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Introduction



Model 1: cardiac excitation model

Model 1 describes the electrical excitation of cardiac
cells. See Simitev and Biktashev (2010).

• 3 states E, h, n
• Stiff, non-linear, coupled ODEs
• 12 parameters to be inferred
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Model outputs

Model simulated with default parameters
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Defining likelihood

Since we know
y = f(t;Θ) + ϵ

where y is data, f model, Θ parameters, and ϵ noise.

4



Defining likelihood

Since we know
y = f(t;Θ) + ϵ

where y is data, f model, Θ parameters, and ϵ noise.

We also know
ϵi ∼ N (0, σ2i )

with some constant noise level σi for each output.
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What does noisy data look like:

s
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Then we have likelihood

p(y|Θ,σ) =
∏

i output

1√
2πσ2i

exp

(
−
∑
t

(fi(t;Θ)− yi)2

2σ2i

)
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Overview of what we did

1. Solving the model equations
→ Reimplement the model in Python (using

CVODE)

2. Optimisation to find optimum (via Pints)

3. MCMC to explore likelihood around optimum (via
Pints)
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Effect of ODE solver tolerances

Using solver inappropriately might lead to incorrect
result

1. The peak shifted!
2. Low tolerance gives bumpy likelihood surface!

8



Synthetic data study

Study the model using default parameters

• Help us to understand the model better
• Know the limitations of optimiser/MCMC
• See how well we can fit with the model (and data)
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Methods



Global optimisation: CMA-ES (Hansen, 2006)
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Directly run an optimisation

If this had worked, problem solved...

We set boundaries to be [0.1, 10]×Θdefault. It gets stuck at
some weird local minimum in the parameter space... 11



Why is global optimisation not working?

An example of 1D log-likelihood slice
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Why is global optimisation not working?

An example of 1D log-likelihood slice

Ideally, we hope h(Θi) behaves convex-like...
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1D log-likelihood slices from synthetic data

They look really bad here!
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Maybe we can argue from the model equations...
dE
dt = GNa(ENa − E)H(E− E∗)h+ g̃2(E)n4 + G̃(E)

dh
dt = Fh (H(E† − E)− h)

dn
dt = fn (H(E− E†)− n)

where

g̃2(E) = g21H(E† − E) + g22H(E− E†)

G̃(E) =


k1(E1 − E), E ∈ (−∞, E†)
k2(E− E2), E ∈ [E†, E∗)
k3(E3 − E), E ∈ [E∗,+∞)

H(·) is the Heaviside unit step function
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Better boundaries gives a better 1D slices

Some parameters still look quite bad here...
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Our choice of boundaries and parameter transformation

• For conductance/rate constants
→ Use [0.1, 10]×Θdefault boundaries
→ Use transformation g(Θi) = ln(Θi)

• For reversal potentials
→ Use [Emin, Emax] boundaries
→ No transformation is used

17



With our chosen boundaries and parameter
transformation

Now the 1D log-likelihood slices are much better!
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(Re-)Try global optimisation method

And it is able to find a much closer solution than it was before!
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CMA-ES found solution compared to default (true) value

Parameter index Parameter name CMA-ES found solution Default (true) value

1 k1 0.1367 0.75
2 k2 0.0575 0.04
3 k3 0.0799 0.1
4 E1 -93.7497 -93.3333
5 Ena 49.8785 40
6 Edag -79.0135 -80
7 Estar -16.7657 -15
8 Fh 1.4804 0.5
9 fn 0.0038 0.0037
10 Gna 313.1379 33.3333
11 g21 -7.9916 -2
12 g22 -7.9098 -9

It is better
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CMA-ES found solution compared to default (true) value

Parameter index Parameter name CMA-ES found solution Default (true) value

1 k1 0.1367 0.75
2 k2 0.0575 0.04
3 k3 0.0799 0.1
4 E1 -93.7497 -93.3333
5 Ena 49.8785 40
6 Edag -79.0135 -80
7 Estar -16.7657 -15
8 Fh 1.4804 0.5
9 fn 0.0038 0.0037
10 Gna 313.1379 33.3333
11 g21 -7.9916 -2
12 g22 -7.9098 -9

It is better, but some of them are still quite bad...
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How can we do it better?

We used adaptive (covariance) MCMC to look for a
maximum a posteriori probability (MAP) estimate.
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How can we do it better?

We used adaptive (covariance) MCMC to look for a
maximum a posteriori probability (MAP) estimate.

In addition, we can

1. Explore the log-likelihood
2. Quantify the uncertainty

See https://chi-feng.github.io/mcmc-
demo/app.html#AdaptiveMH,banana
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Study obtained posterior distributions

Look at 1D marginal log-posterior distributions
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Or look at 2D marginal log-posterior distributions
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What we learned from synthetic data study?

1. We need a good choice of parameter boundaries
2. Parameter transformation is helpful
3. Running global optimisation can give us a guess of
the parameters

4. Running MCMC can get the MAP estimate and get a
good idea about uncertainty
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Competition data



MCMC results

Results are what we would expect from our synthetic data
study.
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Marginal posterior vs precision matrix?

We approximated our likelihood of the parameters using
precision matrix and Gaussian distribution, but might not be
ideal... 26



Should the noise level be a parameter?

Since we know exactly

• how noise ϵ is generated
• what value {σi} should be (SNR=10).
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Should the noise level be a parameter?

Since we know exactly

• how noise ϵ is generated
• what value {σi} should be (SNR=10).

We can estimate the values of σ and turn

p(y|Θ,σ) → p(y,σ|Θ)
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Fixing noise level would

• pros: reduce number of parameters to search
• cons: reduce ‘precision’
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Finally, why we are off...

Plot log-likelihood along the hyperline between our
obtained parameters and true parameters

Our obtained best parameters has a better log-likelihood than
the true parameters!
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Simulations with samples from our distribution

Our obtained best parameters look very alike the true solution,
and it is within our posterior predictions!
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Simulations with samples from our distribution

Our obtained best parameters look very alike the true solution,
and it is within our posterior predictions!
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Conclusion



To sum up...

Methods that we used

1. Inspect 1D log-likelihood slices
2. Define parameter transformation and boundaries
3. Run global optimisation (CMA-ES)
4. Run MCMC (Adaptive covariance-MCMC)
5. Study obtained posterior distribution

All can be done within Pints
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Pints

https://github.com/pints-team/pints
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Thank You. ,
Questions?
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Extra things could be done...

• Reduce model dimension: fitting spline to E and fit h
and n separately

• Try other MCMC algorithms: e.g. Population MCMC,
SMC, or tempering methods etc.

• If in real life... we know data do not contain enough
information for some of the parameter, we can do
experimental-design!



Bayesian inference

What Bayesian inference can provide:

• Estimate the parameters, θ, of a model y = f(x; θ)
• Perform model comparison or compute the evidence
• Make predictions from a model



Bayesian inference (cont.)

• Posterior:

p(θ|X) = p(X|θ)p(θ)
p(X) ∝ p(X|θ)p(θ)

• Evidence (or marginal likelihood):

p(X) =
∫
θ

p(X|θ)p(θ)dθ

• Posterior predictive:

p(x̃|X) =
∫
θ

p(x̃|θ)p(θ|X)dθ



Posterior for our problem

We have posterior

p(Θ,σ|y) = p(Θ,σ)p(y|Θ,σ)

p(y)
∝ p(Θ)p(y|Θ,σ)

where p(Θ) is our prior which is defined as

p(Θ) ∼ U(Θmin,Θmax)

whereΘmin,Θmax are boundaries of our parameter values.
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