# Cside 2018



# Statistical Inference for the Cardiac Excitation Model using Pints

### <u>Chon Lok Lei</u><sup>1</sup>, Gary R Mirams<sup>2</sup>, Michael Clerx<sup>1</sup> November 26, 2018

1. University of Oxford, Department of Computer Science

2. University of Nottingham, School of Mathematical Sciences

#### The team



Chon Lok Lei DPhil student at Oxford Dept. of Computer Science





Gary Mirams

Michael Clerx

#### https://github.com/pints-team/pints

# Introduction

Model 1 describes the electrical excitation of cardiac cells. See Simitev and Biktashev (2010).

- 3 states E, h, n
- Stiff, non-linear, coupled ODEs
- 12 parameters to be inferred

#### Model outputs

#### Model simulated with default parameters



Since we know

$$\mathbf{y} = f(t; \mathbf{\Theta}) + \boldsymbol{\epsilon}$$

where **y** is data, f model,  $\Theta$  parameters, and  $\epsilon$  noise.

Since we know

 $\mathbf{y} = \mathbf{f}(t; \mathbf{\Theta}) + \boldsymbol{\epsilon}$ 

where **y** is data, f model,  $\Theta$  parameters, and  $\epsilon$  noise.

We also know

 $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ 

with some constant noise level  $\sigma_i$  for each output.

#### What does noisy data look like:



Then we have likelihood

$$p(\mathbf{y}|\mathbf{\Theta}, \boldsymbol{\sigma}) = \prod_{i \text{ output}} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\sum_t \frac{(f_i(t; \mathbf{\Theta}) - \mathbf{y}_i)^2}{2\sigma_i^2}\right)$$

2. Optimisation to find optimum (via Pints)

- 2. Optimisation to find optimum (via Pints)
- 3. MCMC to explore likelihood around optimum (via Pints)

- 2. Optimisation to find optimum (via Pints)
- 3. MCMC to explore likelihood around optimum (via Pints)

### Effect of ODE solver tolerances

# Using solver inappropriately might lead to incorrect result



- 1. The peak shifted!
- 2. Low tolerance gives bumpy likelihood surface!

#### Study the model using default parameters

- Help us to understand the model better
- Know the limitations of optimiser/MCMC
- See how well we can fit with the model (and data)

# **Methods**

# Global optimisation: CMA-ES (Hansen, 2006)

# Directly run an optimisation

#### If this had worked, problem solved...



We set boundaries to be  $[0.1, 10] \times \Theta_{default}$ . It gets stuck at some weird local minimum in the parameter space...

# Why is global optimisation not working?

#### An example of 1D log-likelihood slice



# Why is global optimisation not working?

#### An example of 1D log-likelihood slice



Ideally, we hope  $h(\Theta_i)$  behaves convex-like...

#### 1D log-likelihood slices from synthetic data



They look really bad here!

Maybe we can argue from the model equations...

$$\begin{aligned} \frac{dE}{dt} &= G_{Na}(E_{Na} - E)\mathcal{H}(E - E_*)h + \tilde{g}_2(E)n^4 + \tilde{G}(E) \\ \frac{dh}{dt} &= F_h\left(\mathcal{H}(E_{\dagger} - E) - h\right) \\ \frac{dn}{dt} &= f_n\left(\mathcal{H}(E - E_{\dagger}) - n\right) \end{aligned}$$

where

$$\tilde{g}_{2}(E) = g_{21}\mathcal{H}(E_{\dagger} - E) + g_{22}\mathcal{H}(E - E_{\dagger})$$

$$\tilde{G}(E) = \begin{cases} k_{1}(E_{1} - E), & E \in (-\infty, E_{\dagger}) \\ k_{2}(E - E_{2}), & E \in [E_{\dagger}, E_{*}) \\ k_{3}(E_{3} - E), & E \in [E_{*}, +\infty) \end{cases}$$

 $\mathcal{H}(\cdot)$  is the Heaviside unit step function

#### Better boundaries gives a better 1D slices



Some parameters still look quite bad here...

Maybe we can argue from the model equations...

$$\begin{aligned} \frac{dE}{dt} &= G_{Na}(E_{Na} - E)\mathcal{H}(E - E_*)h + \tilde{g}_2(E)n^4 + \tilde{G}(E) \\ \frac{dh}{dt} &= F_h\left(\mathcal{H}(E_{\dagger} - E) - h\right) \\ \frac{dn}{dt} &= f_n\left(\mathcal{H}(E - E_{\dagger}) - n\right) \end{aligned}$$

where

$$\tilde{g}_{2}(E) = g_{21}\mathcal{H}(E_{\dagger} - E) + g_{22}\mathcal{H}(E - E_{\dagger})$$

$$\tilde{G}(E) = \begin{cases} k_{1}(E_{1} - E), & E \in (-\infty, E_{\dagger}) \\ k_{2}(E - E_{2}), & E \in [E_{\dagger}, E_{*}) \\ k_{3}(E_{3} - E), & E \in [E_{*}, +\infty) \end{cases}$$

 $\mathcal{H}(\cdot)$  is the Heaviside unit step function

#### Our choice of boundaries and parameter transformation

- For conductance/rate constants
  - $\rightarrow$  Use [0.1, 10]  $\times$   $\Theta_{\textit{default}}$  boundaries
  - $\rightarrow$  Use transformation  $g(\Theta_i) = \ln(\Theta_i)$
- For reversal potentials
  - $\rightarrow$  Use [ $E_{min}, E_{max}$ ] boundaries
  - $\rightarrow$  No transformation is used

# With our chosen boundaries and parameter transformation



Now the 1D log-likelihood slices are much better!

# (Re-)Try global optimisation method



And it is able to find a much closer solution than it was before!

#### CMA-ES found solution compared to default (true) value

| Parameter index | Parameter name | CMA-ES found solution | Default (true) value |
|-----------------|----------------|-----------------------|----------------------|
| 1               | k1             | 0.1367                | 0.75                 |
| 2               | k2             | 0.0575                | 0.04                 |
| 3               | k3             | 0.0799                | 0.1                  |
| 4               | E1             | -93.7497              | -93.3333             |
| 5               | Ena            | 49.8785               | 40                   |
| 6               | Edag           | -79.0135              | -80                  |
| 7               | Estar          | -16.7657              | -15                  |
| 8               | Fh             | 1.4804                | 0.5                  |
| 9               | fn             | 0.0038                | 0.0037               |
| 10              | Gna            | 313.1379              | 33.3333              |
| 11              | g21            | -7.9916               | -2                   |
| 12              | g22            | -7.9098               | -9                   |

It is better

#### CMA-ES found solution compared to default (true) value

| Parameter index | Parameter name | CMA-ES found solution | Default (true) value |
|-----------------|----------------|-----------------------|----------------------|
| 1               | k1             | 0.1367                | 0.75                 |
| 2               | k2             | 0.0575                | 0.04                 |
| 3               | k3             | 0.0799                | 0.1                  |
| 4               | E1             | -93.7497              | -93.3333             |
| 5               | Ena            | 49.8785               | 40                   |
| 6               | Edag           | -79.0135              | -80                  |
| 7               | Estar          | -16.7657              | -15                  |
| 8               | Fh             | 1.4804                | 0.5                  |
| 9               | fn             | 0.0038                | 0.0037               |
| 10              | Gna            | 313.1379              | 33.3333              |
| 11              | g21            | -7.9916               | -2                   |
| 12              | g22            | -7.9098               | -9                   |

It is better, but some of them are still quite bad...

We used adaptive (covariance) MCMC to look for a maximum a posteriori probability (MAP) estimate.

We used adaptive (covariance) MCMC to look for a maximum a posteriori probability (MAP) estimate.

In addition, we can

- 1. Explore the log-likelihood
- 2. Quantify the uncertainty

See https://chi-feng.github.io/mcmcdemo/app.html#AdaptiveMH,banana

## Study obtained posterior distributions

#### Look at 1D marginal log-posterior distributions



#### Or look at 2D marginal log-posterior distributions



## What we learned from synthetic data study?

- 1. We need a good choice of parameter boundaries
- 2. Parameter transformation is helpful
- 3. Running global optimisation can give us a guess of the parameters
- 4. Running MCMC can get the MAP estimate and get a good idea about uncertainty

# **Competition data**

#### MCMC results



Results are what we would expect from our synthetic data study.

# Marginal posterior vs precision matrix?



We approximated our likelihood of the parameters using precision matrix and Gaussian distribution, but might not be ideal...

Since we know exactly

- $\cdot$  how noise  $\epsilon$  is generated
- what value  $\{\sigma_i\}$  should be (SNR=10).

Since we know exactly

- $\cdot$  how noise  $\epsilon$  is generated
- what value  $\{\sigma_i\}$  should be (SNR=10).

We can estimate the values of  $\sigma$  and turn

 $p(\mathbf{y}|\mathbf{\Theta}, \boldsymbol{\sigma}) 
ightarrow p(\mathbf{y}, \boldsymbol{\sigma}|\mathbf{\Theta})$ 



Fixing noise level would

- · pros: reduce number of parameters to search
- · cons: reduce 'precision'

# Finally, why we are off...

Plot log-likelihood along the hyperline between our obtained parameters and true parameters



Our obtained best parameters has a better log-likelihood than the true parameters!

#### Simulations with samples from our distribution



Our obtained best parameters look very alike the true solution, and it is within our posterior predictions!

#### Simulations with samples from our distribution



Our obtained best parameters look very alike the true solution, and it is within our posterior predictions!

# Conclusion

#### Methods that we used

- 1. Inspect 1D log-likelihood slices
- 2. Define parameter transformation and boundaries
- 3. Run global optimisation (CMA-ES)
- 4. Run MCMC (Adaptive covariance-MCMC)
- 5. Study obtained posterior distribution

All can be done within Pints

#### https://github.com/pints-team/pints

| 🖩 pints-team / pints                                                                                                                                      | O Unwatch → 10 | ★ Unstar 21 | Y Fork 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|----------|
| ↔ Code ① Issues 140 『 Pull requests ④                                                                                                                     |                |             |          |
| Probabilistic Inference on Noisy Time Series http://pints.readthedocs.io<br>bayesian-methods inverse-problems parameter-estimation numerical-optimization |                |             |          |
| 即 README.md                                                                                                                                               |                |             | ø        |
| build passing 🔇 build passing codecov 100% pfunk running launch binder docs passing                                                                       | 9              |             |          |
| What is Pints?                                                                                                                                            |                |             |          |

Pints (Probabilistic Inference on Noisy Time-Series) is a framework for optimisation and bayesian inference problems with ODE models of noisy time-series, such as arise in electrochemistry and cardiac electrophysiology.

# Thank You. 🙂

# **Questions?**

- Reduce model dimension: fitting spline to E and fit h and n separately
- Try other MCMC algorithms: e.g. Population MCMC, SMC, or tempering methods etc.
- If in real life... we know data do not contain enough information for some of the parameter, we can do experimental-design!

What Bayesian inference can provide:

- Estimate the parameters,  $\theta$ , of a model  $y = f(x; \theta)$
- Perform model comparison or compute the evidence
- Make predictions from a model

# Bayesian inference (cont.)

• Posterior:

$$p(\theta|X) = rac{p(X|\theta)p(\theta)}{p(X)} \propto p(X|\theta)p(\theta)$$

• Evidence (or marginal likelihood):

$$p(X) = \int_{\theta} p(X|\theta) p(\theta) \mathrm{d}\theta$$

• Posterior predictive:

$$p(\tilde{x}|X) = \int_{\theta} p(\tilde{x}|\theta) p(\theta|X) \mathrm{d}\theta$$

#### We have posterior

$$p(\mathbf{\Theta}, \boldsymbol{\sigma} | \mathbf{y}) = \frac{p(\mathbf{\Theta}, \boldsymbol{\sigma}) p(\mathbf{y} | \mathbf{\Theta}, \boldsymbol{\sigma})}{p(\mathbf{y})}$$
$$\propto p(\mathbf{\Theta}) p(\mathbf{y} | \mathbf{\Theta}, \boldsymbol{\sigma})$$

where  $p(\Theta)$  is our prior which is defined as

 $p(\boldsymbol{\Theta}) \sim \mathcal{U}(\boldsymbol{\Theta}_{min}, \boldsymbol{\Theta}_{max})$ 

where  $\Theta_{min}$ ,  $\Theta_{max}$  are boundaries of our parameter values.