
Cside 2018
Statistical Inference for the Cardiac Excitation
Model using Pints

Chon Lok Lei1, Gary R Mirams2, Michael Clerx1

November 26, 2018

1. University of Oxford, Department of Computer Science
2. University of Nottingham, School of Mathematical Sciences

https://www.gla.ac.uk/schools/mathematicsstatistics/events/conferences/cside2018/

The team

https://github.com/pints-team/pints

1

https://github.com/pints-team/pints

Introduction

Model 1: cardiac excitation model

Model 1 describes the electrical excitation of cardiac
cells. See Simitev and Biktashev (2010).

• 3 states E, h, n
• Stiff, non-linear, coupled ODEs
• 12 parameters to be inferred

2

Model outputs

Model simulated with default parameters

3

Defining likelihood

Since we know
y = f(t;Θ) + ϵ

where y is data, f model, Θ parameters, and ϵ noise.

4

Defining likelihood

Since we know
y = f(t;Θ) + ϵ

where y is data, f model, Θ parameters, and ϵ noise.

We also know
ϵi ∼ N (0, σ2i)

with some constant noise level σi for each output.

4

What does noisy data look like:

s

5

Then we have likelihood

p(y|Θ,σ) =
∏

i output

1√
2πσ2i

exp

(
−
∑
t

(fi(t;Θ)− yi)2

2σ2i

)

6

Overview of what we did

1. Solving the model equations
→ Reimplement the model in Python (using

CVODE)

2. Optimisation to find optimum (via Pints)

3. MCMC to explore likelihood around optimum (via
Pints)

7

Overview of what we did

1. Solving the model equations
→ Reimplement the model in Python (using

CVODE)

2. Optimisation to find optimum (via Pints)

3. MCMC to explore likelihood around optimum (via
Pints)

7

Overview of what we did

1. Solving the model equations
→ Reimplement the model in Python (using

CVODE)

2. Optimisation to find optimum (via Pints)

3. MCMC to explore likelihood around optimum (via
Pints)

7

Overview of what we did

1. Solving the model equations
→ Reimplement the model in Python (using

CVODE)

2. Optimisation to find optimum (via Pints)

3. MCMC to explore likelihood around optimum (via
Pints)

7

Effect of ODE solver tolerances

Using solver inappropriately might lead to incorrect
result

1. The peak shifted!
2. Low tolerance gives bumpy likelihood surface!

8

Synthetic data study

Study the model using default parameters

• Help us to understand the model better
• Know the limitations of optimiser/MCMC
• See how well we can fit with the model (and data)

9

Methods

Global optimisation: CMA-ES (Hansen, 2006)

10

Directly run an optimisation

If this had worked, problem solved...

We set boundaries to be [0.1, 10]×Θdefault. It gets stuck at
some weird local minimum in the parameter space... 11

Why is global optimisation not working?

An example of 1D log-likelihood slice

12

Why is global optimisation not working?

An example of 1D log-likelihood slice

Ideally, we hope h(Θi) behaves convex-like...
12

1D log-likelihood slices from synthetic data

They look really bad here!

13

Maybe we can argue from the model equations...
dE
dt = GNa(ENa − E)H(E− E∗)h+ g̃2(E)n4 + G̃(E)

dh
dt = Fh (H(E† − E)− h)

dn
dt = fn (H(E− E†)− n)

where

g̃2(E) = g21H(E† − E) + g22H(E− E†)

G̃(E) =


k1(E1 − E), E ∈ (−∞, E†)
k2(E− E2), E ∈ [E†, E∗)
k3(E3 − E), E ∈ [E∗,+∞)

H(·) is the Heaviside unit step function
14

Better boundaries gives a better 1D slices

Some parameters still look quite bad here...

15

Maybe we can argue from the model equations...
dE
dt = GNa(ENa − E)H(E− E∗)h+ g̃2(E)n4 + G̃(E)

dh
dt = Fh (H(E† − E)− h)

dn
dt = fn (H(E− E†)− n)

where

g̃2(E) = g21H(E† − E) + g22H(E− E†)

G̃(E) =


k1(E1 − E), E ∈ (−∞, E†)
k2(E− E2), E ∈ [E†, E∗)
k3(E3 − E), E ∈ [E∗,+∞)

H(·) is the Heaviside unit step function
16

Our choice of boundaries and parameter transformation

• For conductance/rate constants
→ Use [0.1, 10]×Θdefault boundaries
→ Use transformation g(Θi) = ln(Θi)

• For reversal potentials
→ Use [Emin, Emax] boundaries
→ No transformation is used

17

With our chosen boundaries and parameter
transformation

Now the 1D log-likelihood slices are much better!
18

(Re-)Try global optimisation method

And it is able to find a much closer solution than it was before!

19

CMA-ES found solution compared to default (true) value

Parameter index Parameter name CMA-ES found solution Default (true) value

1 k1 0.1367 0.75
2 k2 0.0575 0.04
3 k3 0.0799 0.1
4 E1 -93.7497 -93.3333
5 Ena 49.8785 40
6 Edag -79.0135 -80
7 Estar -16.7657 -15
8 Fh 1.4804 0.5
9 fn 0.0038 0.0037
10 Gna 313.1379 33.3333
11 g21 -7.9916 -2
12 g22 -7.9098 -9

It is better
20

CMA-ES found solution compared to default (true) value

Parameter index Parameter name CMA-ES found solution Default (true) value

1 k1 0.1367 0.75
2 k2 0.0575 0.04
3 k3 0.0799 0.1
4 E1 -93.7497 -93.3333
5 Ena 49.8785 40
6 Edag -79.0135 -80
7 Estar -16.7657 -15
8 Fh 1.4804 0.5
9 fn 0.0038 0.0037
10 Gna 313.1379 33.3333
11 g21 -7.9916 -2
12 g22 -7.9098 -9

It is better, but some of them are still quite bad...
20

How can we do it better?

We used adaptive (covariance) MCMC to look for a
maximum a posteriori probability (MAP) estimate.

21

How can we do it better?

We used adaptive (covariance) MCMC to look for a
maximum a posteriori probability (MAP) estimate.

In addition, we can

1. Explore the log-likelihood
2. Quantify the uncertainty

See https://chi-feng.github.io/mcmc-
demo/app.html#AdaptiveMH,banana

21

https://chi-feng.github.io/mcmc-demo/app.html#AdaptiveMH,banana
https://chi-feng.github.io/mcmc-demo/app.html#AdaptiveMH,banana

Study obtained posterior distributions

Look at 1D marginal log-posterior distributions

22

Or look at 2D marginal log-posterior distributions

23

What we learned from synthetic data study?

1. We need a good choice of parameter boundaries
2. Parameter transformation is helpful
3. Running global optimisation can give us a guess of
the parameters

4. Running MCMC can get the MAP estimate and get a
good idea about uncertainty

24

Competition data

MCMC results

Results are what we would expect from our synthetic data
study.

25

Marginal posterior vs precision matrix?

We approximated our likelihood of the parameters using
precision matrix and Gaussian distribution, but might not be
ideal... 26

Should the noise level be a parameter?

Since we know exactly

• how noise ϵ is generated
• what value {σi} should be (SNR=10).

27

Should the noise level be a parameter?

Since we know exactly

• how noise ϵ is generated
• what value {σi} should be (SNR=10).

We can estimate the values of σ and turn

p(y|Θ,σ) → p(y,σ|Θ)

27

Fixing noise level would

• pros: reduce number of parameters to search
• cons: reduce ‘precision’

28

Finally, why we are off...

Plot log-likelihood along the hyperline between our
obtained parameters and true parameters

Our obtained best parameters has a better log-likelihood than
the true parameters!

29

Simulations with samples from our distribution

Our obtained best parameters look very alike the true solution,
and it is within our posterior predictions!

30

Simulations with samples from our distribution

Our obtained best parameters look very alike the true solution,
and it is within our posterior predictions!

30

Conclusion

To sum up...

Methods that we used

1. Inspect 1D log-likelihood slices
2. Define parameter transformation and boundaries
3. Run global optimisation (CMA-ES)
4. Run MCMC (Adaptive covariance-MCMC)
5. Study obtained posterior distribution

All can be done within Pints

31

Pints

https://github.com/pints-team/pints

32

https://github.com/pints-team/pints

Thank You. ,
Questions?

32

Extra things could be done...

• Reduce model dimension: fitting spline to E and fit h
and n separately

• Try other MCMC algorithms: e.g. Population MCMC,
SMC, or tempering methods etc.

• If in real life... we know data do not contain enough
information for some of the parameter, we can do
experimental-design!

Bayesian inference

What Bayesian inference can provide:

• Estimate the parameters, θ, of a model y = f(x; θ)
• Perform model comparison or compute the evidence
• Make predictions from a model

Bayesian inference (cont.)

• Posterior:

p(θ|X) = p(X|θ)p(θ)
p(X) ∝ p(X|θ)p(θ)

• Evidence (or marginal likelihood):

p(X) =
∫
θ

p(X|θ)p(θ)dθ

• Posterior predictive:

p(x̃|X) =
∫
θ

p(x̃|θ)p(θ|X)dθ

Posterior for our problem

We have posterior

p(Θ,σ|y) = p(Θ,σ)p(y|Θ,σ)

p(y)
∝ p(Θ)p(y|Θ,σ)

where p(Θ) is our prior which is defined as

p(Θ) ∼ U(Θmin,Θmax)

whereΘmin,Θmax are boundaries of our parameter values.

	Introduction
	Methods
	Competition data
	Conclusion
	Appendix

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:

