

windings 

0.2 mH 

M Mutual inductance 

between the stator 

and rotor windings 

when parallel 

1 mH 

RR Resistance of the 

rotor winding   

0.2  Ω 

RS Resistance of the 

stator windings   

0.1  Ω 

J Inertia of the rotor 15  kg m
2
 

B Damping 

coefficient of the 

rotor 

0.1  N m s 

 

Table C.2:  Parameters for three flywheels 

Symbol Quantity Value 

LR2 Self-inductance of the rotor 

winding   

0.5 mH 

LS2 Self-inductance of the stator 

windings   

0.5 mH 

LSS2 Mutual inductance between 

the stator windings 

0.1 mH 

M2 Mutual inductance between 

the stator and rotor 

windings when parallel 

0.4 mH 

RR2 Resistance of the rotor 

winding   

0.2 Ω 

RS2 Resistance of the stator 

windings   

0.1 Ω 

VR2 Voltage applied to the rotor 

winding 

1000  V 

J2 Inertia of the rotor 1 kg m
2
 

B2 Damping coefficient of the 

rotor 

0.02 N m s 

τM2 Mechanical torque applied 

to the rotor 

0  N m 

 

  
 

Table C.3:  Power electronic parameters for the three 

flywheels 

Symbol Quantity Value 

C1 Capacitance of dc-link 

capacitor  

0.2 F
 

L1 Inductance of power 

electronics inductor 

1 μH 

R1 Resistance in series with 

inductor 

1 mΩ 

RC1 Resistance of resistor in 

parallel with capacitor  

50 kΩ  

 

 

Table C.4:  Controller gains for the three flywheels 

Symbol Quantity Value 

KP Proportional gain in the 

speed controller 

300 

KI Integral gain in the speed 

controller 

3000 

KS Gain for the flywheel 

speed set point dynamics 

30 

ρ Percent of maximum 

reference speed 
2

ref max

that is desired to obtain 

95% 
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