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This document provides supporting information to the article. It contains:

1. A flowchart summarizing the general procedure for detecting directionality in time
series;

2. R routines to demonstrate reversibility with realizations from: (i) MA(3) with expo-
nential noise, (ii) MA(3) exponential noise with cube errors term, (iii) AR(1) with
Gaussian white noise, and directionality with realizations from (iv) AR(1) with uni-
form noise;

3. R syntax for moving blocks bootstrap and Monte-Carlo simulations, and realizations
from AR(1) with Gaussian errors;

4. Application of moving blocks bootstrap to sunspots series (length 315) and EEG (D)
series (length 4096);

5. Results from the suite of directionality tests applied to 12 time series, and boxplots
of first differences;

6. GARCH model for the residuals of AR models on dtds tourist arrivals;

7. Poisson regression for the sunspots; and

8. Moving directionality and moving volatility of the Wells Fargo log-returns.
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1 Flowchart for detecting directionality in stationary time series
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2 R routines to demonstrate reversibility and directionality

A limitation of directionality statistic γ̂dab (SKdab) is that it is less sensitive than γ̂d (SKd)
because the noise to signal ratio will be doubled by taking absolute values of mean corrected
observations. However, it is a useful variant as the following case show. The time series
model

Xt = αXt−1 + εt

where εt are a sequence of independent uniform random variables is not reversible by Weiss’s
result (Weiss 1975). However, realizations of length 106 with, for example α = 0.4, no
directionality is apparent in using the statistic γ̂d. In contrast ˆγdab does detect directionality
in the realizations of AR(1) with uniform noise in Section 2.4. Directionality can also be
detected indirectly as residuals near uniform rather than Gaussian.

2.1 Moving average process of order 3, MA(3), exponential noise

set.seed(1)

n=10^6

z=rexp(n)-1

x=rep(0,n);y=rep(0,n)

x[3]=0

for(i in 4:n){

x[i]=z[i-1]+z[i-2]+z[i-3]

}

y=diff(x)

SKd=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKd)

[1] -0.0009076836

set.seed(1)

n=10^6

z=rexp(n)-1

x=rep(0,n);y=rep(0,n);xx=rep(0,n)

x[3]=0

for(i in 4:n){

x[i]=z[i-1]+z[i-2]+z[i-3]

}

xx=abs(x-mean(x))

y=diff(xx)

SKdab=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKdab)

[1] -0.003919842

2.2 MA(3) exponential noise with cube errors term

set.seed(1)

n=10^6

z=rexp(n)-1

x=rep(0,n);y=rep(0,n)

x[3]=0
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for(i in 4:n){

x[i]=z[i-1]+2*z[i-2]^3+z[i-3]

}

y=diff(x)

SKd=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKd)

[1] -0.02307794

set.seed(1)

n=10^6

z=rexp(n)-1

x=rep(0,n);y=rep(0,n);xx=rep(0,n)

x[3]=0

for(i in 4:n){

x[i]=z[i-1]+2*z[i-2]^3+z[i-3]

}

xx=abs(x-mean(x))

y=diff(xx)

SKdab=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKdab)

[1] -0.02307794

2.3 Autoregressive process of order 1, AR(1), with Gaussian
white noise

set.seed(1)

n=10^6

a=0.4

x=rep(0,n);y=rep(0,n)

for(i in 2:n){

x[i]=a*x[i-1]+rnorm(1)

}

y=diff(x)

SKd=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKd)

[1] -0.002230051

set.seed(1)

n=10^6

a=0.4

x=rep(0,n);y=rep(0,n);xx=rep(0,n)

for(i in 2:n){

x[i]=a*x[i-1]+rnorm(1)

}

xx=abs(x-mean(x))

y=diff(xx)

SKdab=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKdab)

[1] -0.001333719
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2.4 AR(1) with uniform noise

set.seed(1)

n=10^6

a=0.4

x=rep(0,n);y=rep(0,n)

for(i in 2:n){

x[i]=a*x[i-1]+runif(1)

}

y=diff(x)

SKd=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKd)

[1] 0.0002462343

set.seed(1)

n=10^6

a=0.4

x=rep(0,n);y=rep(0,n);xx=rep(0,n)

for(i in 2:n){

x[i]=a*x[i-1]+runif(1)

}

xx=abs(x-mean(x))

y=diff(xx)

SKdab=(sum((y-mean(y))^3)/n)/sd(y)^3

print(SKdab)

[1] -0.2427602

There is no evidence of directionality from the realizations from models 2.1 MA(3) expo-
nential, 2.2 MA(3) exponential and cubed term, and 2.3 AR(1) Gaussian. This is consistent
with the theoretical reversibility. In contrast, the value of γ̂dab = −0.24 is evidence of di-
rectionality in realizations from model 2.4 AR(1) with uniform noise. The negative value
of γ̂dab corresponds to relatively slow drifts from the mean followed by steeper returns to
the mean. The reason is that the uniform distribution of errors does not have tail values
and so rapid increases or decreases are reduced in magnitude and tend to be followed by
relatively quick returns to the mean. The effect is slight but detectable.

3 R syntax for moving blocks bootstrap and Monte-Carlo sim-
ulations, and realizations from AR(1) with Gaussian errors

3.1 R code for moving blocks bootstrap

set.seed(1)

data=insert_data_here

N=length(data)

#R is number of replications

#SKd is the skewness of differences

#k is the size of each block

#data.bt is the bootstrap series of length N

R=1000;SKd=rep(0,R);k=50

for(r in 1:R){
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data_bt=rep(0,N)

for(i in 1:ceiling(N/k)){

endpoint=sample(k:N,size=1)

data_bt[(i-1)*k+1:k]= data[endpoint-(k:1)+1]

}

data_bt=data_bt[1:N]

y=diff(data_bt)

SKd_bt=(sum((y-mean(y))^3)/length(y))/sd(y)^3

SKd[r]= SKd_bt

}

print(mean(SKd))

print(sd(SKd))

hist(SKd,main="SKd of the series, k=50, nrep=1000")

3.2 R code for Monte-Carlo simulations on realizations of AR(1)
model with Gaussian errors

#data = AR(1) + rnorm

#length N=315, then N=4096

set.seed(1)

N=315

x=rep(0,N);x.ar=rep(0,N)

a=0.4

for(j in 2:N){x[j]=a*x[j-1]+rnorm(1)}

data=x

m=ar(data,order.max=1)

R=1000;SKd=rep(0,R)

for(r in 1:R){

x.ar=rep(0,N)

for(g in 2:N){x.ar[g]=m$ar[1]*x.ar[g-1]+rnorm(1)*sd(m$res[-1])

}

y=diff(x.ar)

SKd_ar=(sum((y-mean(y))^3)/length(y))/sd(y)^3

SKd[r]=SKd_ar

}

print(mean(SKd))

print(sd(SKd))

3.3 R code for moving blocks bootstrap on realizations of AR(1)
model with Gaussian errors

#data = AR(1) + rnorm

#length N=315, then N=4096

set.seed(1)

N=315

x=rep(0,N)

a=0.4

for(j in 2:N){x[j]=a*x[j-1]+rnorm(1)}

data=x
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N=length(data)

R=1000;SKd=rep(0,R);k=50

for(r in 1:R){

data_bt=rep(0,N)

for(i in 1:ceiling(N/k)){

endpoint=sample(k:N,size=1)

data_bt[(i-1)*k+1:k]=data[endpoint-(k:1)+1]

}

data_bt=data_bt[1:N]

y=diff(data_bt)

SKd_bt=(sum((y-mean(y))^3)/length(y))/sd(y)^3

SKd[r]=SKd_bt

}

print(mean(SKd))

print(sd(SKd))

3.4 Test of code

The script were run for one realization of length 315 and one realization of length 4096
from AR(1) with α = 0.4.

#method: Monte-Carlo simulations

#when N=315

> print(mean(SKd))

[1] 0.005127861

> print(sd(SKd))

[1] 0.1291475

#when N=4096

> print(mean(SKd))

[1] -0.00174904

> print(sd(SKd))

[1] 0.03767824

#method: moving blocks bootstrap

#when N=315 k=50

> print(mean(SKd))

[1] 0.1799161

> print(sd(SKd))

[1] 0.1356913

#when N=4096, k=1000

> print(mean(SKd))

[1] 0.03968254

> print(sd(SKd))

[1] 0.03691822

There is close agreement between Monte-Carlo and moving blocks bootstrap in terms of the
standard errors. 0.129 and 0.136, and 0.038 and 0.037 for length 3.15 and 4096 respectively.
The only substantial difference is the mean (0.180) for the bootstrap with length 315, which
is consequence of the observed SKd of 0.212 in the realization of the AR(1). Notice that
the observed value of 0.183 is not statistically significant as the z-ratio is 0.212/0.136 which
is less than 2.
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4 Application of moving blocks bootstrap to sunspots series
(length 315) and EEG (D) series (length 4096)

4.1 Moving blocks bootstrap on sunspots series

#data = sunspots of length 315

#SKd of the observed sunspots

[1] 0.8555702

#when k=20, nrep=1000

> print(mean(SKD))

[1] 0.5937244

> print(sd(SKD))

[1] 0.3847948

#when k=50, nrep=1000

> print(mean(SKd))

[1] 0.7069069

> print(sd(SKd))

[1] 0.3316657

#when k=100, nrep=1000

> print(mean(SKD))

[1] 0.8124426

> print(sd(SKD))

[1] 0.2235839

4.2 Moving blocks bootstrap on EEG (D) series

#data = EEG (D) of length 4096

#SKd of the observed EEG (D)

[1] 5.404317

#when k=50, nrep=1000

> print(mean(SKD))

[1] 1.081129

> print(sd(SKD))

[1] 1.928021

#when k=100, nrep=1000

> print(mean(SKD))

[1] 1.778524

> print(sd(SKD))

[1] 2.296512

#when k=200, nrep=1000

> print(mean(SKD))

[1] 2.352384

> print(sd(SKD))

[1] 2.253458

#when k=500, nrep=1000
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> print(mean(SKD))

[1] 3.32431

> print(sd(SKD))

[1] 1.862239

#when k=1000, nrep=1000

> print(mean(SKd))

[1] 3.637276

> print(sd(SKd))

[1] 1.617452

The length of the moving block (k) is critical. If the block length is too short, then the
directionality is underestimated. However, long block lengths may tend to underestimate
the standard error because all bootstrap samples will be rather close to the marginal time
series. In practise it will be informative to determine significance using both the Monte-
Carlo and moving blocks bootstrap with various block lengths.

#plot a histogram

par(mfrow=c(1,2))

>hist(SKd,main="SKd of sunspots, k=50, nrep=1000")

>hist(SKd,main="SKd of EEG (D), k=1000, nrep=1000")

(a) (b)

Figure 1: Histogram for the skewness of first differences of the moving blocks bootstrapped of
sunspots when k = 50, nrep = 1000 (a), and of EEG (D) when k = 1000, nrep = 1000 (b).

5 Results from the suite of directionality tests applied to 12 time
series, and boxplots of first differences
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5.1 Boxplot of the first differences of the observed time series

Generally, the boxplots highlight a large proportion of outlying values and the distribution
of differences are highly kurtotic. There is clear positive skewness in the case of differences
of sunspots, EEG (D) and apparent negative skewness in the differences of EEG (C).
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6 GARCH model for the residuals of AR models on dtds tourist
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Figure 2: dtds tourist arrivals plotted in time order (above) and reverse time order (below).

6.1 Residuals from AR(2) model

> #fit AR(2) to the series

> data=ss

> M1=ar(ss, order.max=2)

> M1

Call:

ar(x = ss, order.max = 2)

Coefficients:

1 2

0.2455 -0.0961

Order selected 2 sigma^2 estimated as 0.002858

> M1$order

[1] 2

> sqrt(M1$var.pred)

[1] 0.05346461

> #residuals from AR model

> RES.M1=M1$res[-(1:M1$order)]

> #fit GARCH(1,1) to the residuals

> library(fGarch)

> garch11_RES.M1=garchFit(~ garch(1,1), data = RES.M1, trace = FALSE)

> #the estimated GARCH(1,1) parameters

> garch11_RES.M1@fit$matcoef

Estimate Std. Error t value Pr(>|t|)

mu 1.154282e-03 2.151219e-03 0.5365709 0.59156408

omega 7.123456e-05 5.169605e-05 1.3779496 0.16821884
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alpha1 6.466026e-02 2.985989e-02 2.1654556 0.03035281

beta1 9.058234e-01 4.311175e-02 21.0110547 0.00000000

> sum(alpha1_M1,beta1_M1) #a stable GARCH(1,1) if the sum <= 1

[1] 0.9705

> #residuals from M1

> summary(RES.M1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.207000 -0.030070 -0.002800 0.000228 0.032750 0.235700

> #the residuals via GARCH(1,1) model

> GARCH_RES.M1=RES.M1/sqrt(garch11_RES.M1@h.t)

> summary(GARCH_RES.M1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.31700 -0.60780 -0.05171 0.01108 0.63530 3.41000

6.2 Residuals from AR(14 by AIC) model

> #fit AR(aic) to the series

> data=ss

> M2=ar(data)

> M2$order

[1] 14

> sqrt(M2$var.pred)

[1] 0.04712106

> #residuals from AR model

> RES.M2=M2$res[-(1:M2$order)]

> #fit GARCH(1,1) to the residuals

> library(fGarch)

> garch11_RES.M2=garchFit(~ garch(1,1), data = RES.M2, trace = FALSE)

> #the estimated GARCH(1,1) parameters

> garch11_RES.M2@fit$matcoef

Estimate Std. Error t value Pr(>|t|)

mu 1.815196e-03 2.069610e-03 0.8770713 0.3804479

omega 3.183738e-05 4.002805e-05 0.7953769 0.4263943

alpha1 2.524070e-02 1.803442e-02 1.3995852 0.1616376

beta1 9.561029e-01 3.534603e-02 27.0497953 0.0000000

> sum(alpha1_M2,beta1_M2) #a stable GARCH(1,1) if the sum <= 1

[1] 0.9813

> #residuals from M2

> summary(RES.M2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1470000 -0.0280300 0.0004399 0.0006097 0.0300000 0.1437000

> #the residuals via GARCH(1,1) model

> GARCH_RES.M2=RES.M2/sqrt(garch11_RES.M2@h.t)

> summary(GARCH_RES.M2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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-3.02100 -0.66630 0.01049 0.02780 0.68550 3.55800

> #plot qqnorm for the residuals

> par(mfrow=c(2,2))

> qqnorm(RES.M1)

> qqnorm(RES.M2)

> qqnorm(GARCH_RES.M1)

> qqnorm(GARCH_RES.M2)
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Figure 3: Normal quantile-quantile plot of residuals from AR(2) (above left), AR(14 by
AIC) (above right) models on dtds Arrivals, and the residuals modelled by GARCH(1,1)
(below left and right respectively).

7 Poisson regression for the sunspots

We show an auto-correlation function (ACF), spectrum and Fourier line spectrum for the
sunspot time series in Figure 4. We modelled the mean annual number of sunspots, Xt, as
a sequence of over-dispersed Poisson random variable with a mean at t given by

E[Xt] = β0 + β1Xt−1 + β2Xt−2 +
H∑
j=1

β1jcos(2πωjt) + β2jsin(2πωjt) (1)

where t = 1, 2, ..., n and H is the number of dominant frequencies. The frequencies are ωj

for j = 1, 2, · · · , H and their amplitudes are
√
β2
1j + β2

2j. Nine frequencies were identified
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Figure 4: ACF (a), spectrum (b) and the FTT (c) of the sunspots.

as the highest spikes in the Fourier line spectrum, and in order of magnitude these are: 30,
31, 32, 4, 29, 27, 7, 3 and 33.

The reason for taking two lags in Xt is that Equation 1 then represents the difference
equation of the differential equation form for a linear system with a single mode of vibration
with sinusoidal forcing. A Poisson model was chosen to allow for the non-negative variable
(modeling the logarithm of the number gave too many unrealistically high values after
exponentiation in simulations). The over dispersion factor was 2.3.

8 Moving directionality and moving volatility of the Wells Fargo
log-returns

The U.S. banking industry has experienced a series of severe financial and economic crises
which have affected the performance of banks (e.g. Dell’Ariccia et al. 2008, Allen & Christa
2013). Therefore, we are interested in comparing directionality during crises with direc-
tionality during more stable periods. Allen & Christa (2013) identified two banking crises:
credit crunch (1990:Q1 to 1992:Q4), and subprime lending crisis (2007:Q3 to 2009:Q4);
three market crises: stock market crash (1987:Q4), Russian debt crisis, and Long-Term
Capital Management bailout (1998:Q3 to 1998:Q4); together with dot.com bubble and
September 11 attack on the World Trade Center (2000:Q2 to 2002:Q3), in the U.S. as
crises periods. Here, we combine the dot.com bubble and the September 11 attack with
the 2001-2002 recession (Wikipedia 2016b) as major events that happened in the U.S be-
tween 2000 and 2002. We also combine the subprime mortgage crisis with the 2007-2008
GFC, with effects continuing into 2009, the collapse of Lehman Brothers in 2008 and the
Great Recession of 2008-2012 (Wikipedia 2016a) as a second period of major shocks in the
U.S. during 2007 to 2012. Our definition of stable and unstable periods is summarized in
Table 3.

We compare mean, range, skewness, kurtosis, volatility and directionality in the stable
and unstable sub-series (Table 4). The volatility is here defined as the standard deviation of
the log-returns, and the directionality is measured by skewness of the first differences γ̂d. It
seems reasonable to expect higher mean values during the stable periods, but the first stable
period is quite anomalous. The skewness is somewhat higher during the unstable periods.
Directionality is positive and markedly higher during all of the unstable periods than in
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Table 3: Stable and unstable periods between May-1999 and Feb-2017.

Period Status

May to Dec-1999 Stable
Jan-2000 to Dec-2002 Unstable
Jan-2003 to Dec-2006 Stable
Jan-2007 to Dec-2012 Unstable
Jan-2013 to Feb-2017 Stable

any of the stable periods. The range is higher in the unstable periods but the volatility is
higher in the first stable period than in the following unstable period. These preliminary
results lead us to question whether monitoring directionality, as well as volatility, would
give early warning of unstable periods.

Table 4: Summary statistics of the Wells Fargo log-returns by stable and unstable sub-
series.

Period Mean Range Skewness Kurtosis Volatility Directionality

Stable −0.041 14.0 0.15 3.4 2.32 0.11
Unstable 0.028 21.5 0.22 6.1 1.98 0.46

Stable 0.054 7.0 0.13 4.2 0.88 0.04
Unstable 0.007 55.6 0.73 16.0 3.74 0.26

Stable 0.063 12.5 0.15 5.8 1.18 0.05

To investigate this we use a 9-month moving directionality series (MD), 21 days by 9
months is 189 trading days, which is defined in terms of skewness of the first differences
γ̂d in the log-returns of Wells Fargo. The formula used to calculate the MD is given in
Equation (2),

γ̂d,t =

188∑
i=0

(∆xt−i −∆xt)
3/m[ 188∑

i=0

(∆xt−i −∆xt)2/m
]3/2 , (2)

where ∆xt = xt − xt−1, t = 189, ..., 4479, m = 189, ∆xt =
188∑
i=0

∆xt−i/m and xt is the

full-length time series of log-returns. Similarly for the volatility, given by the marginal
standard deviation of log-returns {xt}, the 9-month moving volatility series (MV) is defined
by Equation (3).

σ̂i =

√√√√√ 188∑
i=0

(xt−i − x̄t)2

m
, (3)
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where x̄t =
188∑
i=0

xt−i/m.
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Figure 5: Daily share price (a), daily log-return (b), 9-month moving directionality (c), and
9-month moving volatility (d) of Wells Fargo.

The plots of the MD, {γ̂d,t}, and the MV ,{σ̂i}, for the Wells Fargo together with its
share prices and log-returns are illustrated in Figure 5. We use vertical lines in the plots to
show the dates when the crises are reported in news. For example, 15-Jan-2001 for the 2001
dotcom crash, 11-Sep-2001 for the 2001 Sept 11 attack on the World Trade Centre, the
subprime mortgage crisis was first widely reported on 1-Jul-2007 and the collapse of Lehman
Brothers was reported on 15-Sep-2008. No exact dates are found to indicate the recessions,
but the U.S. unemployment rate rose to 4.2% on 1-Feb-2001, the National Association of
Securities Dealers Automated Quotations (NASDAQ) reached a 6-year low on 24-Sept-
2002 and U.S. stock market fell dramatically on 1-Aug-2011 for the 2011 recession. These
vertical lines are particularly helpful in this case as the share prices move in short to long-
term downward trends after the shocks in Figure 5(a). In particular, major declines in
share prices after the 1-Jul-2007 and the 15-Sep-2008 during the crisis period. Similarly,
more variability in the log-returns during the 2007-2012 unstable period in Figure 5(b).

The MD appears to be less smooth than the MV, and the MD soars on two occasions
during crises periods in Figure 5(c). In particular, the fourth vertical line of 24-Sept-2002
and the second last vertical line of 14-Sept-2008. In contrast, MV appears to be less
influenced by crises. We have seen similar effects in the moving directionality at 3-month,
6-month and 12-month.

We illustrate the relationship between directionality and volatility for the Wells Fargo
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(a) (b)

Figure 6: Scatter plot (left) and CCF (right) of the 9-month moving directionality and the
9-month moving volatility of Wells Fargo.

daily log-return series using scatter plot of the {γ̂d,t} versus the {σ̂i} in Figure 6(a). There
is no obvious linear pattern from the plots, and the correlation coefficient at a lag of 0
is 0.09. This low correlation coefficient indicates that directionality could provide addi-
tional information to volatility. This might be expected as volatility is a second order
characteristic and directionality is third order. Moreover, in the case of Wells Fargo, the
cross-correlation function (CCF) in Figure 6(b) shows directionality leads the occurrence
of volatility over this period.

These features of directionality suggest that it may have potential as an early warning
signal of financial crises and consequent falling share prices. We have carried out prelimi-
nary work on an investment strategy of buying when the MD is high and selling when it
is low for a portfolio of U.S. bank shares. Over the period of May 3, 1999 to February
17, 2017 the return was 2.15% per annum, which was higher than achieved with MV. This
work is continuing.
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