Supplemental material to "A comparison of multiple imputation methods for incomplete longitudinal binary data"

1 Sample SAS codes

Our analyses in the simulation study and the application were performed by using SAS software. In particular, we used MI procedure for imputing the missing data. We below provide sample SAS codes for implimenting the imputation in the six MI methods described in Section 2. Table S1 shows a part of input dataset which is represented as indata in the sample codes. The input dataset indata contains nine variables. SUBJID is a character variable representing a subject identification number. GROUPN and GROUP are a numeric and a character variable respectively, representing group indicators. $_1 \mathrm{~W}, _2 \mathrm{~W}, _3 \mathrm{~W}, _4 \mathrm{~W}, _5 \mathrm{~W}$ and $_6 \mathrm{~W}$ are numeric variables taking binary values 0 or 1 (e.g. 0 for non-responder and 1 for responder).

Table S1. Input dataset indata.

SUBJID	GROUPN	GROUP	$_1 \mathrm{~W}$	-2 W	-3 W	-4 W	-5 W	-6 W
S1001	1	Active	0	1	1	1	1	0
S1004	1	Active	0	1	0	0	1	1
S1005	1	Active	0	1	1	.	.	.
S1006	1	Active	1	1	1	1	.	.
S1008	1	Active	0	0	0	1	1	0
\vdots								
S1007	0	Placebo	1	0	0	1	1	0
S1012	0	Placebo	0
S1015	0	Placebo	0	0	0	1	0	.
S1024	0	Placebo	0	0	0	1	1	1
S1025	0	Placebo	0	0	1	.	.	.
\vdots								

1.1 Monotone method

The imputations using the monotone method with the logistic regression and the discriminant function are performed, and their results are stored in output datasets MONOL and MONOD respectively.

```
proc mi data=indata nimpute=40 out=MONOL;
    class GROUP _1W _2W _3W _4W _5W _6W;
    monotone logistic(_1W _2W _3W _4W _5W _6W);
    var GROUP _1W _2W _3W _4W _5W _6W;
run;
proc mi data=indata nimpute=40 out=MONOD;
    class GROUP _1W _2W _3W _4W _5W _6W;
    monotone discrim(_1W _2W _3W _4W _5W _6W/CLASSEFFECTS=INCLUDE);
    var GROUP _1W _2W _3W _4W _5W _6W;
run;
```


1.2 Full conditional specification (FCS)

The imputations using the FCS with the logistic regression and the discriminant function are performed, and their results are stored in output datasets FCSL and FCSD respectively.

```
proc mi data=indata nimpute=40 out=FCSL;
    class GROUP _1W _2W _3W _4W _5W _6W;
    fcs logistic(GROUP _1W _2W _3W _4W _5W _6W);
    var GROUP _1W _2W _3W _4W _5W _6W;
run;
proc mi data=indata nimpute=40 out=FCSD;
    class GROUP _1W _2W _3W _4W _5W _6W;
    fcs discrim(GROUP _1W _2W _3W _4W _5W _6W/CLASSEFFECTS=INCLUDE);
    var GROUP _1W _2W _3W _4W _5W _6W;
run;
```


1.3 Markov chain Monte Carlo (MCMC)

The imputations using the MCMC with the coin flipping and the adaptive rounding are performed, and their results are stored in output datasets MCMCC and MCMCA respectively.

```
proc mi data=indata nimpute=40 out=WKMC1;
    mcmc chain=single initial=em;
    var GROUPN _1W _2W _3W _4W _5W _6W;
run;
data WKMC2;
    set WKMC1;
    if _1W<0 then I_1W=0; else if _1W>1 then I_1W=1; else I_1W=_1W;
    if _2W<0 then I_2W=0; else if _ 2W>1 then I_2W=1; else I_2W=_2W;
    if _3W<0 then I_3W=0; else if _ 3W>1 then I_3W=1; else I_3W=_3W;
    if _4W<0 then I_4W=0; else if _4W>1 then I_4W=1; else I_4W=_4W;
```

```
    if _5W<0 then I_5W=0; else if _5W>1 then I_5W=1; else I_5W=_5W;
    if _6W<0 then I_6W=0; else if _6W>1 then I_6W=1; else I_6W=_6W;
    drop _1W _2W _3W _4W _5W _6W;
run;
data MCMCC;
    set WKMC2;
    _1W=rand('bernoulli',I_1W);
    _2W=rand('bernoulli',I_2W);
    _3W=rand('bernoulli',I_3W);
    _4W=rand('bernoulli',I_4W);
    _5W=rand('bernoulli',I_5W);
    _6W=rand('bernoulli',I_6W);
    drop I_:;
run;
proc sort data=WKMC2 out=WKMCA1;
    by _Imputation_ GROUPN;
run;
proc means data=WKMCA1 mean;
    by _Imputation_ GROUPN;
    var I_1W I_2W I_3W I_4W I_5W I_6W;
    ods output Summary=WKMCA2;
run;
proc transpose data=WKMCA2 out=WKMCA3;
    by _Imputation_ GROUPN;
    var I_1W_Mean I_2W_Mean I_3W_Mean I_4W_Mean I_5W_Mean I_6W_Mean;
run;
data WKMCA4;
    set WKMCA3;
    COL2=COL1-quantile('NORMAL', COL1)*sqrt(COL1*(1-COL1));
    drop _LABEL_;
run;
proc transpose data=WKMCA4 out=WKMCA5(drop=_NAME_);
    by _Imputation_ GROUPN;
    id _NAME_;
    var COL2;
run;
data MCMCA;
    merge WKMCA1 WKMCA5;
    by _Imputation_ GROUPN;
    if I_1W<I_1W_Mean then _1W=0; else _1W=1;
    if I_2W<I_2W_Mean then _2W=O; else _2W=1;
```

```
    if I_3W<I_3W_Mean then _3W=0; else _3W=1;
    if I_4W<I_4W_Mean then _4W=0; else _4W=1;
    if I_5W<I_5WMMean then _5W=0; else _5W=1;
    if I_6W<I_6W_Mean then _6W=0; else _6W=1;
    keep _Imputation_ SUBJID GROUP: _:;
run;
```

