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Abstract

As process technologies have scaled, the increasing number of processor cores and memories

on a single die has also driven the need for more complex on-chip interconnection networks.

Crossbar switches are primary building blocks in such networks-on-chip, as they can be used

as fast single-stage networks or as the core of the router switch in multi-stage networks.

While crossbars offer non-blocking, single-hop, all-to-all communication, they tend to scale

poorly with the number of nodes due to the latency and energy of the long wires and high-

radix multiplexor structures needed. In this work, we investigate how to improve crossbar

performance, energy-efficiency, and scalability.

To better understand the design space and scaling limitations, we have developed an on chip

switch modeling tool calibrated using circuit-level simulations. The tool enables a design

space exploration showing how area, power, and performance vary across radix, data width,

wire parameters, and circuit implementation. In addition to conventional design options,

we examined capacitively coupled low-swing signaling to improve to energy consumption of

the I/O wires. This exploration shows that the main bottlenecks are the long I/O wires and

the key to improving the performance and efficiency is to minimize the area. Using these

insights, we present modular crossbar switches that can perform better at high radices than

the monolithic designs. The modular sub-blocks are arranged in a controlled flow-through,

pipelined scheme to eliminate global connections and maintain linear performance scaling

and high throughput. Modularity also enables energy savings via deactivation of unused

I/O wires.

To evaluate our design, we implemented a prototype radix-64 modular crossbar switch

testcip in 40nm CMOS bulk process. The testchip operates at 2.38GHz at 1V nominal

supply voltage and consumes 1.2W power. It offers 2.2X better throughput and 2.4X better

energy-efficiency than published state of the art designs. We further evaluated modular

crossbar networks with the proposed crossbar switches using BookSim2, a network on chip
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evaluation tool. The proposed design achieves more than 90% saturation throughput with

an internal speed up of 1.5, supports high data line rates, and offers lower average network

latency compared to conventional crossbars. Evaluation results show that modular crossbars

are scalable to high-radices while still offering high-performance, energy-efficiency and one-

hop simplicity.
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Chapter 1

Introduction

1.1 Motivation

Advances in process technologies continue to enhance the performance and available num-

ber of transistors on a single die with every new generation as predicted by Moore’s Law

[36, 55]. Historically, chip designers have focused on delivering smaller, faster, and more

efficient single core processors aided by higher clock frequencies and sophisticated micro-

architectures advancing single-thread performance. However, rising power density with

scaling [63] has resulted in diminishing returns for further increasing the clock frequency

with the end of Dennard Scaling [17, 18]. Moreover, single-threaded performance reached

its limits with increasing overheads from micro-architectural complexities such as extensive

pipelining of instruction streams. Thus, these limitations encouraged designers to explore

system-on-chips with multiple cores to meet the growing demand for higher throughput and

lower power.

Systems-on-chip exploit parallelism from multiple processing and storage units to improve

system performance. With every new generation and increasing transistor budgets, the

number of cores on a single die increases instead of the size and complexity of a single core,

thus, further advancing the compute throughput from process scaling. However, as the

1
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Mesh Crossbar 
Figure 1.1: Mesh and Crossbar Topologies.

number of components in the system increases, designing the interconnection infrastructure

of these systems becomes challenging [10]. In combination with growing wire delay with

process scaling, communication has become one of the major factors that determines the

system performance and power consumption.

Traditional buses have failed to meet the performance requirements of recent systems-on-

chip with large number of cores. In spite of its low-cost and simplicity, shared bus con-

nections cannot scale efficiently due to serial utilization. Networks on chip (NoC) emerged

as an alternative by offering highly scalable, reliable, and modular communication plat-

forms.

They are constructed from point-to-point data links (channels) and routers [4, 6, 16, 26]

that transfer data packets from source to destination ports. Multi-hop networks like mesh

(Figure 1.1) are easy to design and scalable to high-radices due to small router sizes and short

channels. However, in these networks, data travels through multiple routers, where every

router point computes the next-hop route and arbitrates multiple data packets. Hence, they

have nonuniform latency and significant programming complexity. In contrast, crossbars are

a single-hop, non-blocking network that offer all-to-all communication, with non-uniform

latency, programming simplicity, and deterministic fairness [41, 53]. However, it is harder

to design due to the large router switch that connects every I/O port.

Although crossbars have been quite popular for system-on-chip designs with low-tomedium
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Figure 1.2: Networks-on-Chip in Recent Multi-Core Processors.

number of cores due to their simplicity, recent multi-core processor have replaced crossbars

with multi-stage networks such as rings and meshes as seen in Figure 1.2 [3, 7, 47]. De-

signing high-radix crossbars is a challenge due to the quadratic cost scaling of the router.

The crossbar interconnection switch, memory resources, and allocation logic typically scale

poorly in area, power, and latency/throughput with increasing radix.

Improving crossbar scalability benefits many communication platforms ranging from system-

on-chip and large-scale system networks to high-end Internet routers as the crossbar switch

fabric is the main building block. High-radix crossbars can be used as fast, single-stage

networks for large system-on-chips. As the use-case for such high-radix crossbars typically

involves physically disparate input and output nodes (e.g., multiple processors communi-

cating with multiple L3 cache blocks), these structures are usually built as a compact,

centralized crossbar connected to the input and output nodes via dedicated point-to-point

data links [41] as seen in Figure 1.3.

High-performance Internet routers and switches also commonly use one-hop high-radix

crossbars as the switching fabric that determines the scalability and performance of the

Internet. Further, high-radix crossbars can also be used as high-radix routers for large-

scale networks for larger systems like super computers and datacenters. High-radix routers

became critical in building large-scale networks with the emerging high-speed signaling

technologies [23, 30] and increased available off-chip bandwidth [14]. Previous work [27] has

shown that advancement in available off-chip bandwidth is best exploited by using high-
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XBAR
Global Data Links
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Figure 1.3: System view of a crossbar network.

radix routers with thin channels, rather than making ports wider. Networks built with

high-radix routers reduce the hop count, leads to a lower network latency and cost. There-

fore, there is significant effort to improve the scalability, performance, and energy-efficiency

of crossbars.

1.2 High-Radix Crossbars

The crossbar network consists of the crossbar switch, I/O buffers, and allocators as seen

in 1.4. The switch is the core of the network, offering all-to-all connectivity for I/O ports.

The buffers are required to store the incoming and outgoing data in cases of conflicts, and

allocators schedule and manage the network resources such as buffer availability and the

switch traversal.

The main challenges in designing high-radix crossbars are the complex allocation, increased

number of memory resources required, and the physical design of the crossbar switch itself.

Previous work has shown that the scheduling of high-radix crossbars is a surmountable

challenge [12, 27, 41, 64]. Further, as the network data packet size is usually larger than the

physical data width of the crossbar, the scheduling decision latency can be amortized over

the multiple cycles required to transfer the entire network packet across the crossbar.
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Figure 1.4: Crossbar Architecture.

On the other hand, crossbar switch performance plays a crucial role in high-radix cross-

bar network performance. Internal switch speedup simplifies allocation and enables high

network saturation capacity with low memory cost. Therefore, high-performance switches

can enable building efficient high-radix crossbar networks. However, designing a high-radix

switch is a challenge. As number of inputs and outputs (radix) of the switch scales, the

area grows quadratically (Figure 1.5), hence increasing the latency and energy consumption

significantly.

In this thesis, we present a detailed switch design space exploration using a crossbar mod-

eling tool to understand the scaling limitations better. We also discuss circuit and micro-

architecture techniques to improve performance and energy-efficiency of high-radix cross-

bar switches. More specifically, we present a low-swing crossbar switch with high energy-

efficiency, and a modular crossbar switch that can achieve linear performance scaling. Fur-

ther, we present a scalable, high-radix modular crossbar that can offer high saturation

throughput and low network latency using the high-performance modular switch.
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Figure 1.5: Crossbar switch area depends on radix (quadratically) and the I/O intersection width and
height.

1.3 Dissertation Organization

The crossbar switch architecture is discussed in detail to understand the scaling limitations

in Chapter 2. We present a crossbar switch modeling tool for fast design space exploration.

We then discuss the trends for various design parameters at system, circuit, and layout

level, and present guidelines on how to optimize design parameters for a high-performance,

energy-efficient switch.

Chapter 3 explores low-swing signaling to further improve energy-efficiency of crossbar

switches. We present a low-swing crossbar switch that uses capacitively coupled I/O wires

and multiplexers. We evaluate performance, energy consumption, and area and discuss

scaling of the proposed crossbar switch.

Chapter 4 introduces a modular crossbar switch that offers linear performance scaling and

energy savings. We build high-performance and energy-efficient switch blocks using the

design space exploration results. We then use these blocks to build modular high-radix

crossbars that can perform better than monolithic switches. Details of the switch architec-
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ture and evaluation are discussed in this chapter.

To validate improvements of our design, we designed and implemented a prototype modular

crossbar switch testchip. Chapter 5 describes the testchip in detail and discusses the layout

extracted simulation results.

Finally, the modular crossbar network architecture is presented in Chapter 6. The modular

architecture consists of the modular switch, centralized allocators, and I/O buffers. The

network performance is evaluated using a cycle-accurate NoC evaluation tool. The modular

crossbar network offers high saturation throughput and lower network latency with the

internal switch speedup.



8 1.3. Dissertation Organization



Chapter 2

Design Space Exploration

In this chapter, we discuss details of the crossbar switch architecture and define the system,

circuit, and layout level design parameters. Crossbar switch characteristics (area, power,

performance) depend heavily on the floorplanning and layout, and hence the most accurate

evaluation is achieved by post-layout or post-route simulations. This makes design opti-

mization via iteration highly time and resource intensive, especially for full custom ASIC

designs. Although standard cell designs have more flexibility to optimize system level pa-

rameters such as number of modules and data width, these designs lack low level circuit

and routing optimizations due to EDA tool limitations.

To better understand the design space, we have developed an on-chip crossbar modeling

tool based on analytical models calibrated using circuit-level simulation results in 40nm

CMOS. We present a design space exploration showing how crossbar area, power, and

performance vary across input/output node number, data width, wire parameters, and

circuit implementation.

We also use the crossbar modeling tool (with added modifications) to explore our low-swing

and modular crossbar switch ideas to improve energy-efficiency and throughput respectively

in the later chapters. The tool allows fast design exploration for novel switch ideas with

9
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different parameter constraints. It also allows evaluating the proposed designs at various

radices to understand scalability and limitations.

2.1 Related Work

The related work most similar to that present here is from Passas et al.[41, 43] who present a

cost analysis and modeling of crossbar switch area, delay, and power. Their main focus is the

crossbar topology and the performance optimization for high radices across different radices

and data width. They use standard cell design flow to build multiplexer tree based crossbars

for the analysis and report post-route and simulation based results. Using standard cell

design flow gives them flexibility to run an automated flow for post-route simulations, but

their experiments are limited to multiplexer tree based designs and limited by electronic

design automation (EDA) tool routing options. In contrast, our analytical crossbar model

covers both system level (number of modules and data width) and circuit level (multiplexer

circuits, wire pitches, etc.) design parameters to achieve design optimization as close to full

custom design as possible. We further take into account custom layout optimizations that

are not possible in the previous standard cell synthesis based modeling work.

As NoCs are in widespread use, other researchers have developed a number of on-chip

network modeling tools for design exploration [4, 39, 40, 60, 65, 66, 67]. These tools contain

relatively simple crossbar models, as crossbars are typically at the core of routers used in

multi-hop networks. Further, these crossbars are typically of low-radix as they only connect

the local network node to the rest of the multi-hop network. The crossbar modeling is part

of the router modeling and is based on the basic X-Y crossbar design where the inputs and

outputs run perpendicular to each other (usually using minimum sized wires) and connected

via tri-state buffers at each intersection point. These studies focus on the modeling and

optimization of the entire multi-hop network itself. Although they provide good system

level modeling and exploration, the crossbar design options are not explored, the modeling
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is at a relatively high level, and the radix of the crossbars modeled is relatively low.

Finally, in the circuit design space, researchers have proposed improvement techniques for

X-Y topology crossbar switches [11, 45, 51, 52, 53, 54, 58, 69]. However, these are iso-

lated point designs and there has not been significant exploration of the design space at the

circuit-level owing to the iteration difficulties mentioned earlier. As such, our work allows for

incorporation of new circuit techniques into our overall modeling and optimization frame-

work. Indeed, the impetus for our modeling effort was our interest in designing high radix

crossbar implementations, and our realization that there was not a modeling/optimization

framework with sufficient level of detail and design options.

2.2 Crossbar Architecture

An N x N crossbar is a non-blocking switch that connects N input nodes to N output nodes,

where each node has a data width (DW ). The crossbar architecture is shown in Figure 2.1,

where the connection of every input data to an output forms an N :1 multiplexer.

N Input Nodes

N
 O

u
tp

u
t 

N
o
d

e
s

DW DW DW DW

D
W

D
W

D
W

D
W

D
W

N:1 MUX

Figure 2.1: NxN crossbar architecture, where the connection of every input data to an output forms an
N:1 multiplexer.
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The crossbar consists of N x DW input data bits, N x DW output data bits, and N x DW

multiplexers, N :1 each. As N and DW increases, floorplanning and the total design area

become significant parts of the performance due to large number of long I/O wires, multi-

plexers, and challenging routing requirements. Physical design details such as floorplanning

and area, as well as circuit details of multiplexers and I/O wires are discussed below.

2.2.1 Floorplanning

One challenge in crossbar design is to arrange I/O data wires for easier access to/from

multiplexer gates from/to edge of the design. Floorplanning options are port-slicing and bit-

slicing as can be seen in Figure 2.2. Grouping the data bits together for each module (port)

is called port-slicing. The modules (module [0], module[1],...,module[N]) are placed next to

each other where each module has DW data bits. This requires the output multiplexers to

span the whole design width to get inputs from each module. On the other hand, grouping

together a specific data from each module is called bit-slicing. In this case, data bits (data[0],

data[1],...,data[DW]) are placed next to each other where each group has N data bits (one

data bit from each module). This enables building smaller and faster multiplexers as inputs

of each multiplexer are already grouped.

However, it is typical to assume that the I/O data bits are grouped together for each

node and routed to/from the edge of the crossbar design. Therefore, for bit-slicing, a

rearrangement of the I/O data bits at the edge of the design is required. For large number

of I/O data bits, this bit scrambling requires a large area, and extra clock cycles [41].

Therefore, port-slicing offers better performance overall.

2.2.2 Area

Large number of wires, multiplexers, and the floorplanning details determine the area of

the design, which is critical for the electrical parameters of the long I/O wires. Matrix-
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plans.



14 2.2. Crossbar Architecture

style wiring, where input and output wires run perpendicular to each other, maximizes

area utilization. Optimum size multiplexers usually fit underneath the minimum pitch

I/O wires for smaller radix designs, whereas for high radices, using larger wire pitches can

improve the performance by increasing the design area for the multiplexers (for better drive

strength).

2.2.3 Input Wires

Each input bit should be distributed to every output multiplexer that means the input wires

should span the whole height of the crossbar. In addition to quadratic latency growth of

long input wires, fan out of the input bits increase as the design radix increases. Every

multiplexer behaves as a constant load on input wires. Input drivers have more design

flexibility as they can be stacked physically without a significant contribution to the overall

core area and repeaters can be inserted when needed. However, the input wire delay is still

a substantial portion of the overall delay at high radices.

2.2.4 Multiplexers and Output Wires

Switch circuits are multiplexers that drive the long output wires. Since we adopted port

slicing, each multiplexer spans the whole design width to access all input nodes and drives

long output wires. Internal wires of the multiplexers are not negligible, and this increases

the delay by adding intrinsic wire delay and extra load capacitance from the wires. Further,

as they are placed underneath the I/O wires to have a smaller crossbar area, the multiplexer

area, hence the drive strength, is limited.

Architectural Implementation Options

Designing a N :1 multiplexer, where N is large, is a challenge due to parasitic loading from

the non-active inputs. A popular solution is to build the large radix multiplexer using



Chapter 2. Design Space Exploration 15

smaller radix sub-multiplexers in a tree-structure to improve the performance. In a flat

multiplexer implementation, a single horizontal wire track is dedicated for every output

bit. But if the multiplexer is built as a tree, the number of horizontal wire tracks is

increased to logmN (the depth of the tree where m is sub-multiplexer radix) as seen in

Figure 2.3. The length of the internal wires between the sub-multiplexers depend on the

physical implementation choices as will be explained below. Further, increasing the depth of

the multiplexer increases the design area, hence effecting the length and latency performance

of I/O wires.

IN
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 7
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Figure 2.3: 8:1 multiplexer built using 2:1 sub-multiplexers.

Physical Implementation Options

As the inputs of the multiplexers span a large area, there are two main physical multiplexer

implementation options: the distributed and centralized styles. The centralized style routes

all the inputs to the multiplexer located in the middle and drives the output wire from that

location, whereas in the distributed approach, the output wire spans all the input locations

and the inputs tap-on to the output. Figure 2.4 and 2.5 show the centralized and distributed

style implementations of an 8:1 multiplexer respectively. The centralized style minimizes

the internal wires of the multiplexer, but it requires more horizontal wires dedicated to the

input routing of multiplexers and suffers from larger area at higher radices. On the other

hand, the distributed style has longer internal wires and cannot use unidirectional repeaters

on the internal and output wires and suffers from quadratic wire delay scaling.
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Figure 2.5: (b) Distributed physical implementation of a 8:1 multiplexer.

Circuit Implementation Options

The critical path of the crossbar is the data propagation through the longest input wire

to the longest output wire, which means the switch circuit connects two high resistive

paths and has high susceptibility to noise. Therefore static tri-state inverters are used to

implement the multiplexers as they offer good performance due to low resistive paths to

ground/power. The crossbar multiplexer is built by wiring together the tri-state inverters

for each input module (different options of architecture and physical implementation are

discussed above). Every input module has a select signal that is activated if the input is

granted priority. Therefore, only the chosen input module’s tri-state inverter drives the

output wire.

We also explored using dynamic tri-state buffers for crossbar multiplexers. For hierarchical

multiplexer implementations, precharging internal wires (sub-multiplexer outputs) are not

feasible due to high switching energy, and extra wire routing for the precharge signal for

each stage. But, it is an appealing option for flat multiplexer implementations since only

the output wire is precharged and it avoids the large PMOS pull-up devices. The PMOS

transistor used for the precharge can be sized smaller, since the unselected tri-state inverters



Chapter 2. Design Space Exploration 17

shares the same precharge signal and will also pull-up the output wires.

Figure 2.6 shows a static tri-state inverter (left) and a dynamic tri-state inverter. The static

tri-state inverter drives the output wires when the input module is granted priority (SEL

= 1). The dynamic tri-state inverter output is initially precharged high (PC = 0), and

when in operating mode (PC = 1), the output is pulled-down if the input module is granted

priority and the data is high.

SEL

SELB

DATA OUTB

SEL

PC

DATA

OUTB

Figure 2.6: A static (left) and a dynamic (right) tri-state inverters.

2.3 Crossbar Modeling

We built an analytical model of the crossbar using design options explained in Section 2.2 as

design parameters in Matlab. Models for the evaluation metrics (area, delay/throughput,

and energy consumption) are calibrated using circuit-level, post-layout simulation results in

40nm CMOS bulk process (tt corner). Using the modeling framework, we present guidelines

on how to optimize each parameter for minimum energy-delay product.
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2.3.1 Design Parameters

The design parameters are listed below.

Number of I/O nodes (N ): Radix of the crossbar.

Data width (DW ): Number of data bits for each I/O node.

Input and output wire pitches: Sum of the wire width and spacing. Input and output

wire pitches are independent from each other and should be optimized considering

their electrical wire parameters as well as how they contribute to the total design

area.

Number of metal layers: Number of metal layers dedicated for both input and output

wires.

Sub-multiplexer Radix (m): Radix of the sub-multiplexers that are used to build the

N :1 switch multiplexer.

Multiplexer physical implementation: Options are the centralized or the distributed

styles as described above.

2.3.2 Evaluation Metrics

Evaluation metrics are area, delay/throughput, and energy consumption. Area is calculated

using design parameters. Delay and energy consumption is modeled with design parameters

as well as wire characteristics determined by the area and the floorplan.

Area

Floorplan of the crossbar design using port-slicing and matrix-style wiring can be seen in

Figure 2.7. The area is dominated by the I/O wires and the switch circuits can be placed
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underneath the wires. Details of a single switch block for an output port is shown as

well.
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Figure 2.7: Floorplan of an NxN crossbar.

I/O wire length and design area are calculated as in Equation 2.1 and 2.2. Area is cal-

culated using radix, datawidth, I/O wire pitches, and number of metal layers. Increasing

the I/O wire width would decrease the wire resistance, however would increase the wire

capacitance and design area. Input wire pitch determines the output wire length and vice

versa. Therefore, it is important to understand the trade-offs for crossbar wire engineering,

as the matrix style wire structure in the crossbar creates an interdependence of wire pitches

and wire lengths. Further, area can be decreased by using more metal layers. However,

smaller area also limits the size of switch circuits, hence limits the drive strength.

wire lengthi/o =
wirepitcho/i×DW ×N

number of metal layers
(2.1)

area =wire lengthi×wire lengtho (2.2)
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Delay and Throughput

I/O wires play a substantial role in both delay and energy consumption. Wires are modeled

as distributed RC lines [21]. Wire capacitance (Cwire, sum of four parallel-plate capacitances

plus a fringe capacitance) and wire resistance (Rwire) are calculated using wire length, width,

and spacing.

wire
driver receiver

Rgate Rwire

Cdiff 1/2Cwire Cgate1/2Cwire

Figure 2.8: RC modeling of the driver, wire, and receiver for delay calculations.

Delay is modeled by RC formulation as seen in Equation 2.3. Drivers are modeled as

resistors (Rgate) with parasitic loads (Cdiff), and receivers present capacitive loads (Cgate).

Delay for Figure 2.8 is calculated as in Equation 2.3.

τ =Rgate×(Cdiff +Cwire)+Rwire×(1/2Cwire+Cgate) (2.3)

Input Wire Delay: Input data is distributed to every output multiplexer which behaves as a

constant receiver load. Since receivers are distributed throughout the wire, parasitic loads

contribute to the delay similarly as the distributed wire capacitance.

τinput = Rgate × (Cdiff + Cwire + NoCgate) + Rwire × (1/2Cwire + 1/2NoCgate) (2.4)

Multiplexer and Output Wire Delay: The multiplexers drive the long output wires and the

delay is modeled for different physical implementation styles as shown below. If built in a

tree-structure, each sub-multiplexer drives a wire since the internal wires are not negligible
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and the final sub-multiplexer drives the output wire. The delay is the sum of all sub-

multiplexer delays as in Equation 2.5 and 2.6.

For the centralized style, switch drivers (tri-state buffers) of the multiplexer are the wire

drivers, and the driver parasitic load is not only the Cdiff of the driver gate, but also the

sum of all the unselected switch driver parasitic loads. If the input of the multiplexer (m)

is larger than 4 (can be anything from 2 to N ), we build it as quad-tree multiplexer using

4:1 multiplexers, since it is the most optimal way [61], and calculate the overall delay as

the sum of the delay of each stage (as in Equation 2.5) .

τcentralized = Rgate × (mCdiff + Cwire + Cgate) + Rwire × (1/2Cwire + Cgate) (2.5)

For the distributed style, switch drivers of the multiplexer are distributed throughout the

output wire; therefore the parasitic load from the unselected drivers can be modeled as extra

distributed parasitic loading on the selected driver as well as the wire resistance.

τdistributed =Rgate×(mCdiff +Cwire+Cgate)+Rwire×(1/2Cwire+1/2mCdiff +Cgate) (2.6)

Size of the network packet is usually larger than the DW. In order find the optimum DW,

the throughput (TP) of the design is also evaluated.

TP =DW ×

1
delay

(2.7)
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Energy

Our energy modeling focuses on the switch capacitive current and energy consumption is

modeled as in Equation 2.8 where Cwire is the sum of input, output and internal switching

wire capacitances and Cmux is the sum of the gate and diffusion capacitances of the switching

devices of the multiplexers for a single data bit.

energy =N ×DW ×(CwireV DD
2
+CmuxV DD

2
) (2.8)

2.3.3 Methodology

For a given N, we calculate area, delay, and energy using the models explained above in a

flow shown below. In order to find the optimum design point, the flow is repeated for every

possible set of design parameters.

1. Input N

2. Set the design parameters : DW, number of metal layers, input and output wire pitch,

sub-multiplexer radix, multiplexer physical implementation style

3. Calculate I/O wire lengths and design area

4. Placement of multiplexers: Multiplexer tree is structured and each sub-multiplexer is

placed.

5. Calculate wire parasitics for I/O wires and the internal wires for the multiplexers:

Length of the internal wires are calculated from locations of the current and the next

sub-multiplexers.

6. Size the multiplexers:

• If built as a tree, sizing starts from the last sub-multiplexer.
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• Multiplexer is sized according to optimal fan out (FO) sizing [61] where load is

gate capacitance of the next multiplexer and the wire capacitances.

• Each multiplexer in the tree has an allowed area that is decided by design area

and number of multiplexers in the tree.

• If the sized multiplexer does not fit in that area, FO is increased until the mul-

tiplexer is small enough.

7. Calculate delay and energy for multiplexers and output wires: Sum of delay and

energy of all multiplexer stages.

8. Calculate delay and energy for input wires: Repeaters are inserted if necessary.

9. Calculate the total delay and energy

2.4 Evaluation

We run this flow for different sets of design parameters to understand the behavior of each

parameter and the optimal design points. While sweeping a specific parameter, the rest of

the parameters are set to the most optimal solution for that specific design point. First,

we explore sub-multiplexer radix and the physical implementation style that lead us to an

optimum design option. Using this design point, we look into the trends for the wire pitch

and the number of metal layers. Further, we examine the effects of DW on performance

and changes with radix scaling. Finally, we highlight a design point optimized for minimum

energy-delay product and compared its performance to previously published results.

2.4.1 Sub-multiplexer Radix

The sub-multiplexer radix (m) is swept from 2 (binary tree) to N (flat) for both the central-

ized and distributed implementation styles to find the optimum design point. Figure 2.9,
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2.10, and 2.11 show comparisons of delay, energy, and area of centralized and distributed

styles with different sub-multiplexer radices.

For the centralized style, the most optimal implementation is to use a binary-tree multiplexer

(m =2). The multiplexer is located in the middle where all the distributed inputs are driven

to, therefore every stage of multiplexers have m/2 extra horizontal wire tracks dedicated

for input wires. This results in a larger area, higher energy consumption, and delay with

increasing m.

On the other hand, for the distributed style, the best performance can be achieved using

a flat multiplexer (m = N ). This implementation does not have extra wire tracks for the

inputs that limits the m, and since the distributed inputs are connected via long wires, the

parasitic loading from the other inputs are negligible.
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Figure 2.9: Latency of centralized and distributed styles with different sub-multiplexer radices.
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2.4.2 Physical Implementation Style

We compared the performance of different physical implementation styles. The central-

ized style is implemented using a binary tree multiplexer, whereas the distributed style is

implemented using a flat distributed multiplexer.

For the distributed, flat multiplexer, there is a single output wire that all inputs are con-

nected to. As mentioned in the previous section, this makes it possible to use dynamic logic

to build the multiplexer. The switch connections of the inputs are built as pull down cir-

cuits, and pre-charge pull up devices are distributed on the output wire (number of pull up

devices depend on the wire capacitance as well as the timing requirements). This style de-

creases the circuit area significantly by removing large PMOS devices in the tri-state buffers,

however introduces additional timing requirements because of the pre-charge scheme.

Figure 2.12, 2.13, 2.14 show comparison of delay, energy, and area of centralized, distributed,

and distributed-dynamic styles for a radix-64 crossbar with 64b of data. As can be seen

the distributed-dynamic style offers the best performance in terms of delay, energy, and

area.

Figure 2.15 shows and example of an 2x2 1b crossbar with distributed-dynamic tri-state

buffers. Figure 2.16 shows the circuit details and timing of the 2x2 crossbar. Inputs are

distributed on the high-phase of the clock while outputs are precharged and the outputs

are evaluated on the low-phase of the clock.

2.4.3 Wire Pitch

Increasing the input and out wire pitches increases the area as well as the energy consump-

tion. Increasing the design area improves the switch driver strength, hence performance,

but also increases the wire capacitance that potentially hurts the performance. The delay

for different input and output wire width and spacing can be seen in Figures 2.17 and 2.18.

Both the input and output performances are more sensitive to wire width because increas-
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Figure 2.15: 2 x 2 1b crossbar architecture with distributed-dynamic multiplexers.
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Figure 2.17: Delay for different input wire width and spacing.

ing the wire width decreases resistance of that wire, improves the switch driver strength,

but increases the capacitance of the corresponding wire as well as the opposite wire. On

the other hand, increasing the spacing improves the driver strength, and only increases the

opposite wire capacitance.

The optimum input wire width and spacing are the minimum values. The optimum output

wire spacing is the minimum as well, however the optimum output wire spacing is ∼ 6

times more than the minimum spacing. Increasing the output wire spacing increases the

output driver area while increasing the input wire capacitance. But since the input drivers

have more flexibility in terms of area and drive strength, the overall delay performance is

improved with increasing output spacing.

2.4.4 Number of Metal Layers

Increasing the number of metal layers dedicated for input and output wires decreases design

area linearly. But it also decreases switch driver area; therefore performance improvement

saturates when drive strength of the switch circuits degrades significantly and it becomes

physically impossible to fit minimum size transistors. Figure 2.19 shows energy-delay prod-



Chapter 2. Design Space Exploration 31

0.7

Out W
ire W

idth (um)

0.6

0.5

0.4

0.3

0.2

0.10.2

Out Wire Spacing (um)

0.3

0.4

0.5

0.6

0.7
400

700

600

500

L
a

te
n

c
y
 (

p
s
)

Figure 2.18: Delay for different output wire width and spacing.

uct for different number of metal layers for a radix-64 crossbar with 64bits of data. Using 2

metal layers for each input and output wires (4 layers total) improves energy-delay product

∼ 4X. Although using more metal layers improve performance further (at a lower rate), it

requires more than 6 layers dedicated just for the high level routing of the crossbar, which

is a big portion of wire resources for current technologies.

2.4.5 Data Width

Area and energy grows exponentially with data width (DW ) scaling. Delay, on the other

hand, grows at different rates for different DW values for crossbars.

Increasing the DW increases switch circuit area (improves drive strength) and IO wire

lengths. When DW is small, constant overhead delay (timing margins for flip-flops and

dynamic logic) and output parasitic loading of the switch is a bigger portion of the delay.

Therefore, delay increases at an even lower rate than DW scaling. As DW gets larger, this

rate becomes linear, and quadratic when unrepeated wire delay dominates.

throughput (TP) would stay constant with DW scaling if delay would scale linearly. Opti-
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Figure 2.19: Energy-delay product vs number of metal layers.

mum design point is where delay starts scaling worse than linear. As shown in Figure 2.20

TP increases until the optimum point and declines afterwards. Furthermore, optimum DW

point changes with radix scaling as well. Optimum DW is larger for smaller radices and

vice versa as seen in Figure 2.20 as the main bottleneck of the crossbar design is total area

determined by N and DW.

2.5 Summary

In this chapter, we present a modeling tool for crossbar design to have a better understand-

ing of the design space and parameters. Our design space exploration suggests that smaller

designs offer better performance due to shorter input, output and internal wires. Both

input and output wire widths should be minimized to decrease the design area and wire

capacitances. Wire spacing, on the other hand, can be increased to improve the multiplexer

drive strength. Smallest switch option that offers the best performance is flat multiplexers
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built with domino-style tri-state buffers. The optimum data width of the design depends

on the radix and should be chosen to keep design area reasonable. Next chapter will ex-

plore low-swing signaling to improve energy-efficiency of crossbar switches and present a

low-swing crossbar switch design using capacitive coupling.
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Chapter 3

Low Power Crossbar Circuits

In this chapter, we explore low-swing signaling to improve energy-efficiency of crossbar

switches. Switching energy of long I/O wires are one of the major contributors to the high

energy consumption of crossbar switches. [58] presents an energy efficient crossbar that

uses low-swing signaling by using early detection as in SRAM bit lines, and [29, 45] demon-

strates another crossbar with reduced voltage swings using dual voltage supply, differential,

reduced-swing drivers. We propose a low-swing crossbar design that uses capacitively driven

wires [22, 56] and capacitively coupled multiplexers [8]. The long input wires are driven

with series coupling capacitances that pre-emphasize transitions to reduce wire delay and

to reduce the load seen by the driver. It also lowers the voltage swing without the need

of a second voltage supply, thus, offering low swing signaling, higher bandwidth, and low

energy. A capacitively coupled multiplexer uses a similar drive scheme for the inputs to

drive a common node. A particular advantage of this scheme is that the un-selected inputs

present a lower parasitic loading because the coupling MOS capacitors used to drive the

wire are off, and thus have a lowered capacitance.

35
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3.1 Low-Swing Crossbar Switch Design

Our low-swing crossbar switch design adapts matrix-style wiring where input and output

wires run perpendicular to each other (inputs run vertically whereas outputs run horizon-

tally) to minimize the design area. Further, as common practice, the I/O data for each

module is routed to/from the edges of the crossbar design. Thus, I/O data for each mod-

ule is also grouped within the design (also called port-slicing) in order to avoid extra I/O

scrambling at the edges. However, this means that input wires span the entire height of the

design to distribute the data to every multiplexer, and multiplexers span the entire width of

the design. Distributed inputs of the multiplexers (from each input module) are connected

to the output wires via switches to form the multiplexers.

Even for minimum pitch wires and low-radix crossbar designs, the wire parasitics are sig-

nificant. The quadratic wire latency increase can be mitigated by repeater insertion, but

repeaters come at an energy and area cost. In order to improve both latency and energy

consumption, we propose to use capacitively coupled wires [22, 56]. Another major bot-

tleneck for crossbars is the needed multiplexer structures. Designing an N:1 multiplexer,

where N is large, is a challenge due to parasitic loading from the unselected inputs. Fur-

ther, the multiplexers are required to drive the long output wires. Capacitively coupled

multiplexers can improve the performance of high-radix multiplexers where the un-selected

input capacitances are significantly smaller than the active input capacitance and driving

the output wires capacitively. The idea and the implementation as the crossbar switch are

also explained in detail in this section.

3.1.1 Capacitively Coupled Wires

Driving a long wire through a series coupling capacitor as seen in Fig. 3.1 reduces the

signal swing through a capacitive voltage divider [22, 35, 49, 56]. While a conventional

driver drives the coupling capacitance with a full-swing voltage transition (at node A), the
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Figure 3.1: A capacitively driven wire scheme.

very end of the wire (node C) only receives a reduced voltage transition due to the capacitive

divider formed by the coupling capacitance, the wire capacitance, and the load and parasitic

capacitances as can be seen in Equation 3.1. Node B will initially overshoot and then settle

to Vswing, while node C shows a rapid rise to Vswing. The coupling capacitance can be sized

depending on the desired voltage swing on the wires.

Vswing = Vdd
Cc

Cc+Cw +Cpara+Cload
(3.1)

One of benefits of this scheme is the latency improvement through pre-emphasis and the

reduced energy consumption. This is faster than an inverter driving a wire because the

driver sees only Cc not the Cwire, and the charge redistribution across the wire cuts the

wire delay approximately in half as seen in Equation 3.2. For our implementation, we sized

the coupling capacitance for twice the desired reduced voltage swing and sense when the

voltage drop reaches the desired voltage swing.

τ ≈Rdriver(Cc+Cdriver,para)+RwCw/4w (3.2)

Further, the wire switching energy improves linearly with the reduced voltage swing without

requiring a second voltage supply as seen in Equation 3.3, and the overall energy consump-
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tion also improves significantly with the reduced size of the drivers since it only sees the Cc.

The required differential wiring and the sense amplifiers to restore the low-swing signals

reduces the total energy savings marginally. For example, a 10mm long capacitively driven

wire with 1/9th of Vdd swing offers 3.8X better energy savings compared to long full-swing

buses optimized for lowest energy-delay product in 180nm CMOS bulk process [22] .

Energywire =CwireVswingV dd (3.3)

We designed capacitively coupled input data transmitters and input receivers for the low-

swing crossbar design.

3.1.2 Capacitively Coupled Input Data Transmitters

Capacitively coupled input data transmitters are designed to drive the long input wires

and the detailed circuit is shown in Fig. 3.2. The transmitter consists of differential input

generator, NAND gates for data enable and energy reduction, drain-source connected PMOS

gates as the series coupling capacitances, and the PMOS gates as the precharge devices for

DC biasing.

The reduced voltage swing comes with reduced noise margins. In order to reduce the

crosstalk from the neighbors and the complementary data signals, twisted and interleaved

differential wires are used to distribute the data [22, 46]. The overhead of using twice the

wire resources for the differential wiring is reflected in the total design area.

Drain source connected PMOS transistor acts like a nonlinear capacitance. The gate-

to-source and gate-to-drain capacitances of the PMOS are higher when the transistor is

enhancement mode due to the channel formed underneath the gate. Therefore, the drain

source connected PMOS has a high capacitance when the device is turned-on. The output

port of the PMOS capacitance is biased high at Vdd. If the data is not enabled, the output

of the NAND gate is also high, hence no transition on the input data wires. But when the
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data is enabled, the high-to-low transition on the NAND output propagates through the

input wires via the on PMOS capacitance. The size of the capacitance can be adjusted by

changing the width and length of the transistor.

The data wires need a path to a DC source to have the proper DC bias. We adopted a

precharge scheme where the input and output data wires operate on different phases of the

clock and precharged when not in use. The precharge transistors are distributed throughout

the wire and sized accordingly to meet the timing requirements.

3.1.3 Input Data Receivers

Data for every input module is received by the output multiplexers. The receivers present

a parasitic load capacitance on the input wires (total load scales linearly with N), and

this is also included in the latency and energy calculations and the corresponding input

transmitter sizing. StrongARM sense amplifiers are used as the receivers to restore the

full-swing data from the low-swing data signals. Symmetric and mirrored layout topology

is adopted to minimize the systematic offset and the NMOS transistors of the cross-coupled

inverters are sized large enough to have the desired random offset (calculated using Monte

Carlo simulations). The offset of the sense amplifiers is important as it limits the minimum

voltage swing on the input wires. Input receivers with gated sense enable signals are used

to build the capacitively coupled multiplexers for our low-swing crossbar design.

3.1.4 Capacitively Coupled Multiplexers

Capacitively coupled multiplexers use nonlinear capacitances as the switches to drive the

long output wires capacitively and exploit the fact that the capacitances of unselected inputs

are significantly smaller than the active input capacitance. This enables building fast and

efficient multiplexers that can drive long wires with a reduced voltage swing.

The drain-source connected PMOS capacitances are used as the nonlinear capacitances. As
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Figure 3.4: The OFF capacitance ratio for drain-source connected PMOS.

mentioned above, when the PMOS transistor is turned-on, the gate capacitance is large due

to the formed channel (Figure 3.3). However, when the transistor is turned-off, the gate

capacitance is to the bulk instead of the channel, hence significantly smaller (Figure 3.4).

Simulation results in 40nm CMOS bulk showed that the ratio of ON capacitance to the OFF

capacitance can be larger than 10X when longer lengths (>5µm) are used for the PMOS

transistors. Simulations and our modeling also show that the ratio is more sensitive to the

length (L) of the transistors than the width (W) of the transistor, since the on capacitance is

strongly proportional to both W and L, whereas the off capacitance is mostly proportional

to W of the transistor.

This scheme improves the energy savings by decreasing the coupling capacitance required

for the desired voltage swing as well as the savings from the smaller driver and low-swing

wires. Assuming load and parasitic capacitances are much smaller than the wire and the

coupling capacitances in Equation 3.1, for N:1 multiplexer, the reduced voltage swing can

be represented by Equation 3.4 using a nonlinear coupling capacitance (Con and Coff de-

pending on the state of the transistor).
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Figure 3.5: The on to off capacitance ratio for drain-source connected PMOS.

Vswing = Vdd
Con

Con+(N −1)∗Coff +Cw
(3.4)

Similar to the scheme used in input data transmitters, NAND gates drive the PMOS capac-

itances that are connected to the output wire to form the capacitively coupled multiplexer

as seen in Fig 3.6. The drain-source of the PMOS capacitance is biased at Vdd. The

selected NAND gate’s output transitions from high-to-low that turns on the PMOS capaci-

tance, hence achieves a large capacitance to drive the output wire. On the other hand, the

unselected NAND gates’ outputs stay at Vdd that keeps the PMOS transistors turned-off,

hence smaller parasitic load capacitances on the output wire. The output wire is driven via

a series capacitance that is the PMOS capacitance of the selected input.

The low-swing output wires also required to be differential and requires twice wire and

circuit resources. Only one of the differential data is driven via the series capacitance while

the complementary data stays high, hence not increasing the switching energy consumption.

This scheme offers as much energy savings as the capacitively coupled wires.
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Figure 3.6: Capacitively coupled multiplexer.

Further, this scheme improves the delay performance due to decreased parasitic loading

from the off paths. We compared the latency performance of the capacitively multiplexer

to a conventional multiplexer for a crossbar design using 40nm CMOS bulk. The capaci-

tively multiplexer is built to achieve a voltage swing of 200mV (sensed at 100mV) with the

corresponding PMOS sizing. Clocked StrongARM sense amplifiers are used to restore the

full-swing output data, therefore an extra 30ps (for sense amplifier) and 10% of clock period

(for clock skew) is added to the latency of the capacitively coupled multiplexer. On the

other hand, the conventional multiplexer is built using tri-state inverters. The inputs for

both multiplexers are assumed to be distributed horizontally and the multiplexor switches

drive the long output wire as in a crossbar design.

We ran experiments with different driver sizes for radices of 8, 16, and 32 for an output

wire of 1mm (0.15 ohm/sq, and 100fF/mm) as can be seen in Figure 3.7, 3.8, and 3.9.

For the tri-state multiplexer, increasing the driver size decreases the driver resistance, but

also increases the parasitic loading. For smaller driver sizes, the latency decreases as the

driver size increase since the parasitic loading is much smaller than the wire capacitance.

But when the parasitic loading becomes comparable to the wire capacitance, the latency

improvement saturates. Further the latency starts increasing for larger radices like 16 and

32 when parasitic loading starts dominating. We repeated the same experiment for radix-16
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Figure 3.7: Latency comparison for radix-8 tri-state multiplexer and capacitively coupled multiplexer with
a 1mm long output wire.

Figure 3.8: Latency comparison for radix-16 tri-state multiplexer and capacitively coupled multiplexer with
a 1mm long output wire.
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Figure 3.9: Latency comparison for radix-32 tri-state multiplexer and capacitively coupled multiplexer with
a 1mm long output wire.

Figure 3.10: Latency comparison for radix-16 tri-state multiplexer and capacitively coupled multiplexer
with a 2mm long output wire.
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with a 2mm output wire in Figure 3.10. In this case, the wire capacitance is bigger than to

the 1mm wire, hence the latency increase at the larger driver sizes is not as significant. On

the other hand, the capacitively coupled multiplexer offers ∼1.5X better latency than the

tri-state multiplexer. In this case, the driver is decoupled from the output wire (increasing

driver size does not effect the parasitic loading), and using nonlinear capacitances allow us

to use smaller series capacitances to drive the output wires for the desired voltage swing

since it eliminates the significant parasitic loading from the non-active inputs.

For our low-swing crossbar scheme, we used the input receivers as the drivers of the nonlinear

PMOS capacitances instead of the nand gates as explained below.

3.1.5 Capacitively Coupled Output Multiplexing and Wires

The inputs of the crossbar multiplexers are distributed throughout the entire design, hence

the multiplexer is built as a long output wire spanning the design width and the inputs

connecting to the output wire via switches. In addition, as mentioned in our low-swing

crossbar scheme, the inputs are low-swing, hence receivers are required at each switch point

of the multiplexer. In light of these, we used the input receivers (sense amplifiers) as the

switch drivers for the PMOS capacitances to build the capacitively coupled multiplexers for

our low-swing crossbar design.

A single switch point of the capacitively coupled multiplexer is shown in Fig 3.11. The sense

amplifier drives the PMOS capacitances. The differential outputs of the sense amplifier are

both precharged to Vdd when the sense enable signal is low. If the corresponding input

module is granted priority and wants to talk to the corresponding output module, the sense

enable signal transitions high. When the sense amplifier is enabled, the differential low-swing

input signal is amplified quickly via positive feedback and one of the differential outputs

transitions from high-to-low. The drain-source connection of the PMOS capacitances is

also biased at Vdd, therefore if the gate of the PMOS (the output of the sense amplifier)

transitions low, the PMOS turns on and drives the output wire capacitively. On the other
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hand, if the sense amplifier for that switch point is not enabled, the differential outputs both

stay high, hence the driven PMOS stays turned-off and presents a low parasitic capacitance

on the output wire.
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Figure 3.11: A single switch connection of the capacitively coupled multiplexer.

N:1 capacitively coupled multiplexer for our low-swing crossbar is built using N of these

switch points in Fig 3.11. Only one of the input modules can be granted priority, hence only

one the sense amplifiers will be enabled driving the long output wire via the ON PMOS

capacitance, whereas the rest of the parasitic loading will be the OFF PMOS capacitances.

The outputs are also routed using twisted and interleaved differential wires and the same

precharge scheme is used for the DC bias of the output wires.

Since the outputs are also low-swing wires, receivers to restore the full-swing signals are

needed. We used sense-amplifier based flip-flops (SAFF) [38] to mask the full-swing restora-

tion latency and to store the output data. The SAFFs are also designed to have low sys-

tematic and random offset to enable lower voltage swings at the output wires.
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3.2 16x16 Low-Swing Crossbar Implementation

We designed a 16x16 72b low-swing crossbar in 40nm CMOS bulk process using capaci-

tively coupled input data transmitters and capacitively coupled output multiplexers (Fig.

3.12).
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Figure 3.12: Top-level view of the low-swing crossbar design.

Differential input data wires are routed vertically using two metal layers (M3 and M5),

hence the input data transceivers are located on top of the design and stacked according to

input wire pitches in order to align with the input data wires. Every input module has 72b

of input data (64 data bits + 8 ECC bits) that are routed as a group and distributed to

every switch point for each output module. The control signals for each input module are

also routed vertically with the input data. The control signals are the priority (if the input

module is selected to transfer data) and the address (4bits) of the output module that the

input module wants to communicate with. At each switch point, the address is decoded
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and logically ANDed with the priority bit to generate the sense enable signal. Among N of

the vertical switch points, only the one with the correct address will be selected if the input

module is granted priority.

The output wires are routed horizontally, also using two metal layers (M3 and M5) and

span the entire width of the design. The switch points are placed underneath the I/O

wires, and the wire pitches and the number of data bits determine the total area. Every

switch point shown in Fig 3.12 has 64 (for each data bit) of a single switch connection of

the16:1 capacitively coupled multiplexers and can only use lowest two metal layers (M1

and M2) for routing. The sense enable signal is shared between and routed to these switch

connections.

Finally, the output data receivers (sense amplifier based flip flips) are located on the right

side of the design to receive the low-swing output data wires. Similar to the input data

transmitters, the output receivers are also stacked according to the wire pitches and aligned

with the wires.

3.2.1 Design Optimization

The main challenge of the crossbar design is the large design area and hence the long wires.

The wire pitches determine the area, and the input wire pitch determines the output wire

length and vice versa due to the matrix-style wiring. Therefore, the wire performance

cannot be improved by just increasing width to decrease resistance or increasing spacing to

decrease the capacitance since increasing the wire pitch will increase the wire length (and

hence capacitance and resistance) as well.

Further, the switch points are placed underneath the wires and their area is limited by the

wire pitches and the number of data bits. Smaller switch areas are desirable for shorter

wires, but this prevents designing low-offset sense amplifiers (that limits the input swings)

and limits the size of the PMOS capacitance (that limits the output swings).
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Table 3.1: Frequency, Power, Area, and Tbps/W Comparison

Design Radix Data Width Freq (GHz) Power (W) Area (mm2) Tbps/W
Proposed (40nm) 16x16 72 2.2 0.244 0.94 10.49

Conventional (40nm) 16x16 72 2.5 0.950 0.32 3.03
[50] (45nm) 4x6 128 2 0.467 0.39 2.74
[53] (45nm) 64x64 128 0.559 1.3 4.06 3.4

We modified the crossbar modeling tool to incorporate capacitively coupled wires and mul-

tiplexers. The wire pitches (width and spacing) are limited by the layout rules and our

modeling results suggested using 0.7µm for input and 0.9µm for the output wire pitch.

This is larger than the minimum pitch in order to be able to increase the area for the switch

points. The output wire pitch determines the input wire length, and since the input data

transmitters can be stacked on top of the design and can be larger, the output wire pitch

is larger than the input wire pitch. The sense amplifier and the SAFF are sized to have a

3σ offset of 45mV. Both the input and output PMOS capacitances are sized according to

the wire capacitances and the parasitic capacitances (the receivers for the input wires and

the off PMOS capacitances for the output wires) in order to generate a 200mV (sensed at

100mV, 1/9th of the nominal Vdd of 0.9V) swing on the wires. The input PMOS transis-

tor (W=1.5µm, L=5µm) has a 53fF of Con and 4 fF of Coff , whereas the output PMOS

transistor (W=0.7µm, L=10µm) has a 60fF of Con and 3fF of Coff . Crosstalk from the

neighboring wires and especially complementary signals are minimized using twisted and

interleaved I/O wires.

3.2.2 Timing Scheme

The timing diagram of the low-swing crossbar is shown in Fig. 3.13. The input and the out-

put circuitries are enabled by the rising and the falling edge of the clock respectively. Hence,

they are both dedicated a half cycle period. The input generation consists of differential

input generation and data enable(40ps) (stacking of these blocks resulted in longer inter-

val wires, hence increased the propagation delay), and low-swing input drive (120ps).The

output generation consists of the sense enable signal generation and distribution to the
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Figure 3.13: Timing diagram for the low-swing crossbar design.
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sense amplifiers (40ps), the low-swing input sensing (30ps), the low-swing output drive

(120ps) and the 10% clock skew for the SAFF. Since the output portion is the bottleneck,

it determines the clock frequency of 450ps.

3.2.3 Evaluation Results and Comparison

Post-layout simulation shows the design operating at a maximum frequency of 2.2GHz,

achieving a bandwidth of 2.56Tb/s at 0.9V (nominal Vdd) with an area of 0.94mm2. Total

energy consumption for full, half, and minimum bandwidths are 110pJ, 84pJ, and 64pJ re-

spectively and the power consumption for full bandwidth is 0.244 mW. We also implemented

a 16x16 72b conventional crossbar in 40nm CMOS bulk for comparison. The conventional

crossbar is designed with full swing I/O wires and 16:1 multiplexers. The conventional

crossbar runs at 2.5GHz, consumes 0.95W with an 0.32mm2 (0.31µm input wire pitch and

0.55µm output wire pitch). As can be seen in Table 3.1, the low-swing crossbar offers 4X

improvement in power consumption at a comparable operating frequency (1.13X worse fre-

quency). The main overhead of our scheme is the additional area. The low-swing crossbar

area is 3X larger than the conventional structure due to differential wiring and large switch

point circuitries, hence prevents reaching the maximum energy savings.

Further, we compared our low-swing crossbar to previously published results as also can be

seen in Table 3.1. Although we compare against a very similar technology point (45nm),

the radix and the data width of the designs are different. Therefore, we compared through-

put per Watt of the designs. Our proposed scheme achieves 10.49 Tbps/W and offers

at least 3X efficiency improvement over previously published results and the conventional

crossbar.
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3.2.4 Radix Scaling

We also evaluate the radix scaling of the low-swing crossbar switches. Figures 3.14 and

3.15 show latency and energy scaling with radix. Although the proposed design offers

iso-performance and significant energy savings at medium radices like 16, the design perfor-

mance degrades significantly at high-radices. The main bottleneck is the area overhead due

to differential wiring and sense amplifiers (at the switch points). Differential wiring doubles

the number of wires and the sense amplifiers occupy more area than tri-state buffers as

multiplexer switches. Further, sense amplifiers increase the minimum wire pitch due to

extra wire tracks required for internal connections. At low-to-medium radices, these over-

heads are less emphasized, since capacitively coupled wires perform better than full-swing

wires, and energy savings are significant. However, at high-radices (64 and more) low-swing

crossbars suffer significantly from area overhead compared to conventional implementations,

and cannot compete in terms of both performance and latency. As discussed in the previ-

ous chapter, design choices that lead to smaller areas usually offer better performance for

high-radix crossbar switches due to shorter wires, hence better wire latency and switching

energy.

3.3 Summary

In this chapter, we present a low-swing crossbar scheme that uses capacitively couples

wires and multiplexers to improve the performance and efficiency. We showed a 16x16 low-

swing crossbar in an industrial 40nm CMOS bulk process. Post-layout simulation showed

it operating at significantly improved efficiency over a comparable conventional design and

previous published designs. Although scaling of the low-swing crossbar is not feasible, we

contend that capacitively coupled drivers and multiplexers are a promising scheme for low-

to-medium crossbar switches. Next chapter will focus on improving the performance of

crossbar switches and present a modular crossbar switch with linear performance scaling
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Figure 3.14: Low-Swing Crossbar Latency Scaling with Radix
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with radix.
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Chapter 4

Modular Crossbar Switches

Using our insights from previous chapters, we focus on how to improve performance and

energy-efficiency of high-radix crossbars by optimizating the design parameters and adopting

a modular architecture. In this chapter, we present scalable modular crossbar switches that

perform better at high radices than the monolithic designs. The blocks are designed to

achieve high throughput by limiting the radix, hence area, wire lengths, and parasitic wire

parameters. They are arranged in a flow-through scheme to eliminate global connections and

maintain linear performance scaling and pipelined to achieve high throughput. Small block

sizing and modularity enable deactivating unused I/O wires to improve energy efficiency.

The high-performance modular switches offer internal speedup and improve the crossbar

network performance as well. Complete modular crossbar architecture will be discussed in

Chapter 6.

4.1 Design Optimization and Radix Scaling

Modeling and evaluation results in Chapter 2 provides guidelines to optimize crossbar switch

designs for energy-delay product. Optimized designs use flat multiplexers implemented with

distributed dynamic tri-state inverters as can be seen in Figure 4.1. Input wire width and

57
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spacing, and output wire width are minimum size, whereas the output spacing is 6X the

minimum spacing, and 2 metal layers are dedicated for both the input and the output

wires.

Input Ports 

O
u
tp

u
t 

Po
rt

s 

(N:1) MUX

Figure 4.1: Crossbar architecture with dynamic tri-state buffers.

Multiplexers with distributed implementation style have shown to offer minimum energy-

delay product, however unidirectional repeaters cannot be used in these designs. The input

connections of the multiplexers are distributed along the output wires, therefore the wires

can be driven from any of these input connections, hence preventing unidirectional repeater

insertion. This presents a concern since output wires can ve very long at high-radices and

quadratic latency scaling of wires can dominate the crossbar switch latency.

We compared the optimized design with a crossbar design (using tree-style multiplexers [41])

with repeaters to observe the discrepancies between the latency scaling trends. Figures 4.2
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and 4.3 show latency (left) and energy (right) trends with radix scaling using the analytical

crossbar modeling tool. Optimized crossbar offers lower latency and energy consumption

using circuit and layout level parameter optimizations, however both latency and energy

consumption scale quadratically with radix. Conventional crossbar with repeaters achieves

linear latency scaling, however it has higher latency and energy consumption than the

optimized crossbar.

Although the optimized crossbar offers better performance and energy at high-radices, it

can be further improved with linear scaling. We propose modular crossbar switches that

use smaller blocks of high-performance switches and arrange them in a flow-through scheme

to achieve linear performance scaling. We speculate using smaller blocks to build the high-

radix crossbars can overcome quadratic latency scaling of crossbar switches and achieve

higher performance and energy-efficiency. We present the implementation details of the

modular crossbar switches and performance evaluation using the modeling tool.
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Figure 4.2: Latency scaling trends with radix.
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Figure 4.3: Energy scaling trends with radix.

4.2 Modular Switches

Recall that an N x N conventional crossbar switch core is a non-blocking switch that

connects N input nodes to N output nodes, where each node has a specific data width

(DW ). The crossbar switch is shown in Figure 4.4. It consists of N x DW input data bits,

N x DW output data bits, and N x N multiplexers, each N :1. As N increases, performance

and energy-efficiency degrade significantly due to quadratic area scaling, long I/O wires,

and high fan-in and fan-out multiplexers.

The key features of the proposed modular switch are modularity, controlled flow-through

operation, and pipelining to overcome scaling challenges. It offers linear performance scaling

with radix and energy savings, leading to a better energy-delay product (as much as 5.3X

for radix-512) compared to a conventional crossbar switch, with 30% area overhead.
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Figure 4.4: N x N crossbar switch.

4.2.1 Modularity

An N x N modular switch is built using k2 blocks, each N/k x N/k. N/k is the radix of

the blocks and can be referred as NBlock as well. Figure 4.5 shows N x N modular crossbar

switches built using 4 blocks of N/2 x N/2 blocks (left) and 16 blocks of N/4 x N/4 crossbar

blocks (right).

Modular switch blocks consist of crossbar switches and I/O interfaces. Switches handle data

traversal from inputs to outputs within every block, whereas I/O interfaces are responsible

for the data flow between the blocks. The blocks are connected in a controlled flow-through

fashion as explained below to maximize performance and energy-efficiency.

Block-to-Block Interface

In order to avoid global top-level wiring, modular switch blocks are connected in a flow-

through fashion. External input ports are located on the top of the switch design and

external output ports are located on the right side of the switch design to minimize the

area (using matrix-style wiring). Therefore, input data flows vertically (top to bottom) and
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Figure 4.5: N x N modular crossbar switches built with N/2 x N/2 (left) and N/4 x N/4 (right) blocks.

output data flows horizontally (left to right) within the modular crossbar switch.

Input interfaces receive the inputs from the top block and distribute the inputs to output

multiplexers in that block. In order to achieve all-to-all connectivity, input ports of every

block in a column is connected by input interfaces. Further, input interfaces control the

data flow using switches to save energy. The data distribution for a given input port is

terminated once the corresponding output port is reached.

Output data are generated in a block, and propagate through rest of the blocks in that row

to be delivered to the corresponding external output port. In order to enable the output

propagation, output interfaces connect their output data as extra inputs to the adjacent

blocks on the right (as seen in Figure 4.6). Therefore, for modular crossbar blocks, output

data can either be generated or propagated through, and blocks will behave as (NBlock+1)

x NBlock with the addition of external inputs from the adjacent blocks on the left.

Data flow through the modular switches are pipelined to maximize the throughput via

latches or flip-flops in the I/O interfaces. Inputs are distributed and outputs are generated

or propogated every clock phase or cycle. Since outputs of a block in a column behave as

extra inputs to the adjacent block, output generation of that block and input distribution

of the adjacent block should be synchronized. In order to achieve that, external input data
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Figure 4.6: An 8 x 8 modular switch built using 4 blocks of 4 x 4 blocks.

is distributed with a phase or cycle shift to the top blocks (from left to right).

Figure 4.6 shows an 8 x 8 modular switch built using 4 blocks of 4 x 4 blocks. Blocks consist

of switches and I/O interfaces. Input interfaces pipeline and control data flow from top to

bottom. Output interfaces also pipeline the data and connect outputs of a given block via

switches to the adjacent (on the right) block’s outputs. Switch points of output interfaces

are shown separately for easier display of connections.

Example Clocking

We implemented the modular switches using switch blocks with optimized circuit and lay-

out parameters. Previous design space exploration shows that crossbar switches with min-

imally sized I/O wires and flat multiplexers using dynamic circuits can achieve the best

performance and energy-efficiency [9]. Dynamic outputs are precharged while inputs are

distributed and evaluated at the next clock phase. Input distribution and output generation

have similar latencies, therefore both are dedicated a half clock cycle. Latches are used in
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Figure 4.7: Clocking scheme for a modular crossbar with 4 blocks.

the I/O interfaces to connect blocks and pipeline the data flow.

As seen in Figure 4.7, Block 00 inputs are distributed in Φ1, and the outputs are generated

in Φ2. Inputs flow from top to bottom and they are distributed to adjacent blocks every

clock phase. Since Block 00 inputs are active in Φ1, Block 10 inputs are active in the next

phase, Φ2. This minimizes the input distribution latency of the modular crossbars. On the

other hand, outputs are generated or propogated every clock phase as well. Since Block

00 outputs are active in Φ2, Block 01 outputs are active in the next phase, Φ3. Block 01

generates outputs from its inputs or propogates Block 00 outputs, therefore Block 01 input

distribution is synchronized with Block 00 output generation. Since inputs are distributed

every phase, top-to-bottom (worst case) input flow takes k/2 cycles. Outputs are generated

or propagated every phase as well, therefore left-to-right (worst case) output flow also takes

k/2 cycles.
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4.2.2 Performance Scaling

External input ports are located on top, and the external output ports are located on the

right hand side of the design. Therefore, the critical path of an N x N modular crossbar is

the data traversal from the leftmost input port to the bottom output port. Input data is

distributed from top to bottom blocks and output data propagates from left to right blocks,

which takes k clock cycles (k/2 for inputs + k/2 for outputs). Clock cycle time is set by the

crossbar block latency, and total latency for the modular crossbar is calculated as shown

below:

latencytotal = k× latencyBlock (4.1)

As data traversal through the modular crossbar takes k clock cycles, total latency of modular

crossbar is linearly proportional to latency of the blocks, where the proportionality constant

is k = N
NBlock

. Therefore, latency grows linearly with radix scaling (by increasing k and adding

more NBlock x NBlock blocks) using flow-through modular block scheme.

Moreover, packet sizes are larger than physical switch sizes (flit), hence multiple flits are

transferred through the modular crossbar for the same I/O connection configuration. It is

pipelined to maximize the throughput (shown in Equation 4.2). However, it takes k cycles

to transfer the first flit, thus there is a stall in the pipeline. Nonetheless, the speedup

from modular crossbars decreases the average network latency and masks the extra cycles

introduced by modularity as will be discussed in Section 6.2.3.

TPtotal =N ×DW ×frequencyBlock (4.2)
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4.2.3 Energy Savings

The major contributor to switch energy consumption is switching capacitance of input and

output wires. Modular scheme deactivates I/O wires for the unused blocks using switches

in I/O interfaces where every input and output port is controlled individually. Input data

distribution stops when the block with the destination output port is reached, hence input

wires of the lower blocks (than the output) are deactive. On the other hand, output data is

generated in a block and propagates through the blocks on the right towards the external

output ports. Therefore, output wires of the blocks on the left are deactive.

The worst case energy consumption is when all the ports are active. The energy consumption

of a monolithic design is approximately k2 times the energy consumption of block I/O wires

due to input and output wires that span the whole design height and width. However,

for the modular design only k(k+1)
2 I/O wires are active due to controlled flow of the

modular crossbar. This means 25% less energy for a modular crossbar built using 4 (k=2)

blocks, 37.5% less energy for a modular crossbar built using 16 (k=4) blocks, and 43.5%

less energy for a modular crossbar built using 64 (k=8) blocks. Increased granularity allows

deactivating larger portions of the I/O wires, however it also increases the interface area

overhead and the number of clock cycles through the switch.

Figure 4.8 shows 8 x 8 modular crossbars built using 4 x 4 (left) and 2 x 2 (right) switch

blocks. 0-7 input ports are connected to 7-0 output ports. Active I/O wires are shown with

black lines, whereas inactive I/O wires are shown with blue lines. For modular crossbars

with 4 x 4 and 2 x 2 blocks, 25% and 37.5% of the switch block I/O wires are inactive.

4.3 Switch Core Evaluation

We evaluated latency, energy consumption, energy-delay product, and area overhead of

modular crossbar switches and compared to conventional switches.
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Figure 4.8: Power savings of 8 x 8 modular crossbars built using 4 x 4 (left) and 2 x 2 (right) switch
blocks.

4.3.1 Experimental Setup

We used the crossbar modeling tool [9] developed for fast design space exploration of crossbar

switches using analytical models calibrated with post-layout extracted simulations. The tool

explores a variety of full-custom design options and crossbar design parameters to achieve

minimum energy-delay product.

Using the tool, we calculated latency, energy, and area for both conventional and modular

crossbar switches with radix scaling in 40nm CMOS bulk process. For every design point,

optimized (for energy-delay product) design parameters such as minimum I/O wire pitches,

flat multiplexers with dynamic circuits, and a common data width of 64bits are used. We

initially chose an optimum block radix and datawidth for the modular design, and used

that switch block to build the larger radix modular crossbars. Evaluation and comparison

are discussed below.
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4.3.2 Optimum Block Radix and Datawidth

Switch block optimization is crucial for maximizing the performance and energy-efficiency of

the modular crossbars. The layout and circuit parameter optimization is already discussed

in the previous chapters, however system level parameters of block radix and datawidth are

yet to be optimized.

Block Radix

Block radix determines the modular crossbar area, frequency, number of cycles for a single-

flit transfer, and energy consumption. Area depends on the block radix mainly because of

the interface overhead. Choosing a smaller block radix will result in a modular crossbar

with more blocks, hence larger area overhead. Energy, on the other hand, also increases

by using smaller radix blocks due to extra energy consumption of the interfaces. However,

using smaller blocks increases the granularity, and hence allows deactivating larger portions

of I/O wires and decreases energy consumption. Finally, using smaller blocks would increase

the frequency, however in return it would take more cycles to complete the single-flit data

transfer.

Datawidth

Datawidth determines the modular crossbar area, frequency, number of cycles for a packet

transfer, and energy consumption. Please note that radix determines the number of cycles

for a single-flit transfer while data width determines the number of cycles for a packet

transfer. Increasing the data width increases the design area, and energy consumption.

Due to larger area, increasing the datawidth decreases the frequency, however it would

decrease the number of cycles for the total packet transfer.
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Evaluation

In order to incorporate all these trade-offs, we explored evaluation metrics of throughput,

single-flit latency, 32Byte (common cache line) packet latency, energy-delay and energy-

delay-area product of 32Byte packet transfer. We compared radices of 8, 16, 32, and 64 and

datawidths of 64 and 128 bits using the crossbar modeling tool.

Throughput: Figure 4.9 shows throughput for different radices and datawidths. Had switch

performance scaled linearly, throughput would have stayed constant with radix. However,

as can be observed, throughput initially increases with radix when I/O wires are small and

multiplexers dominate the latency. After the peak throughputs are reached at radix-16 and

radix-32 for datawidths 128 and 64 bits respectively, they start decreasing with radix scaling

as I/O wires become significantly long and wire performance degrades. As can be seen, as

datawidth increases, the radix that offers peak throughput decreases since the area and wire

lengths are already significant for large datawidths. As can be seen, highest throughputs

can be achieved using radix-16, 128 bits and radix-32, 64 bits blocks, therefore these are the

promising candidates to build the high-radix modular crossbars. For further evaluation, we

explore radix-64 modular crossbar performance for a single-flit and 32 Byte packets.

Performance of a Modular Radix-64 Crossbar: We explore rest of the evaluation metrics

for a radix-64 modular crossbar built with different block radices and datawidths. Single-

flit latency evaluation as seen in Figure 4.10 is complementary with throughput results.

Minimum latencies are achieved by the blocks with the peak throughputs. Packet latency

results in Figure 4.11 also follow the same trends, where minimum packet latency can be

achieved using radix-16, 128 bits and radix-32, 64 bits blocks. In this case, it is also seen

that radix-16, 128 bits blocks have the smallest packet latency. However, larger datawidth

implies more area and energy consumption. Therefore, we explored both energy-delay

(Figure 4.12) and energy-delay-area (Figure 4.13) products of a packet transfer to find the

optimum design point. As can be seen, the minimum energy-delay-area product for a packet

transfer can be achieved with radix-32, 64 bits switches. Therefore, we used radix-32, 64
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Figure 4.9: Throughput scaling with radix for datawidths of 64 and 128 bits.
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Figure 4.11: 32 Byte packet latency for a radix-64 modular crossbar using different block radices and
datawidths.
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Figure 4.12: 32 Byte packet energy-delay product for a radix-64 modular crossbar using different block
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Figure 4.13: 32 Byte packet energy-delay-area product for a radix-64 modular crossbar using different
block radices and datawidths.

bits switches as the main building blocks of the modular crossbars.

4.3.3 Energy-Delay Product

Latency of modular switches is evaluated using block latency (including the interfaces)

and number of blocks. As can be seen in Figure 4.14, latency of modular switches scales

linearly with radix while latency of the conventional switches scales quadratically. This

shows that quadratic latency scaling of the long wires within the switch can be eliminated

using modular flow-through architecture.

Energy consumption for both conventional and modular switches with radix scaling are

shown in Figure 4.15. Modular switches offer less energy consumption than conventional

switches due to the controlled data flow of the proposed scheme. Energy savings further

increase with radix scaling due to increased modularity and number of blocks.

In order to incorporate both latency improvements and energy savings, we compare energy-
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Figure 4.14: Latency comparison for modular and conventional crossbars with radix scaling.
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delay product. As can be seen in Figure 4.14, modular switches offer 1.3X, 2X, 3X, and

5.3X better energy-delay product for radices 64, 128, 256, and 512 respectively. As can be

seen, benefits of the modular scheme is even more significant at very high radices.
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Figure 4.16: Energy-delay product comparisons for modular and conventional crossbars with radix scaling.

4.3.4 Area Overhead

We model and estimate the area overhead of the modular designs due to extra input and

output interfaces. Minimum sized latches are used for synchronization and switch circuits

are used for controlling the data flow. Layout implementation in 40nm occupies an area of

0.08 mm2 for I/O interfaces that increases the radix-32 conventional crossbar area by 30%.

Area scaling for both conventional and modular switches can be seen in Figure 4.17.
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Figure 4.17: Area comparison for modular and conventional crossbars for different radices.

4.4 Summary

High-radix crossbar switches suffer from quadratic area scaling and hence have long I/O

wires, and quadratic latency scaling. Modularity divide the long I/O wires into smaller

segments, and thus avoids the wire performance degradation. It is similar to using repeaters

for long wires, however in this case using smaller switches also help with decreasing the fan-in

and fan-out of the multiplexers in the switches. In this chapter, we present modular crossbar

switches that maintain linear performance scaling, offer high throughput, energy efficiency,

and negligible area overhead at high-radices. Next chapter will detail the prototype modular

testchip that verifies the modeling results and feasability of the proposed design.
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Chapter 5

Modular Crossbar Testchip

In the previous chapters, we have presented various techniques to optimize crossbar switch

design and a modular switch that offers linear performance scaling and energy savings.

Our design goal was to achieve high-performance and energy-efficiency at high-radices. We

implemented a prototype crossbar switch testchip as a proof-of-concept for our design. The

testchip verifies our modeling results and demonstrates that we can build scalable, high-

radix, fast, and energy-efficient crossbar switches.

Table 5.1: Technology and Testchip Features

Crossbar Radix 64
Crossbar Datawidth 64

Crossbar Area 1.6 mm2

Supply Voltage 1.0 V
Frequency 2.38 GHz

Power Dissipation 1.2 W
Technology 40nm CMOS, 10-metal Cu

FO4 9ps (TTLH)

77
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Figure 5.2: Top level block diagram of the test chip.

5.1 Test Chip Overview

We designed the modular crossbar switch testchip in a 40nm CMOS TSMC process with 10-

metal layers. Top-level layout of the testchip can be seen in Figure 5.1. The die area is 2 mm

by 1.2mm and it has 83 pads along the periphery. Table 5.1 summarizes the technology

and testchip features. The testchip consists of the modular crossbar switch (1.6 mm by

1mm), input shift registers, output shift registers, jtag controller, and process monitor as

seen in Figure 5.2. The supply voltage of the modular crossbar is seperate from the test

infrastructures to enable measurements at different supply voltage levels.
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Figure 5.3: Radix-64 64bits modular crossbar switch built using radix-32 blocks.

In order to demonstrate modular crossbar functionality and benefits, we designed a radix-64,

64bits modular crossbar built using radix-32 blocks. As explained in the prevoius chapter,

we used the crossbar modeling tool to calculate the frequency, energy consumption, and

the area overhead of modular crossbar designs. Modeling results suggest minimum energy-

delay-area product for a 32Byte (a common cache line size) packet can be achieved using

radix-32, 64bits blocks as seen in Figure 5.3.

As discussed, one of the key aspects of improving crossbar switch performance is to minimize

the area. It is determined by the I/O wires and the multiplexers, therefore wire resources are

managed carefully considering multiplexer routing, I/O data wires, and top level routing.

Bottom 2 metal layers (M1-M2) are dedicated for circuit routing, upper 4 metal layers (M3-

M6) are dedicated for I/O data routing, and top 4 metal layers (M7-M10) are dedicated for

clock, power, and pad routing.

The modular crossbar runs at 2.38 GHZ at nominal supply voltage (1V) and consumes 1.2
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Figure 5.4: Floorplan of the radix-64 modular crossbar switch.

W power. Data transfer from an external input port to an external output port takes 2

cycles through the modular switch. However, the design is pipelined, thus for data packets

(with multiple flits), outputs are received every cycle after the initial 2 cycles for the first

flit.

Rest of the chapter is dedicated to the floorplan, datapath, control logic, timing, and the

evaluation results of the modular crossbar testchip.

5.2 Floorplan

Floorplan of the radix-64 modular crossbar is seen in Figure 5.4. External input ports are

located on top of the design and the external output ports are located on the right side
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of the design (from the I/O shift registers). Radix-32 blocks are placed adjacent to each

other and connect the I/O data through interfaces. Within every block, input interfaces are

located on top of the multiplexers and the output interfaces are located on the right side of

the multiplexers.

The detailed floorplan for the radix-32 is shown in Figure 5.5. The I/O data wires are

routed on top of the circuits as represented in the figure. Input data and control bits for

every input port are grouped and routed together. For every input port, input interfaces for

every data bit and global control block is located on top of the block. Global control block

receives external control bits such as grant, address bits, and external clock to generate

global control bits and local clock.

Every I/O port intersection consists of tri-state buffers of output multiplexers and local

control circuits. Every data bit connects to its corresponding output multiplexer in this

switch intersection. Local control receives the global control bits and generates local control

signals for dynamic tri-state buffers.

Output data bits are also grouped and routed together. Output interfaces for every output

port are grouped together for every output data bits. Control circuits to generate local

clock are also placed in between output interfaces for every output port as can be seen in

Figure 5.5.

5.3 Datapath

The switch blocks are designed and optimized following the guidelines in Chapter 2. Width

of input and output wires are 1.4X minimum width to have smaller wire capacitances and

a smaller design area. Input wire spacing is minimum distance allowing placement of a

contact (3X minimum spacing). However, output wire spacing is larger to allow a minimum

size transistor placed with contacts since multiplexers are pitchmatched with corresponding

output wires (6X minimum spacing).
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Top-level circuit diagram for the datapath including the input interfaces, multiplexers, and

the output interfaces and an example timing diagram are shown in Figure 5.6. Details for

every block is explained below.

Input interfaces

Input interfaces (on top of the design) receive the inputs from the external inputs or the

previous block. They control, synchronize and distribute input data as well as the control

signals such as grant and output address.

Switches control the input data using an enable signal. The data propogates through the

block if the input port is granted permission, and if the chosen output port can be accessed

through that block.

Following switches are the static D-latches [68]. Active-high or active-low D-latches (Figure

5.7) are chosen to synhronize the data due to their smaller size (compared to flip-flops).

They are transparent on the active clock phases, and opaque on the remaining phases.

The data is distributed to output multiplexers on the active phase, and locked on the

following phase. The input data flows from external inputs on top to the bottom blocks

and adjacent blocks’ input interfaces operate on different clock phases to minimize the

propogation latency.

Last part of the input interfaces are the drivers. The input wires are long as they span the

whole design height, thus inverter chains are used to drive the long wires with reasonable

fanout.

Multiplexers

Multiplexers are implemented using dynamic tri-state buffers and every tri-state buffer is

pitch-matched with the corresponding input and output wire. For a given output data, the

multiplexer fits underneath the output wire pitch and every tri-state buffer is distributed
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and centered around its input data. Figure 5.8 shows layout of a single tri-state buffer at

the intersection of an input and an output.

In the first clock phase dynamic outputs are precharged (while the input data is distributed)

and in the following clock phase, they are evaluated. PMOS transistors precharge the

outputs and can be sized small since every tri-state buffer precharges the output whether

it is selected or not. They (32 PMOS transistors for radix-32 block) are sized to fully

precharge the outputs in half clock cycle.

One of the main advantages of using dynamic tri-state buffers is the small area of these

PMOS transistors compared to static tri-state buffers with stacked PMOS transistors. The

pull down path consists of two transistors controlled by the select and data signals. Select

signal controls the top transistor to prevent charge sharing on the output wires when the

input port is not selected.

Further, to decrease the parasitic loading on the output wires, this transistor is sized smaller

than the bottom one. The select and precharge signals are generated carefully not to overlap,

therefore there is no extra footer device to disconnect the pull-down path from ground during
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Figure 5.8: Layout of a tri-state buffer connecting a single input and output data.

precharge.

The multiplexer pull-down path is crucial for crossbar performance and sized using the mod-

eling tool. The size of these transistors determine the design area and output wire lengths,

drive strength of the multiplexers, and the parasitic loading from the unused inputs, hence

there are a lot of trade offs to be considered. Modeling tool enabled us to explore different

sizes and to find the optimum size that gave the minimum energy-delay product.

Output Interfaces

Output interfaces receive and synchronize the multiplexer outputs and connect them to the

adjacent block (Figure 5.6). The outputs are received by buffers and synchronized using

D-latches. The active phase of the latches are opposite of the input interfaces. If the inputs

are active on the high-phase, the outputs are active on the low-phase of the clock since half

clock cycles are dedicated for input distribution and output generation. The output latches

capture the dynamic outputs on the transparent phase when the outputs are evaluated

and lock the output data on the opaque phase before the dynamic outputs are precharged.

Therefore, outputs are available for a full clock cycle and can be processed by the adjacent

blocks.

Following the latches are the extra tri-state buffers to connect the outputs to the next

blocks. These tri-state buffers introduce the outputs as extra inputs to the adjacent block.

Outputs propogate through blocks towards the external output ports on the right using this

scheme.

It should be noted that the output interfaces of the rightmost blocks do not have extra
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tri-state buffers since they connect directly to external output ports.

5.4 Control

External control signals of the crossbar switch are grant and output addresses per input port,

and the external clock. External clock controls the latches in the input and output interfaces

and the dynamic multiplexer operation. Local true and inverted clocks are generated with

same skew for active-high and active-low latches, and for control of dynamic multiplexers

that operate on different clock phases (for different blocks).

Global control block generates enable and predecoded address signals for every input port,

and local control blocks at every I/O port intersection generate the final output address and

control the dynamic multiplexer operation. Detailed circuits are explained below.

Global Control

Global control block for every input port receives the external input grant and output

address signals and generates input enable and predecoded address signals for the block as

seen in Figure 5.9. These global signals are distributed with the input data signals and

shared among every output multiplexer switch points. As can be seen in Figure 5.5, the

data bits for an input port is group as the top and bottom bits and the global control bits

are located in between these groups. The global control circuitry is placed in between the

input interfaces.

The enable signal is generated by ANDing the input grant signal and the most significant

bit (MSB) of the address bits. MSB of the address bits determines whether the top or

the bottom block is selected (top block with outputs 0-31 and bottom block with outputs

32-63). Hence, MSB and the grant signal are used to generate the enable signal specific

to blocks. The enable signal spans the whole block height as it is distributed to every
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Figure 5.9: Global control circuits per input port.

output multiplexer switch point. Enable generation by ANDing of grant and MSB signals

is implemented using a NAND gate and inverters to drive the long wire effectively.

Output address bits for every input port is predecoded in the global control block. Prede-

coding the address bits prevents redundancy of using local decoders at every output switch

point. Instead, only an AND gate is sufficient for every output switch point to generate

the final output address (similar to row decoders in SRAMs). For 5 adress bits (radix-32

blocks), 2:4 and 3:8 predecoders are used to generate 12 predecoded signals in total. Prede-

coded signals span the whole block height as well and the predecoding logic is implemented

considering the long output wires.
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Local Control

Every I/O port intersection has a local control block to control the multiplexers as seen in

Figure 5.10. 64 input data bits are grouped together, therefore at every I/O intersection

there are 64 tri-state buffers for every input bit connected to its corresponding output mul-

tiplexer for that output port. If the input port is granted access, and wants to communicate

with the corresponding output port (for that intersection), tri-state buffers are selected and

drives the outputs of the multiplexers.

The select signal is shared among 64 tri-state buffers, therefore is is generated locally and

distributed to every tri-state buffer. Initally, final address is generated using the prede-

coded signals to determine whether the corresponding output address is matching with the

requested output address. Select signal depends on the final address as well as the enable

signal for that block and the clock phase. As mentioned, dynamic output wires are con-

trolled using clock and is synchronized with I/O interfaces. Therefore, final select signal

is also synchronized by ANDing clock (or inverted clock) with the decoded address and

enable. It is shared among 64 tri-state buffers, therefore there is reasonable parasitic gate

and wire loading. It is driven considering these and timing of the dynamic multiplexers are

controlled according to the skew in the select signal.

The precharge signal for the dynamic tri-state buffers are controlled by the true or the

inverted clock. External clock is distributed to every local control block, where true and

inverted clocks are generated. The precharge signal do not overlap with the select signal,

therefore it is active on the opposite clock phase. For example, in Figure 5.10, the select

signal is controlled by inverted clock, hence active on the low-phase of the clock. The

precharge is generated by the inverted clock as well, hence active on the high-phase of the

clock (since it controls PMOS transistors). The precharge signal is also shared among 64 tri-

state buffers. The precharge and select signals are both buffered and distributed carefully

not to overlap for correct operation.
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Finally, if the output port is driven by a selected input port within block, it should be

selected for the adjacent block as well to be able to propogate the selected data towards

external outputs ports. The select signal for the extra tri-state buffer in the output interfaces

is active if any of the input ports is selected. This is achieved by implementing a dynamic

NOR gate with select inputs from every input port. As can be seen in Figure 5.10, select

signal is fed to a dynamic inverter in the local control. The output of this dynamic inverter

is shared among 31 (for radix-32) other dynamic inverters from rest of the input port local

control blocks. Hence it is implemented as a distributed dynamic NOR gate as can be seen

in Figure 5.11. The final select is initally precharged high, and only pulled down if any

of the inputs are selected. The distributed implementation prevents dedicating extra wire

tracks to route local select signal to the output interfaces.

5.4.1 Example Clocking

An example clocking scheme can be seen Figure 5.12. Input ports 0-63 send all 1s data

to output ports 63-0. Input interfaces and output interfaces of a given block operates on

different clock phases. Input interfaces of vertically adjacent blocks also operate on the

opposite clock phases to minimize input distribution latency.

As seen, Block 00 inputs are distributed in Φ1, and the outputs are generated in Φ2. Since

Block 00 inputs are active in Φ1, Block 10 inputs are active in the next phase, Φ2. On the

other hand, outputs are generated or propogated every clock phase as well. Since Block

00 outputs are active in Φ2, Block 01 outputs are active in the next phase, Φ3. Block 01

generates outputs from its inputs or propogates Block 00 outputs, therefore Block 01 input
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distribution is synchronized with Block 00 output generation.

5.5 Test Infrastructure

On-chip testing infrastructures are 4 banks of input and output shift registers and a jtag

controller. Every bank consists of 64 (number of ports) times 70 (64 data bits + 6 control

bits) registers. Data packets and their corresponding control signals are generated externally

and scanned into the input shift register banks for testing. 2 banks of the input shift

registers are shown in Figure 5.13. Registers are implemented as scan flip-flops. Scan input

and output of the flops are connected in series whereas data input and output of the blocks

are connected in parallel (to the next bank). In scan mode, external data is scanned in

one bit at a time. In real operation mode scanned in data of a bank is transferred to the

next bank. For continuous operation and power measurements, the data outputs of the last

input register bank is connected as data inputs of the first input bank.

Output shift registers are implemented similarly to input shift registers, however last out-

puts are not connected back to the first inputs. They capture the input data packets

traversing from the crossbar, and once the operation is completed, the data is scanned out

and processed externally. Testing mode, core operation and clocking is controlled by the

jtag controller. Off chip testing equipment is set up and extensive functional tests are done

using the top level verilog model of the chip.

The testchip contains a process monitor block to measure the fan-out-of-four inverter delay

of each die. The block consists of a ring oscillator with 13 inverters. The output of the

ring oscilator goes to a by-64 toggle flop frequency divider to achieve a signal with kHz

frequency range.

The external clock is received from the jtag. It is distributed to every switch block and I/O

shift register blocks in a H-tree structure and distributed in a grid within every block. The

clock buffers are used to equalize the skew for local clocks.
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Figure 5.13: 2 banks of shift registers built using scan flip-flops. Test I/O of the flip flops are connected
in series for scan mode, and D and Q of the flip-flops are connected in parallel with the next bank for core
operation mode.

5.6 Extracted Simulation Results

Due to delays in testchip fabrication, extracted simulation results are reported instead of

measurement results. Total chip RC extraction is not feasible for this large of a die size,

therefore we extracted critical pieces of the design for the frequency and power measure-

ments. The critical path (connection of the first input port to the last output port) is

RC extracted and simulated for frequency measurements. Single I/O port connection for

the longest (first input to last output) and shortest (last input to first output) paths are

extracted and simulation results are used to interpolate the total switching and idle power

consumption.

The modular crossbar runs at 2.38 GHz at 1V nominal supply voltage at room temperature.

Frequency results for the modular crossbar for supply ranging from 600mV to 1V are shown

in Figure 5.14. Peak throughput is 9.75 Tb/s at 1V. Power consumption at 1V is 1.2 W

with 30 % switching activity. This translates to 8.2 Tb/s/W energy-efficiency. Figure 5.15

shows power consumption and energy-efficiency scaling with frequency. As can be seen,

energy efficiency can be as high as 38 Tb/s/W with 0.6V operating at 580MHz.

In order to find optimum operating conditions, we evaluated energy-delay product. Figure

5.16 illustrates energy-delay product scaling with voltage. As can be seen, optimal range for

energy-delay product is 0.8V-1.0V and below 0.8V energy-delay product increases.
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Figure 5.14: Frequency and throughput scaling with supply voltage.
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Figure 5.16: Energy-delay product scaling with voltage.

The worst case crosstalk is measured as 100mV (10% of supply voltage) when the victim

wire is precharged high and floating, and adjacent wires are pulled-down to ground. The

leakege was also another concern for the floating dynamic output wires when the selected

input data is 0 (disconnected pull-down path). Leakage sources are OFF PMOS precharge

transistors, and the OFF pull-down path of series NMOS transistors from unselected tri-

state buffers. Simulation results at 0C, 27C, and 80C can be seen in Figure 5.17. 100mV

droop is captured at 450ns, 410ns, and 390ns for 0C, 27C, and 80C respectively. As can

be seen for normal operating frequencies on the order of GHz, leakage is not a concern.

Increase in temperature helps keeping the precharged dynamic outputs high by increasing

the leakage of the OFF PMOS transistors.

Table 5.2 compares frequency, throughput, power, and energy efficiency of the testchip with

previously published results [41, 53] in 45nm CMOS bulk process. Since crossbar radix and

datawidth are different, frequency and power comparison would not be fair. However,

throughput and enegy-efficiency can be compared fairly. As can be seen, modular crossbar
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Figure 5.17: Voltage droop of floating output nodes.

Table 5.2: Frequency, Throughput (TP), Power, and Energy-Delay Product Comparison to Previously
Published Results

Design N DW Freq (GHz) TP (Tbps) Power (W) Energy-Efficiency (Tbps/W)
Proposed (40nm) 64 64 2.38 9.75 1 9.7

[53] (45nm) 64 128 0.559 4.47 1.3 3.4
[41] (45nm) 128 32 1 4.09 2.3 1.77

offers at least 2.2X better throughput and 2.4X better energy-efficiency than the reported

results.

5.7 Summary

This chapter described the prototype modular crossbar testchip and the post-layout ex-

tracted simulation results. Radix-64, 64bits modular crossbar is implemented with radix-32

blocks in 40nm CMOS bulk process with 10 metal layers. It operates at 2.38GHz at 1V

nominal supply voltage and comsumes 1.2W power. Throughput is 9.75 Tb/ps, 2.2X better

than previously published results and the energy-efficiency is 8.2 Tb/ps/W, 2.4X better
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than previously published results. Next chapter will present the modular crossbar archi-

tecture built using the high-performance modular crossbar switch and network evaluation

results.
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Chapter 6

Modular Crossbar Architecture

Crossbar switch performance plays a crucial role in the high-radix network performance.

Internal switch speedup simpifies the allocation and enables high network saturation ca-

pacity with low memory cost. Therefore, high-performance switches can enable building

efficient high-radix crossbar networks.

In this chapter, we present a modular crossbar architecture that uses the internal speedup

from the modular switches to improve network performance. Complete modular crossbar

architecture with the modular switch, centralized allocator, and input and output buffers is

shown in Figure 6.1. Internal speedup offered by the modular switch increases the saturation

capacity and decreases average network latency with linearly scaling memory cost. Further,

high-radix allocation is feasible [44], and the scheduling latency can be amortized over total

data packet transfer time through the switch. We evaluated modular crossbar networks

with the proposed switch cores using BookSim2, cycle-accurate detailed network on chip

tool. The proposed design achieves more than 90% saturation capacity with an internal

speed up of 1.5, supports data line rates as high as 102.4Gbps (in 40nm CMOS bulk), and

offers lower average network latency compared to conventional crossbars.

101
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6.1 Related Work

Kim et al. [26, 27] proposed hierarchical crossbars (HC) built using smaller sub-blocks

with combined input and output queuing that lower the allocation complexity and improve

switch performance. Mora et al. [37] proposed partitioned crossbar input queued (PCIQ)

architectures using partitioned crossbar organizations that allow use of simple allocators

and crossbars. However, both of the proposed architectures require global connections to

distribute and connect I/O data signals to crossbar sub-blocks. For high-radices and large

datawidths, global wiring lead to inefficient area and power scaling. The modular switch

exploits modularity to improve performance without adding buffers at the intermediate

stages like HQ or PCIQ, and flow-through connection of the blocks avoids extra global

wiring.

Another approach is to replace crossbar networks with multi-hop networks such as clos

networks with high-radix routers. Ahn et al. [1] show better scalability of folded-clos

switches over hierarchical crossbars while offering equivalent saturation capacity. Similarly,

Chrysos et al. [12] proposes high-performance multi-stage bufferless scalable clos on-chip

(SCOC) architectures that are indistinguishable from hierarchical crossbars in terms of effi-

ciency and fairness. However, compared to conventional crossbars, multi-hop clos networks

have significantly larger areas [1], and multi-hop programming complexities. The modular

switch area is slightly larger than the conventional crossbar area unlike HQ, and it achieves

high-performance while still keeping single-hop network simplicity.

6.2 Crossbar Architecture

Crossbar switch cores are primary building blocks of crossbar networks. High-performance

switches offer internal speedup (runs faster than the external data line rates) that increase

network saturation capacity and lower average network latency. We use modular crossbar

switches to build modular crossbar networks and demonstrate performance improvements
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104 6.2. Crossbar Architecture

at the network level.

Modular crossbar architectures consist of modular switches, centralized allocators, and input

and output buffers as seen in Figure 6.1. It takes multiple cycles to transfer a single flit

through the modular switch, however modular crossbars still offer one-hop connectivity and

simplicity. Centralized allocators schedule data flow before the multi-cycle data traversal,

and every input port has a dedicated route to every output port. Therefore, modular

crossbar programming is as simple as conventional crossbars.

Combined input and output queueing with virtual channels offers high-saturation capacity

with internal speedup from the switch and adopted as the input and output buffering

scheme for the modular crossbars. Further, cross-iSLIP architectures ([44]) demonstrate

that building fast and small schedulers are possible at high-radices, and the scheduling

latency can be amortized over total data packet transfer through the modular switch.

6.2.1 Input and Output Buffers

Input and output buffers ensure that packets are not lost when conflicts occur (when mul-

tiple inputs select the same output). Output queued (OQ) architectures place buffers at

the output ports, but require high internal speedup when multiple inputs want to transmit

data to the same output. Speedup can be achieved by using a higher clock frequency or

implementing multiple write ports.

Input queued (IQ) architectures, on the other hand, locate the buffers at the input ports.

There architectures do not require internal speedup, however they suffer from head-of-

line (HoL) blocking (packet destined for one port is blocked behind a packet destined for

another port). It has been shown that HoL limits the throughput of an input-queued switch

to approximately 58.6% under certain conditions [20, 25].

Wide variety of solutions has been proposed to eliminate HoL and achieve 100% saturation

throughput. Some of the commonly used solutions are placing multiple queues at the input
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ports, placing buffers at crosspoints, and accepting internal speedup. In IQ architectures

with virtual output queueing (VOQ) [2, 34, 62], every input port has multiple queues

dedicated for every output port, hence every input data packet is located in the queue

destined for the requested output port. However, in this scheme, required number of queues

scales quadratically with radix, and the memory cost can be significant at high-radices. On

the other hand, buffered crossbar switch organization places buffers at every crosspoint

[31, 48]. Every input is connected to multiple output buffers, and every output buffer is

destined to the requested output port, therefore this organization also eliminated HoL.

However, similar to VOQ, the memory cost scales quadratically wth radix.

Another viable approach to eliminate HoL is to accept internal speedup. Combined input

and output buffering (CIOQ) offers a solution by assuming some internal speedup and

using both input and output buffers [13, 42, 59, 71]. Input buffers can be implemented with

virtual channels (VC) [15] to help eliminate HoL and output buffers are required to absorb

the internal speedup. We adopt CIOQ for modular crossbars as it offers linear memory

resource scaling with radix, and high network saturation capacity with reasonable internal

speedup. Modular crossbar architectures support very high data line rates as switches run

at high frequencies and the required speedup for maximum saturation capacity is low.

6.2.2 Allocation

Allocation handles access to multiple output resources of multiple input resources. For every

shared output resource, arbiters are used to decide which input gets access to the resource.

Every output resource can be granted only to requested inputs, inputs are granted access to

at most one output resources, and output resources can be assigned to at most one inputs.

Good allocator traits are maximizing the matching between the requests and the grants and

having low implementation complexity, and hence area, power, and latency [5, 19, 65].

Separable allocators are commonly used in crossbars for scheduling where input and output

ports have separate arbiters that run in parallel and exchange matching decisions to con-
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sent on a match. They usually employ fast heuristics to find a good matching that is not

guaranteed to be maximal. However, they are very popular since they can be parallelized

and pipelined to improve the latency, and matching can be improved with more iterations.

Allocation is performed in two sets of arbitration, once for inputs and once for outputs.

Input-first seperable allocator performs input arbitration first, whereas an output-first al-

locator performs output arbitration first. An example output-first seperable allocator can

be seen in Figure 6.2.

Different seperable allocation methods are parallel iterative matching (PIM) [2, 28], iSLIP,

and lonely output allocators (LOA). PIM performs random seperable allocation iteration

by using randomized priorities for every iteration. iSLIP, on the other hand, uses round-

robin arbiters [57] and updates the priority only if the arbiter has got a grant [33, 70].

Finally, LOA adds an extra stage before the input abiters that gives the priorities to the

outputs with the least requests to increase output utilization.Previous work [16] has shown

that these allocators with low complexity can achieve reasonable performance that can be

further increased with multiple iterations.

Passas et al. [44] explore scaling of separable allocators using the iSLIP arbitration algo-

rithm. Two prominent allocation scaling challenges are quadratic scaling of number of gates

in the arbiters and potentially more than quadratic scaling of global point-to-point data

links connecting input and output arbiters (as can be seen in Figure 6.2). The proposed

microarchitecture called cross-iSLIP inverts the locality of wires by orthogonally interleav-

ing the input with output arbiters to decrease the cost of global data links and shows that

crossbar allocators (for VOQ architecture) are small and fast for even very high radices. It

is extended to virtual channel (VC) & switch allocators used in BookSim2 router architec-

ture [24, 26] that consists of a seperate VC allocator which allocates VCs to packets and a

switch allocator that allocates crossbar to the flits of packets.

Since allocation is performed only once for every packet, scheduling latency can be masked

over switch traversal latency of packets (assuming constant packet size). The critical path for
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radix-128 cross-iSLIP implementation is 4ns for seperable input output allocators and below

5ns for VC & switch allocators (scaled to 40nm CMOS bulk [44]). Therefore, for a radix-

128 64 bits modular crossbar switch (runs at 2.4GHz using radix-32 blocks), the allocation

latency can be amortized over switch traversal latency for packets larger than 80Byte and

96Byte for separable input output allocators and VC & switch allocators respectively.

6.2.3 Architectural Evaluation

To understand the network performance, we evaluate modular crossbar by analyzing how

much internal speedup is required to increase network capacity and by obtaining load-

latency curves for saturation capacity and zero-load latency measurements using BookSim2

network on chip evaluation tool. Internal speedup is the ratio of switch bandwidth to the

data line bandwidth. Speedup increases switch throughput and simplifies allocation.

Evaluation metrics are:

Supported Data Line Rate: Switch data line rate divided by speedup. Given modular

switch performance, supported data line rates decrease as accepted internal speed up

increases.

Load-Latency Curves: Drawn by measuring average network under different loads for a

specified network traffic. Load is the average amount of injected flits by each input

port per cycle and latency is the average latency of a packet from the time first flit is

injected to the input port when the last flit is delivered to the output port.

Saturation Capacity: Load where the first channels saturates and network achieves sat-

uration throughput.

Zero-Load Latency: Assumes that a packet never contends for resources with other pack-

ets and gives a lower bound on the average packet latency.
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Experimental Setup

We used BookSim2 [6, 24], a detailed, cycle-accurate network on chip simulator to evaulate

the network performance of modular crossbars. It offers a wide variety of configurable

network parameters in terms of topology, routing algorithm, flow control, and router mi-

croarchictecture. The network components in the tool accurately model the actual hardware

and matches the RTL implementation results. Top level networks comprise a collection of

routers and channels, however the crossbar topology is modeled as a single router network.

The router model is the input-queued virtual channel router implemented with canonical

4-stage pipeline for routing/queueing, VC allocation, switch allocation, and crossbar traver-

sal. The chosen routing and scheduling algorithms are destionation tag and iSLIP due to

their simplicity and efficiency. The input queues use 4, 8, and 16 virtual channels with 8

buffers each for radix-64, radix-128, and radix-256 crossbars respectively.

In order to model the modular crossbar network, we modified the crossbar traversal stage of

the 4-stage router pipeline. Crossbar traversal latency (switch latency) of modular crossbar

is k times the block latency and the operation is pipelined. Therefore, the single cycle

crossbar traversal in the router pipeline is modified as k cycles. As mentioned, radix-32 64

bits switch block (in 40nm CMOS bulk) achieves maximum data throughput, runs at 2.38

GHz, and supports data line rates as high as 156.6 Gbps. This high switch performance

allows us to trade off some speed as internal speedup to overcome performance degradation

due to high-radix centralized allocation and I/O buffering. By assuming that switches

run at higher frequencies than the I/O line rates, higher saturation capacity and lower

zero-load latency can be achieved. The simulator adds output queues to the input-queued

virtual channel router implementation to absorb the internal speedup, thus modular crossbar

routers have combined input and output queued architectures.

We compared network performance of modular crossbars to conventional crossbars for eval-

uation metrics of supported data line rates, saturation capacity, and zero-load latency.

BookSim2 is a cycle-accurate simulator, therefore it assumes both conventional and mod-
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Table 6.1: Radix-64 Modular Crossbar

Speedup (SU) 1 1.5 2 4
Saturation TP (flits/cycle) 0.62 0.93 0.98 0.98
Data Line Rate (Gbps) 153.6 102.4 76.8 38.4

ular crossbar switches have the same switch traversal latency. However, as discussed in

the switch evaluation section, modular switches offer significantly better latency than con-

ventional switches. To be fair, we assumed they run at the same frequency (2.38GHz)

except the switch traversal stage. We back annotated switch traversal latencies from the

testchip results and using the crossbar modeling tool for the optimized designs for both the

conventional and modular crossbars at different radices.

Data Line Rates

High-radix modular crossbars can be built using radix-32 switch blocks and run at the

same frequency as the blocks. Switch frequency is an important metric as it determines

the supported data line rates with given internal speedup. Table 6.1 shows how internal

speedup changes the saturation throughput and the resulting supported line rates for a

radix-64 modular crossbar. The saturation capacity is only 62% without any speedup

and can be increased above 90% with only 1.5 speedup. Although increasing the speedup

further increases the saturation capacity and lowers the zero-load latency, the supported

line rates decrease significantly. Available off chip I/O bandwidth increases every year [27],

and modular crossbar offers an option to support very high line rates that achieve at least

90% saturation capacity. However, if the available line rates are smaller, assuming a larger

speedup will further improve the saturation capacity and zero-load latency.

Load vs Latency

We simulated crossbar performance under uniform traffic. Figure 6.3, 6.4, 6.5 show load-

latency curves for conventional crossbars and modular crossbars without speedup and with
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speedups of 1.5, 2, and 4 for radices 64, 128, and 256. BookSim2 is a detailed simulator

that is not optimized for high-radix networks and slows down significantly at high loads.

Therefore load-latency curves are generated for single-flit packets. As can be seen, both

conventional and modular crossbar networks without speedup saturate at 60% capacity

(0.6 load) while modular crossbars with speedup saturate at more than 90% capacity for

all radices. We accepted speedup for the modular crossbars since the modular switches

can run at higher frequencies (with pipelining) compared to conventional switches as dis-

cussed.
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Figure 6.3: Load-latency curves for radix-64 conventional and modular crossbars (with speedup 1, 1.5, 2,
and 4).

Comparison of zero-load latencies can be seen from the load-latency curves and are also

shown implicitly in Table 6.2 for different radices. We plugged in the latency results for

the crossbar traversal stage for both canonical and modular crossbars, and report average

network latencies from cycle results of the simulator and the modeled radix-32 frequency.

For 1.5 speedup (minimum SU that can achieve 90% throughput), modular crossbars offer

1.2X, 1.3X, 1.6X, 2.7X lower network latency than conventional crossbars for radices 64,
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Figure 6.4: Load-latency curves for radix-128 conventional and modular crossbars (with speedup 1, 1.5,
2, and 4).
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Figure 6.5: Load-latency curves for radix-256 conventional and modular crossbars (with speedup 1, 1.5,
2, and 4).
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Table 6.2: Zero-Load Latency for a Single-Flit Packet

N 64 128 256 512
Conventional Xbar 3ns 4.5ns 9.5ns 27ns

Modular Xbar (SU=1.0) 2.9ns 4.2ns 6.8ns 12ns
Modular Xbar (SU=1.5) 2.5ns 3.5ns 5.8ns 11.2ns
Modular Xbar (SU=2.0) 2ns 3.1ns 5.6ns 11ns
Modular Xbar (SU=4.0) 1.7ns 2.7ns 5.3ns 10.6ns

Table 6.3: Zero-Load Latency for a 32Byte Packet

N 64 128 256 512
Conventional Xbar 5.8ns 12ns 32ns 103ns

Modular Xbar (SU=1.0) 4.15ns 5.4ns 8ns 13.28ns
Modular Xbar (SU=1.5) 3.7ns 4.8ns 7ns 12.4ns
Modular Xbar (SU=2.0) 3.3ns 4.3ns 6.9ns 12.2ns
Modular Xbar (SU=4.0) 2.9ns 3.9ns 6.5ns 11.8ns

128, 256, and 512. Moreover, assuming a larger speedup such as 2 or 4 decreases zero-load

latency further, since there is less congestion in the network for all radices as can be seen

in Figure 6.6.

Single-flit packet simulations are actually the worst case simulations for modular crossbars

for zero-load latency comparison, since it takes multiple cycles to transfer the initial flit

and the rest of the flits in the packet can be pipelined. Therefore, we also report zero-load

results for a 32Byte packet (a common cache line size, 4 flits for a 64 bits crossbar switch)

in Table 6.3. With the larger packet size, modular crossbars with 1.5 SU offer 1.6X, 3.2X,

6.6X, and 8.3X lower zero-load latency than conventional crossbars for radices 64, 128, 256,

and 512 respectively as can be seen in Figures 6.7.

6.3 Summary

We present modular crossbars using the modular switch, centralized allocators, and input

(with virtual channels) and output buffers. The internal speedup of the switch increases the

network saturation capacity and lowers the average network latency compared to conven-

tional crossbar switches. With process scaling, future processor and SoC chips are expected
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Figure 6.6: Zero-load latency for a single-flit packet transfer.
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to have increased core counts, cache sizes, and off-chip I/O bandwidths, which will lead

to increasing on-chip communication demands. High-radix modular crossbars can meet

these performance requirements while offering simplicity and one-hop latency, and thus are

promising alternatives to multi-hop networks at high radices.



116 6.3. Summary



Chapter 7

Conclusions

Processor cores and memories are getting smaller, faster, and inexpensive with every new

process technology. This, combined with increasing concerns for power density, led to a

growing interest in system-on-chip designs with increasing number of components. However,

performance and density of the wires that connect these system components scale at a lower

rate than the components, since speed of light remains unchanged. These factors have made

communication one of the major bottlenecks and driven the need for more complex on-chip

interconnection networks.

Crossbar switches are primary building blocks in such networks-on-chip, as they can be used

as fast single-stage networks or as the core of the router switch in multi-stage networks.

While crossbars offer non-blocking, single-hop, all-to-all communication, they tend to scale

poorly with the number of nodes due to quadratic area growth, high-radix multiplexer

structures needed, and significant latency and energy consumption. Therefore, multiple

recent many-core processor designs have opted for multi-stage networks instead of single-

stage crossbar networks. In this thesis, we show scalability of crossbars to high-radices by

presenting a modular crossbar architecture with concentrated focus on high-performance

and energy-efficient switch design using various circuit techniques and layout details.
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We present a detailed analysis and modeling of crossbar switch architecture to understand

scaling limitations and to improve performance and energy-efficiency. In Chapter 2, we in-

troduce an analytical crossbar switch modeling tool calibrated using post-layout extracted

simulations for fast design space exploration. Proposed tool covers both system level (num-

ber of modules and data width) and circuit level (multiplexer circuits, wire pitches, etc.)

design parameters to achieve design optimization as close to full custom design as possi-

ble. Our design space exploration suggests that smaller and simpler designs offer better

performance due to shorter input, output and internal wires.

To further improve energy consumption, we explore low swing signaling in Chapter 3. We

present a low-swing crossbar scheme that uses capacitively coupled wires and multiplexers

to improve the performance and efficiency. We discuss the implementation details of a

radix-16 low-swing crossbar and the evaluation results show it operating at a significantly

improved energy-efficiency. However, due to area overhead of differential wires and sense

amplifiers to restore the low swing signals, low swing crossbar latency increases significantly

with radix.

From our design space exploration, we conclude that, for low-to-medium radices, I/O wires

are shorter and multiplexers have a significant impact on the latency, therefore optimiz-

ing multiplexer performance can improve the total switch performance even at the cost

of larger area. Even further, adopting low-swing signaling techniques will improve the

energy-efficiency since the benefits are more significant than the overheads. However, for

high-radices, circuit techniques that will overhead in area result in substantially longer I/O

wires, hence increased latency and energy consumption. Such techniques include tree multi-

plexers that require extra wires tracks for intermediate connections, centralized multiplexer

implementations with extra input wire routings, and low-swing signaling with differential

wiring.

Area minimalization is especially a concern for high-radices. Even with minimum wire

pitches, the minimum design area is quite large due to large datawidths (usually 64-128
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bits) and high-radices. Thus, building a high-performance and efficient high-radix switch

depends highly on wire engineering. The multiplexers can be viewed as wire drivers, and

the main object of the design becomes building efficient wire drivers and keeping the wire

lengths optimal. Dynamic tri-state buffers has shown to be efficient drivers for crossbar

multiplexers due to their small area and high logical effort. The parasitic gate loading

from unselected inputs of the multiplexers are also negligible compared to the large wire

capacitances for high-radix switches.

Using these insights, we present modular crossbar switches in Chapter 4. As we concluded

that building high-radix crossbar switches are similar to driving long wires, we were inspired

by the repeater insertion to eliminate quadratic wire latency scaling. Using smaller blocks

to build the high-radix crossbar switches keeps the I/O wire lengths short and eliminates

the quadratic wire latency scaling. The blocks are arranged in a controlled flow-through,

pipelined scheme to eliminate global connections and maintain linear performance scaling

and high throughput. Small sub-block sizing and modularity enable deactivating unused I/O

wires to improve energy efficiency. To evaluate our design, we implemented and designed a

prototype radix-64, 64 bits modular crossbar switch testchip in 40nm CMOS bulk process as

explained in Chapter 5. It operates at 2.38GHz at 1V nominal supply voltage and comsumes

1.2W power. Throughput is 9.75 Tb/ps, 2.2X better than previously published results and

the energy-efficiency is 8.2 Tb/ps/W, 2.4X better than previously published results. We

further evaluate modular crossbar architectures using the modular crossbar switches in

Chapter 6. The internal speedup of the switch increases the network saturation capacity

and lowers the average network latency compared to conventional crossbar switches.

Our evaluation results demonstrate that modular crossbar switches offer a viable solution

to crossbar scaling problem. The area still scales quadratically, however latency scales

linearly and modularity allows significant energy savings. Our preliminary network evalu-

ations, on the other hand, suggest that crossbar networks are also scalable to high-radices.

With process scaling, future processor and SoC chips are expected to have increased core
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counts, cache sizes, and off-chip I/O bandwidths, which will lead to increasing on-chip

communication demands. High-radix modular crossbars have potential meet these perfor-

mance requirements while offering simplicity and one-hop latency, and thus are promising

alternatives to multi-hop networks at high radices.

7.1 Future Work

The ideas presented in this thesis are open to further exploration, improvement, and new

directions. Although modular crossbar switches offer linear scalability, better evaluation

of the crossbar network would be beneficial at extremely high-radices like 512. The die

floorplan, available wire resources, global communication with the network, and network

workloads are some of the concerns for extremely high-radices that can affect the single-hop

crossbar performance. These crossbars can be a very efficient way to exploit increasing

off chip memory bandwidth by offering uniform latency for all the system components.

However, they might not be the best option for application that requires extensive local

communication.

Some of the areas for further improvement are modular switch energy savings, modular

crossbar network implementation, modular allocators, and comparison to multi-stage net-

works.

Modular Crossbar Switch Power-Gating

Modular crossbar switch design improves energy efficiency by deactivating unused I/O wires.

This scheme decreases energy consumption significantly since the switching energy of the

wires have a major impact on the total energy consumption. However, benefits of this

scheme can be further enhanced by power-gating I/O ports or the switch blocks. For the

radix-64, 64 bits modular crossbar implementation, idle energy consumption of an I/O port

is 25% of the total energy consumption, thus deactivating power supply rather than wires
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can further decrease the total energy consumption. Naturally, controlling power supply of

every I/O port overheads in area, latency, and energy consumption. However, this also

means smaller power grids to control, and latency of power-gating can be amortized over

multi-cycle flit and packet transfer. Power-enable signal for I/O ports can be generated

ahead of data transfer to allow enough time for power grid to turn on. This high-granularity

of power control have potential to offer compelling energy savings. Power-gating can be done

at the block level instead of I/O port level as well, however energy savings might not be

substantial. Block power can be turned off if only none of the ports are active, which is

unlikely for blocks with large number of ports.

Modular Crossbar Network Implementation

Modular crossbar architecture presented in this thesis is evaluated using a cycle-accurate

network evaluation tool. The implementation results for the modular switch are back an-

notated to the tool to achieve more realistic evaluation results. However, the allocators and

buffers are not implemented with the switch. Rather, results from previously published

papers and the assumptions from the tool are used. Therefore, a full crossbar network

implementation will offer a better evaluation in terms of area, latency, and energy overhead

of the allocators and the I/O buffers.

Modular Allocators

Modularity and flow-through operation can be extended to allocators. Hierarchical and

distributed allocators has been shown to be scalable to high-radices [1, 32]. However, due

to arbitration among smaller groups, these allocators need to implement extra features to

achieve fairness. Further, extra top level wiring is required to exchange matching decision

across different groups. We can build modular flow-through allocators using smaller blocks

that operates in a similar fashion to our modular switches. The decision of every group

can flow through the blocks to avoid extra wiring and can be pipelined to achieve high



122 7.1. Future Work

throughput. To improve fairness, priority of the decisions from previous groups can be

weighted.

Comparison to Multi-Stage Networks

Crossbars have shown to achieve better network latency and saturation than multi-stage

networks like meshes [26, 43] for radices as high as 64, 128. However, modular crossbar

networks can scale to very high radices like 512. Although the crossbar switch can scale

linearly to these radices, a better evaluation of the crossbar network would be beneficial.

Crossbars require global data links to connect the components to the network, and for large

number of components and increased die area, global data link communication should be

included in the evaluation. On the other hand, mesh networks have distributed routers

close to the network components throughput the design and short data links to connect

these routers. Therefore, comparison to mesh networks at very high-radices would be very

beneficial. Further, different floorplans and applications can be evaluated for a more through

comparison.
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