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Abstract

The International Technology Roadmap for Semiconductors has identified reliability as a growing

challenge for users and designers of all types of integrated circuits. In particular, the occurrence

of wearout faults is expected to increase exponentially as manufacturing processes scale below

65nm. By acknowledging the importance of these faults and the resulting failures, designers can

take steps to improve the expected lifetime of the system. Several system-level techniques, such

as communication architecture design and slack allocation, are capable of mitigating the effects of

wearout faults and improving system lifetime. Task mapping optimization is another system-level

technique that can be applied at both design time and runtime to enhance system lifetime and has

several advantages over other lifetime optimization techniques.

The first advantage that task mapping has over other system-level techniques is that it is more

flexible. We show that task mapping can positively impact system lifetime in a number of scenarios

and does not rely on redundancy or complex reconfiguration mechanisms, although both of those

provide additional benefit. The second advantage of using task mapping to improve system lifetime

is a lower cost compared to other techniques. Other lifetime improvement techniques seek to aug-

ment systems in a cost-effective way to mitigate the effects of wearout faults while task mapping

does not necessarily require additional investment in hardware to achieve similar effects. The final,

and perhaps most significant, advantage of task mapping is its ability to dynamically manage life-

time as the system is running. While decisions made by other system- and circuit-level techniques

must be finalized before the system is manufactured, the task mapping can continue to change to

account for the actual state of the system in real time.

We propose two distinct task mapping techniques to be used at the two different times during

which optimization can occur. At design time, we take advantage of abundant computational re-
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sources to perform an intelligent search of the initial task mapping solution space using ant colony

optimization. At runtime, we leverage information from hardware sensors to quickly select good

task mappings using a meta-heuristic. Our two techniques can be used together or in isolation

depending on the use case and design requirements of the system.

This thesis makes the following intellectual contributions:

• Lifetime-aware design-time task mapping - Ours is the first approach to search for initial task

mappings that directly optimize system lifetime rather than optimizing other metrics which

only influence system lifetime, like temperature and power. Because this technique is meant

for use at design time, we employ a powerful search algorithm called ant colony optimiza-

tion, which takes advantage of a designer’s computational resources to find a near-optimal

task mapping. Our lifetime-aware design-time task mapping improves system lifetime by

an average of 32.3% compared to a lifetime-agnostic approach across a range of real-world

benchmarks.

• Lifetime-aware runtime task mapping - Ours is the first approach to dynamically manage

the lifetime of embedded chip multiprocessors at runtime through the use of task mapping.

By leveraging data from hardware sensors and information about the system state, our meta-

heuristic approach is able to find high-quality task mappings which extend system lifetime

without performing a costly search of the solution space. Our lifetime-aware runtime task

mapping improves system lifetime by an average of 7.1% compared to a runtime temperature-

aware task mapping approach, and in the best case, system lifetime was improved by 17.4%.

Our approach also improved the amount of time until the first component failure by 14.6% on

average and 33.9% in the best case.

• Evaluation of lifetime-aware task mapping - We measure the improvement in system lifetime

resulting from our task mapping techniques across a range of benchmarks. We also compare

our lifetime-aware techniques to others which attempt to indirectly optimize system lifetime

to show that direct optimization is the only way to achieve maximum lifetime. For example,

we show that task mappings that are near optimal in terms of average initial component tem-

perature can result in a range of system lifetimes that is up to 53.2% of the optimal lifetime;

clearly, low temperature does not imply long lifetime.
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• Co-optimization of competing lifetime metrics - The wide range of use cases for embedded

chip multiprocessors means that different systems will have different design goals. We con-

sider how the pertinent measure of lifetime changes in different use cases, and analyze the

degree to which these competing lifetime metrics can be co-optimized.

• Best practices for a system lifetime simulator - We created a simulator which estimates the

lifetime of an embedded chip multiprocessor executing one or more applications. The sim-

ulator is detailed enough to capture the effects of various system-level design techniques on

lifetime, and thus, it is valuable to the field of lifetime optimization research even outside the

context of task mapping.

In summary, lifetime optimization for embedded chip multiprocessors is required so that cutting-

edge manufacturing processes can continue to be used for a wide range of systems. Our research

mitigates the problem of increasingly common wearout faults by proposing and evaluating a pair of

design- and runtime task mapping techniques that enhance system lifetime across a broad range of

use cases.
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Chapter 1

Introduction

1.1 Motivation

Continually shrinking transistor sizes allow integrated circuits to increase in performance and ca-

pability while area and power costs are reduced. Both designers and users have relied on these

manufacturing process improvements for over 50 years to increase the functionality and usability of

new integrated circuits. More recently, the level of integration has risen to a point where multiple

processors, memory, their interconnect, and other peripherials can all be implemented in a single

package. These packages are small enough in size that they can be used in a vast number of ap-

plications. So called embedded chip multiprocessors are integral to cellular phones, cars, home

appliances, communications infrastructure, and numerous other areas of technology that we interact

with on a daily basis.

However, there are several drawbacks to process improvements, and degradation of system life-

time is one of the most significant. System lifetime can be measured as the amount of time between

when the system is powered up for the first time and when the system is no longer able to execute

its intended application(s). If all other variables are held constant, a system implemented in a pro-

cess with a smaller geometry will fail sooner than the same system implemented in a process with

a larger geometry. The negative effect of decreases in process geometry size on system lifetime is

significant enough that the International Technology Roadmap for Semiconductors has specifically

identified it as a problem [1].

The cause of system lifetime degradation is well known. As a system operates, the physical
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properties of its transistors and wires will deteriorate until some part of the system is no longer able

to meet its original timing constraints. A system’s functionality can be reduced to an unacceptable

level or become wholly incorrect once a timing constraint is violated. When a system fails due to

this phenomenon, it is said to have experienced a wearout fault. The rate at which wearout faults

occur is dependent on manufacturing process parameters, system usage, and operating conditions.

Prior research has shown that the occurence of wearout faults increases exponentially as process

geometry decreases past 65nm [2]. As state-of-the-art foundries push their manufacturing processes

beyond 14nm, the industry is squarely in the position where wearout faults cannot be ignored.

Both producers and consumers of embedded chip multiprocessors will be affected if nothing

is done to mitigate wearout faults. At the very least, a wearout fault will cause an interruption in

whatever activity the system is performing, and the system will have to be replaced at some cost.

There are also scenarios in which the system cannot be replaced, and so system lifetime must meet

established goals for a particular product to be usable at all. The perceived quality of the product

can be lowered or guarantees made to end users or system integrators may be violated if the system

fails sooner than expected.

While the problem of system lifetime degradation has been acknowledged by many, the existing

techniques for addressing it have disadvantages. Wearout faults can be mitigated during system-

level design by adding redundant or over-provisioned computation, memory, and interconnect re-

sources. Such techniques require the designer to make predictions about how the system will age

in order to allocate additional resources in a cost effective manner. Another issue with these tech-

niques is that they increase the complexity of the system, which usually results in increased design

and verification times. Additional resources may also increase the cost of the system beyond the

minimum required to implement the desired functionality.

As an alternative to adding resources at the system level, guardband can be added during circuit-

level design in order to mitigate wearout faults. Adding guardband involves over-engineering spe-

cific circuit features (e.g, widening wires beyond their minimum dimensions) in an effort to improve

lifetime. The amounts and types of guardband to be added can be prescribed by the foundry based

on an internal evaluation of its manufacturing process. Usually, the foundry requires that this guard-

band be implemented across the entire design for lifetime guarantees to be made, meaning that

cost will increase even in locations of the system which do not require additional protection against
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wearout faults. Perhaps the largest disadvantage of this technique, and also the system-level design

technique, is that the runtime characteristics of the system usually cannot be taken into account. As

mentioned earlier, system usage impacts the rate of wearout faults, and the benefits of these design-

time techniques will be limited by the accuracy of their predictions of system usage. While some

systems may be used in a tightly controlled manner, many modern embedded chip multiprocessors

experience widely varying workloads in an array of operating conditions.

1.2 Thesis Overview

This thesis addresses the problems described in the previous section by proposing and evaluat-

ing two techniques for mitigating wearout faults with lifetime-aware task mapping. Task mapping

affects system lifetime since it directly controls the power dissipation of each component in the sys-

tem, which in turn impacts the temperature of the components and the rate at which wearout faults

occur. Our solution is comprised of a design-time technique for finding an initial task mapping and a

runtime technique for changing the task mapping as the system operates. The individual techniques

are constructed to take advantage of the different types of system information that are available at

design time and runtime. Similarly, the design of the techniques accounts for the different sets of

computational resources that are available to compute a task mapping at design time and runtime.

The main advantages that task mapping has over system- and circuit-level design techniques are that

it can be altered at runtime to adapt to variations in the system or workload, and it does not impact

the cost of the system as severely.

Figure 1.1 shows a qualitative view of how the framing of the task mapping problem changes

over time. The x-axis represents time, the red line (right y-axis) represents the amount of known

system information, and the blue line (left y-axis) represents the amount of resources available for

task mapping computation. A designer may have information about the application(s) to be run on

the system at design time, but only sensors in an actual system can provide detailed feedback about

how components are accumulating wear. Since the amounts of wear which cause component failure

can differ from chip to chip, the quality of the information about the system increases drastically

from design time to runtime. What the designer lacks in information at design time can be made

up for in computational resources, since it is not unreasonable to assume that a large collection of
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Design time

Time

Known 
System 

Information

Resources for 
Task Mapping 
Computation

Runtime

Manufacturing

Figure 1.1: Qualitative evaluation of resources for task mapping computation and system informa-
tion over time

servers would be available for design space exploration. In contrast, a running system only has its

own computational resources to rely on for configuring itself, and in the case of an embedded chip

multiprocessor, those resources may be meager. Manufacturing is shown in the figure as the step

between design time and runtime for completeness, but an exploration of manufacturing techniques

which improve lifetime is outside the scope of this thesis.

The first element of our solution is a technique for design-time task mapping. Since the task

mapping solution space is too large to explore exhaustively, an optimization algorithm is required

to approximate the best solution. We use ant colony optimization (ACO) in this context to search

for the initial task mapping which results in the longest system lifetime. ACO is a powerful search

strategy in which the problem is represented as a graph that is traversed by simulated ants to build

candidate solutions. Solution quality is iteratively improved through communication between past

and future ants by annotating the graph in a way that echoes the chemical pheromones real ants

use to mark paths to food sources. ACO takes advantage of the non-trivial amounts of time and

computation resources that are available to an engineer designing a system to find a near-optimal

solution for an initial task mapping.

As a system runs, it is likely that the task mapping should be updated to account for variations in

the workload and the system itself. While there are less significant resources available to compute a

near-optimal task mapping than at design time, there exists a wealth of information about the system

that isn’t available during the search for an initial task mapping. We use this additional information,

in the form of values reported from wear and temperature sensors, to inform a customized meta-

heuristic which periodically changes the task mapping at runtime. This meta-heuristic is the second
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element of our solution for mitigating wearout faults and picks up where ACO left off to continue

optimizing system lifetime after manufacturing.

We use a system lifetime simulator to evaluate our techniques and compare them to alternative

approaches. System lifetime is estimated using statistical models of common types of wearout

faults in conjunction with a Monte Carlo simulation. Monte Carlo simulation is required because

the specific type of statistical models being used, while accurate, preclude an analytic solution.

The simulation compounds the already difficult task mapping problem to create a large solution

space where the evaluation of a single solution is computationally expensive. The statistical models

are driven by manufacturing process parameters and runtime information about the system being

simulated, such as temperature. Arbitrary hardware architectures and streaming application task

graphs can be described to the simulator for testing with all relevant task mapping techniques.

This thesis includes comparisons of our proposed techniques to competing approaches. Due to

the strong dependence of wearout faults on temperature, it has been suggested that systems which

are optimized for temperature will also be optimized for lifetime. We provide a detailed analysis

of how well temperature-aware task mapping optimizes for lifetime and vice-versa. Because power

dissipation directly impacts temperature, a similar argument can be made about power-aware task

mapping being able to optimize lifetime. Our results show that using temperature and power as

proxy optimization targets for system lifetime results in task mappings that lead to sub-optimal

system lifetime when compared to pure lifetime-aware techniques like the ones we propose.

Lifetime is important in a broad range of applications, including those where system complexity

needs to be minimized, and the relevant definition of lifetime can change in these cases. Instead of

defining lifetime as the amount of time until the system no longer has sufficient resources to execute

its application(s), lifetime may mean the amount of time until a single component in the system fails.

This thesis also explores the extent to which these two definitions of lifetime can be co-optimized

in the context of our proposed solution. By showing that our techniques positively affect lifetime in

these situations, we increase the number of use cases in which they are applicable.

1.3 Contributions

A summary of the contributions of this thesis is as follows:
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• a lifetime-aware design-time task mapping technique based on ACO that takes advantage of

computational resources to find near-optimal initial task mappings,

• a lifetime-aware runtime task mapping technique using data from wear and temperature sen-

sors to dynamically manage system lifetime,

• an evaluation of lifetime-aware task mapping using a system lifetime simulator with compar-

isons to techniques that attempt to optimize lifetime indirectly,

• an exploration of how various definitions of lifetime can be co-optimized in complexity-

constrained systems using lifetime-aware task mapping, and

• a detailed simulator that uses Monte Carlo simulation to estimate how design decisions, task

mapping in particular, affect the rate of wearout faults in components and impact overall

system lifetime.

1.4 Organization

The remainder of this thesis is structured as follows. Chapter 2 discusses background information

about the relationships between lifetime, task mapping, temperature, and power along with theory

about the benefits of lifetime-aware task mapping. Next, Chapter 3 explains the system lifetime

simulator that is used to evaluate our proposed techniques. Then, Chapter 4 details the use of ACO

to search for near-optimal initial task mappings. Chapter 5 presents our runtime task mapping

meta-heuristic for dynamically managing system lifetime. Chapter 6 explores the co-optimization

of different lifetime goals using lifetime-aware task mapping. Chapter 7 provides a discussion of

related work and Chapter 8 offers directions for future work and our conclusions.



Chapter 2

Task Mapping and System Lifetime

Before describing the details of our design-time and runtime task mapping approaches, it is im-

portant to understand the theory about why different task mappings can result in different system

lifetime. While it may be clear to the reader how adding hardware redundancy to a system architec-

ture or adding guardband during circuit-level design can increase the expected lifetime of a system,

the mechanisms through which task mapping affects system lifetime are not as straightforward. The

degree to which task mapping affects system lifetime is dependent on many things, including when

the task mapping is changed, for what metric the task mapping is optimized, the structure of the

system, and even the particular definition of lifetime.

Systems structured as embedded chip multiprocessors are are becoming increasingly prevalent

due to the broad range of features they support and the fact that numerous configurations are readily

available from intellectual property vendors. A product designer can leverage an existing embedded

chip multiprocessor to perform several functions rather than designing an ASIC from scratch or

integrating a set of existing ASIC designs. While a fully custom hardware design may have per-

formance and power advantages over an embedded chip multiprocessor, the use of an embedded

chip multiprocessor allows for significantly reduced design costs and a faster time-to-market for the

product. In fact, the cost and time savings realized when using an embedded chip multiprocessor are

so large they they enable some products to be created that would not be economically feasible oth-

erwise. Cellular phones, tablet computers, smart televisions, digital media streaming devices, and

automobile “infotainment” systems are examples of high volume products which are built around

embedded chip multiprocessors.

7
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As with any other integrated circuit being manufactured using a cutting-edge process, lifetime

is a concern for embedded chip multiprocessors. Because one of the major advantages of using

an embedded chip multiprocessor is their low cost, methods of improving lifetime that have little

or no impact on cost are ideal. With that requirement in mind, our work focuses on using task

mapping as a way to mitigate wearout faults because it avoids the increased costs associated with

over-provisioning at the system and circuit levels. Task mapping controls the amount of work being

done by each component and is directly responsible for the power dissipation of each component.

Component power dissipation has a strong effect on component temperature, and component tem-

perature has a similarly strong effect on how quickly a component accumulates wear. Thus, task

mapping affects the times at which the components in the system fail and, consequently, the overall

lifetime of the system. We assert that careful manipulation of the task mapping can significantly

improve a system’s lifetime.

This chapter begins with an overview of the type of system targeted by our task mapping ap-

proaches; namely, embedded chip multiprocessors. Following our definition of an embedded chip

multiprocessor, we give a formal definition of the task mapping problem and its complexity. Next,

we explain the different ways in which the lifetime of a system can be measured and the concept

of slack. The definitions of system lifetime and slack are then used to make a high-level compari-

son of two general approaches to the task mapping problem. Finally, we discuss the advantages of

lifetime-aware task mapping over other task mapping approaches which can theoretically improve

system lifetime indirectly.

2.1 System Overview

Embedded chip multiprocessors are single-package systems that contain a collection of individual

processors that can communicate with each other directly or through shared memory. While the

“embedded” moniker has a broad range of connotations, we mean for it to imply that the system

is responsible for executing a pre-defined set of applications and is comprised of processors and

memories which tend to be more focused on power-efficiency than performance when compared

to the corresponding pieces of a desktop computer. We define a system component to be any of

the individual processors or memories in the embedded chip multiprocessor. Various mixes of
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Figure 2.1: NoC-based embedded chip multiprocessor system, layered view

components with different tradeoffs between performance, power, and cost can be used to optimize

the embedded chip multiprocessor for a specific set of applications.

There are several design paradigms that can be used to organize an embedded chip multipro-

cessor at the top level and allow communication between the components. Historically, these types

of systems have been bus-based. In this type of architecture, all components in the system are con-

nected to a central bus, which allows for any pair of components to communicate directly with each

other. The central bus in this type of architecture has the following drawbacks: it can be a perfor-

mance bottleneck, it can act as a single point of failure, it can consume large amounts of power, and

it can have a high area overhead resulting in increased system cost.

Network-on-chip (NoC) architectures have been introduced as an improvement over bus-based

architectures [3]. Components in an NoC send data to each other over a communication architecture

that is built with a set of network switches connected in a particular topology. A component can

place data on the communication architecture through one of the network switches, and the network

switches then forward the data such that it arrives at the desired destination component. NoC archi-

tectures improve upon all of the drawbacks of bus-based architectured listed above. NoCs allow for

higher performance through a more flexible communication scheme, are more resilient because they

can be structured to avoid having a single point of failure, and are more power- and area-efficient

because they do not necessarily provide a direct connection between every pair of components in

the system. Due to these benefits and industry trends toward the use of these architectures, our work

focuses on embedded chip multiprocessors that are implemented as NoCs. Thus, we also consider

the network switches that make up the NoC communication architecture to be system components.

Figure 2.1 shows how a generalized task mapping subsystem fits into the overall design of



2.1. System Overview 10

Operating
System

Hardware
Components

Applications

Task Mapping Subsystem

…

…

Memory

Memory

Processor

WS TS

Switch

WS TS

Switch

WS TS

Switch

WS TS

Processor

WS TS

Processor

WS TS

Processor

WS TS

Switch

WS TS

Figure 2.2: NoC-based embedded chip multiprocessor system, topological view

an NoC-based embedded chip multiprocessor. The top half of the figure shows software layers

(red) while the bottom half of the figure shows hardware layers (blue), and parts of the system

which communicate with each other are adjacent. Software layers consist of the applications being

executed on the hardware and the operating system which controls the applications’ access to the

hardware. The upper hardware layer contains the a set of execution resources that are collected in

an NoC framework and exposed to the operating system. The lower hardware layer is made up of

the temperature and wear sensors inside each of the execution resources and hardware that filters the

data from those sensors prior to its output. The task mapping subsystem (green) spans both hardware

and software layers since it can be implemented in hardware, software, or a combination of the

two. The task mapping subsystem is responsible for collecting information about the applications,

through the operating system, and about the hardware, through the sensors, to create a mapping

of software tasks to execution resources. Each of the proposed approaches for lifetime-aware task

mapping described in Chapters 4 and 5 represents a potential implementation for the task mapping

subsystem.

Figure 2.2 shows a topological view of the system described in Figure 2.1. The dark blue boxes
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represent processors, the dark blue cylinders represent memories, and the light blue polygons repre-

sent switches. Though Figure 2.2 shows four processors and two memories connected by a simple

mesh network, our methods are compatible with arbitrary network sizes and topologies. We as-

sume that each processor and each switch has a wear sensor similar to the delay-based design for

measuring time-dependent dielectric breakdown in [4]; these are depicted as white boxes labeled

“WS” inside those components. Because memories can be protected from failure inexpensively by

adding row/column redundancy and a self-repair circuit [5], our work assumes that they cannot fail,

and so they have no need for wear sensors. All processors and switches are also fitted with tem-

perature sensors which are represented by the white boxes labeled “TS” inside those components.

The wear and temperature sensors are responsible for providing real-time information to the run-

time task mapping meta-heuristic described in Chapter 5. Similar to Figure 2.1, Figure 2.2 does not

define where the task mapping subsystem is implemented, although it does imply communication

with both hardware and software.

2.2 Task Mapping Problem Definition and Complexity

In order for the systems described in the previous section to do any useful work, one or more

software applications must be mapped to the processors and memories in the system. Finding

solutions to this problem that have a positive impact on system lifetime is the primary purpose of

the work presented in this thesis. Once each component has a set of tasks assigned to it, those tasks

must be scheduled. We consider task scheduling to be the process of choosing the order in which

the set of tasks mapped to a component is executed such that performance constraints are satisfied.

Because task scheduling optimization would be applied in addition to task mapping optimization

and not in place of it, we assert that the problem is orthogonal to task mapping, and thus, outside

the scope of this thesis.

We assume an application is described via a directed graph where each node represents an in-

dividual processing or memory task and each edge represents communication between two nodes.

The remainder of this thesis refers to these types of graphs as task graphs. Processing tasks are

synonymous with computational kernels and are annotated with the amount of computational re-

sources, measured in millions of instructions per second (MIPS), they need to meet performance
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requirements. Memory tasks correspond to data arrays and are annotated with the amount of space,

measured in kilobytes (KB), that they will occupy in a physical memory. Edges in the task graph

are annotated with the rate, measured in KB/s, at which data is transferred between a source task

and a destination task.

A task mapping is an assignment of the tasks in a task graph to the components in a system.

Given a set of n tasks, Equation 2.1 shows that each task has a requirement that is a positive inte-

ger. The requirements for both processing and memory tasks, measured in either MIPS or KB, are

represented in this single array. Each task requirement is a constant value (i.e, it is not dependent

on input data), which means that our formulation only considers streaming applications. Each task

also has a type, where type “0” indicates a processing task and type “1” indicates a memory task, as

shown by Equation 2.2.

reqi ∈ N for i ∈ N≤n (2.1)

tTypei ∈ {0, 1} for i ∈ N≤n (2.2)

A set of m components is represented in a similar way. Equation 2.3 defines a capacity, measured

in MIPS for processors and KB for memories, for each component. The type of each component is

defined in Equation 2.4 where the 0/1 convention matches that for tasks.

capj ∈ N for j ∈ N≤m (2.3)

cTypej ∈ {0, 1} for j ∈ N≤m (2.4)

A task mapping which maps a set of n tasks to a set of m components can be described as a matrix

in which there is a row for each task and a column for each component. An entry in the matrix will

be “1” if the task represented by that entry’s row is mapped to the component represented by that

entry’s column. All other entries in the matrix will be “0”. This formulation of a task mapping is

shown in Equation 2.5.

TMij ∈ {0, 1} for i ∈ N≤n, j ∈ N≤m (2.5)

For a task mapping to be considered valid, it must satisfy four constraints. The first two con-

straints ensure that the task mapping is functionally correct, and the second two constraints ensure
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that the task mapping meets the performance requirements of the system. We do not require that

a task mapping meet any constraints, such as temperature or power, other than the four described

below.

First, Equation 2.6 requires that the task mapping be one-to-one, which means that a task may

not be split among multiple components, but each component may have multiple tasks mapped to

it.
m∑
j=1

TMij = 1 for i ∈ N≤n (2.6)

Second, if a task is mapped to a component, then the type of the task must match the type of the

component, and this is shown by Equation 2.7.

m∑
j=1

TMij(tTypei + cTypej) ∈ {0, 2} for i ∈ N≤n (2.7)

Third, Equation 2.8 says that the sum of the requirements of all tasks mapped to a component cannot

exceed the capacity of that component.

n∑
i=1

TMijreqi ≤ capj for j ∈ N≤m (2.8)

Fourth, communication between the tasks must be routed between their host components through

the system such that none of the bandwidth capacities of the physical links between components

are exceeded. The routing algorithms we describe in Section 3.6 attempt to avoid congestion in the

NoC communication fabric when searching for a solution. However, it is possible that we may not

be able to find a corresponding routing for a particular task mapping or that a valid routing simply

does not exist for some task mappings. If any of the four constraints is violated, the task mapping

is considered invalid, and the system will not function when such a task mapping is applied.

Finding a task mapping that is optimal for a given metric (e.g, system lifetime) is an instance of

the generalized assignment problem. The generalized assignment problem is a traditional optimiza-

tion problem that has been shown to be NP-hard, which effectively means that there is no efficient

way to locate the optimal solution and that an exhaustive search of the solution space is not feasible

for non-trivial problem sizes. The number of ways to map the application(s) to the system increases

very quickly with the number of tasks in the application(s) and the number of components in the
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system. Further, it is computationally expensive to evalute a task mapping with respect to system

lifetime as will be shown in Chapter 3.

O(|taskMappings|) = procsprocTasks ∗memsmemTasks (2.9)

A bound on the upper limit of the number of task mappings is given by Equation 2.9. In Equation

2.9, procs and mems represent the number of processors and memories in the system, respectively.

The variables procTasks and memTasks represent the total number of processing tasks and data

arrays in the application(s) being mapped to the target system, respectively. Thus, the first term

in Equation 2.9 gives the number of ways that the processing tasks can be mapped to processors

while the second term gives the number of ways that the data arrays can be mapped to memories.

The product of these two terms bounds the number of task mappings for the system as a whole

because processing tasks are never mapped to memories and vice-versa. However, not all of the

task mappings as counted by Equation 2.9, will be feasible; some of these mappings will violate

one or more of the constraints described above. As benchmarks are introduced later in this thesis,

we will refer back to this equation and show concrete examples of just how quickly the solution

space grows with problem size.

2.3 Definitions of System Lifetime and Slack

This thesis is primarily concerned with finding task mappings which optimize the system lifetime

of the NoC-based embedded chip multiprocessors described in Section 2.1. System lifetime is a

general term, and it can be interpreted in several ways depending on the context for which the

system has been designed. Two common interpretations of system lifetime, and the ones which are

pertinent to this thesis, are total system lifetime (tsys) and time to first failure (tfirst). Definitions of

tsys and tfirst are as follows:

• tsys– the amount of time between when a system is powered on for the first time and when

the system is no longer able to execute its intended application(s) due to component failures.

• tfirst– the amount of time between when a system is powered on for the first time and when

the system experiences its first component failure.
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Figure 2.3: Graphical representation of tsys and tfirst

Both tsys and tfirst are typically measured in terms of years. Chapter 6 provides a more detailed

discussion of the different scenarios in which tsys and tfirst are important and why a designer may

favor one over the other.

Another principle that requires definition to understand the work presented here is slack. Slack

is defined as the amount of resources in the system, whether computational or memory, in excess

of the minimum amount of resources required to execute the application(s) intended for the system.

Computational slack is measured in MIPS and memoy slack is measured in KB. For example,

a system is said to have 100 MIPS of computational slack if the combined performance of all

processors in the system is 300 MIPS and the applications running on the system require a total

of 200 MIPS to meet their performance requirements. Given enough slack, a system may be able

to continue to execute its intended application(s) even after one or more components has failed.

Existing work [6] has presented a detailed exploration of how slack can be allocated cost-effectively

to improve system lifetime. All of the work in this thesis is applicable to systems regardless of how

much slack they have, but most of our experiments assume that some slack has been added to the

system.

Figure 2.3 shows a graphical representation of tsys and tfirst. The upper bar shows how tsys

and tfirst are measured in the case of a system with no slack. The left edge of the bar represents

the point in time that the system was first powered on, and time advances to the right of the figure.

The section of the bar labeled “No failures” shows the amount of time that the system runs without

experiencing a component failure. The right edge of this bar denotes when the first component in

this system fails, and therefore also represents tfirst for the system. Since the system has no slack,

the loss of the first component means that the system as a whole will no longer have the resources

required to execute its application(s). Thus, the right edge of the bar also denotes the point in time

at which the system fails, or tsys.



2.4. Comparing Reactive and Proactive Task Mapping 16

The lower bar in Figure 2.3 shows the same measurements for a system with non-zero slack. In

this particular case, the system has enough slack to be able to survive the failure of two components

before the remaining components no longer satisfy the performance requirements. Assuming all else

is equal, this system runs for the same amount of time without component failures as the system with

no slack. The first component fails at the same time it did in the system with no slack, and so the

tfirst measurements for the two systems are equal. However, this system then continues to run for

some amount of time after the first component has failed (“1 failure”) and for an additional amount

of time after the second component has failed (“2 failures”). A third component will eventually fail

and cause the system to fail as a whole, and this is shown as the rightmost edge of the lower bar.

In summary, the presence of slack can increase the tsys of a system but does not necessarily affect

tfirst.

2.4 Comparing Reactive and Proactive Task Mapping

Another aspect of task mapping which can change the effect it has on system lifetime is the choice

about when to compute a new task mapping and apply it to the system. Task mappings can either

be computed reactively or proactively depending on the tradeoffs between lifetime and cost being

targeted by the designer.

In reactive task mapping, the process of computing a new task mapping is triggered only when a

component in the system fails. Because the task mapping is never changed during normal operation

in this strategy, there is no performance or downtime penalty incurred due to a change in the task

mapping. The need for wear or temperature sensors in a system to inform the task mapping process

is obviated when reactive task mapping is employed since the biggest change in the state of the

system is the fact that a component failed. Reactive task mapping is the strategy in place for the

design time task mapping optimization we describe in Chapter 4.

Proactive task mapping involves the computation of new task mappings at a defined time in-

terval. For example, a new task mapping may be computed and applied to the system every week,

every 30 days, every year, etc. The purpose of proactive task mapping is to account for more fine

grained changes in system state, such as the accumulation of wear on components, than reactive

task mapping is able to consider. One drawback of proactive task mapping is that it may lead to
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Figure 2.4: Comparison of reactive and proactive task mapping in the presence of slack

increased hardware costs to enable tasks to be moved as the system is running. Also, proactive task

mapping may cause the system to be unusable while the task mapping is being changed, but we

believe this issue to be negligible in most cases because of the length of time between remappings

that we are proposing and the fact that the remapping schedule could be made to take advantage of

system idle time. The notion of proactive task mapping is central to our approach for runtime task

mapping optimization that is covered in Chapter 5.

Figure 2.4 shows illustrates the effects of proactive task mapping (lower bar) on tsys and tfirst

compared to reactive task mapping (upper bar). In this example, the system has enough slack to

surive two component failures. Both bars are divided into three sections which show the amounts

of time that the system runs under different numbers of component failures. The most significant

change as a result of moving to a proactive task mapping strategy is that tfirst increases significantly,

and the figure depicts this effect as a longer fraction of time spent in the “No failures” state in the

lower bar. The reason for this change is that proactive task mapping is able to take advantage of the

slack in the system to delay component failures by distributing the wear being accumulated by the

system as a whole across all components. Reactive task mapping, on the other hand, uses the slack

in the system only to recover from component failures and is unable to change the rate at which the

components accumulate wear in between failures. Proactive task mapping can have some positive

effect on tsys as depicted by the fact the the lower bar in Figure 2.4 is longer than the upper bar. In

theory, proactive task mapping causes all components in a system to accumulate wear almost to the

point of failure by the time the first component in the system fails. The system as a whole fails soon

after the first component failure since each remaining component is also near failure.

Table 2.1 summarizes the effects of reactive and proactive task mapping on tsys and tfirst in

systems with and without slack. All comparisons in the table are done relative to the case where
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Table 2.1: Summary of the effects of task mapping on system lifetime

Slack Amount 0 > 0

Lifetime Metric tsys = tfirst tsys tfirst

Reactive Task Mapping baseline + no change
Proactive Task Mapping + + +

reactive task mapping is used in a system with no slack, and so that entry is labeled “baseline”.

In the case of a system without slack, the entire system will fail as soon as a single component

fails, and so tsys and tfirst will always be the same in these cases. Using proactive task mapping

even without any slack present allows tsys/tfirst to be improved because the task mapping can be

adjusted between when the system is first powered on and when the first component fails. When

slack is present, reactive task mapping can improve tsys since it will change the task mapping after

each component failure, but it has no effect on tfirst since the task mapping is not changed before

the first component failure. Proactive task mapping in the presence of slack can improve both tsys

and tfirst as was shown in Figure 2.4. The trends shown in Table 2.1 are supported by the data

gathered from experiments in Chapters 4 and 5.

2.5 Advantages of Lifetime-Aware Task Mapping

At this point, we have shown the different ways in which task mapping can affect system lifetime,

but we have not yet addressed the fact that existing techniques may already mitigate the problem of

decreasing system lifetime. Temperature is an important metric to minimize in any system because

it will reduce the cost and size of the cooling mechanism required to prevent the system from

experiencing thermal failure. In embedded systems, temperature is particularly important because

the physical space in which the system operates is typically quite small and allows for little or

nothing in the way of active cooling. Several pieces of work in the literature propose temperature-

aware techniques, including task mapping, to deal with these problems. Because of the strong

dependence of the rate of wearout faults on temperature, it is reasonable to suggest that techniques

which optimize system temperature will also optimize system lifetime.

The typical goal of temperature-aware task mapping is to improve system reliability by dis-

tributing a workload in time and space to minimize either the peak system temperature or the av-
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erage system temperature [7]. Other work has discussed temperature-aware thread migration [8]

and thread assignment [9]. The authors of [10] present an approach for optimizing the schedule

of an embedded application such that system temperature stays within a defined limit. In general,

temperature-aware task mappings improve system lifetime, because most, if not all, important fail-

ure mechanisms are temperature dependent. As a result, techniques which reduce the temperatures

of components in a system also tend to extend component lifetime, and therefore, system lifetime

can be extended as well.

However, temperature-aware task mapping fails to capture at least three important classes of

factors that also influence system lifetime. The first class of factors involves core properties of the

design, such as power density, supply voltage, and circuit geometry. While temperature is primarily

related to power density, and many failuire mechanisms are exponentially dependent on tempera-

ture, different failure mechanisms are also dependent on a variety of other physical quantities. For

example, electromigration is dependent not only on current density, but also circuit geometry. Also,

time-dependent dielectric breakdown is dependent on supply voltage, and thermal cycling is depen-

dent on ambient temperature. Further details about these failure mechanisms and how we use them

to model system lifetime can be found in Section 3.2. Though many of these parameters change

in the same directions as task mappings change because of changes in component utilization (e.g,

power density increases as supply voltage or current density increases) they don’t change in the

same proportion.

The second class of factors deals with system architecture concepts, such as the topology of the

communication architecture, the distribution of slack, and the physical floorplan of the system. In

systems that allocate execution and storage slack to survive component failure, lifetime is directly

related to system architecture. Temperature-aware task mapping is agnostic of which tasks would

be the most difficult to remap in the event of a component failure, or alternatively, which compo-

nents are most important to the longevity of the system. Although there is clearly a relationship

between temperature and system architecture via the influence of floorplanning and communication

patterns, temperature-aware task mapping does not directly account for these effects. We observe

that temperature isn’t always a good proxy for lifetime and that temperature-aware task mapping

can result in a range of potential lifetimes when optimizing a given temperature metric.

The third class of factors includes those related to manufacutring variability. It is impossible
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for all instances of an integrated circuit to be perfectly identical when manufactured on a modern

process. Unavoidable die-to-die and chip-to-chip variation mean that each part will have a slightly

different set of physical properties, and some of these physical properties will impact how much

wear the components in a system can sustain before they fail. But, these changes in physical prop-

erties may not lead to measurable differences in temperature, and so the effects of manufacturing

variability on system lifetime cannot be captured by temperature-aware optimizations. Instead, task

mapping techniques that directly measure component wear and use this information to inform the

task mapping decision are required.

Directly optimizing lifetime requires not only that temperatures be generally minimized, but that

the inevitable (and at times, advantageous) irregularity in component temperatures be distributed

such that the lifetime of important resources is extended at the carefully calculated expense of

less important resources. In other words, minimizing a system’s peak temperature is important for

extending lifetime in general, but system lifetime further depends on the particular component which

experiences that peak temperature. Only lifetime-aware task mapping can expose the relationships

of both physical parameters and manufacturing variability with component failure, as well as the

relationship between component failure and system lifetime, to find task mappings that optimize

lifetime. The advantages of lifetime-aware task mapping over temperature-aware task mapping are

supported by the experimental data found in Chapters 4 and 5.

2.6 Summary

This chapter summarized many of the foundational concepts for the work in this thesis. We provided

definitions of the embedded chip multiprocessors and lifetime metrics that are targeted by our pro-

posed task mapping techniques. We also gave a formal definition of the task mapping problem and

its complexity in order to provide context for the choices of algorithms in our proposed approaches.

The remainder of this thesis details our approaches for solving the problems defined in this chap-

ter and contains experiments and analyses which serve to illustrate the effects and advantages of

lifetime-aware task mapping that are described above.
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System Lifetime Simulator

In order to evaluate the effects of different task mapping techniques, we need a way to measure

the lifetime of a given system to which one or more applications are mapped through a particular

task mapping technique. Of course, actually building such systems and observing them until they

experince a failure would be both cost and time prohibitive, so we have created a system lifetime

simulator. The simulator models the possible sequences of wearout faults that a system can ex-

perience over the course of its lifetime. Each sequence of wearout faults will result in a different

sequence of component failures, which in turn will result in a different system lifetime. We use

Monte Carlo simulation to model sufficiently large subsets of wearout fault sequences and estimate

an average value for system lifetime.

The system lifetime simulator explained in this chapter is common to all of our experiments in

the remainder of this thesis. There is no inherent bias toward a particular task mapping techique

in the simulator itself, so it serves as a platform that allows for meaningful comparisons of task

mapping approaches relative to each other. Further, the simulator is detailed enough to capture the

effects of a broad range of system-level optimization techniques, which speaks for its utility in the

field of lifetime optimization research outside the context of this thesis. While the absolute accuracy

of the simulator cannot be validated against actual hardware without significant time and resources,

we have taken steps to ensure that it produces reasonable results. Prior work has validated the mod-

els for wearout faults, temperature, and power that are used in our simulator, and various parts of our

simulator have been calibrated such that inputs to those models match published values for similar

systems. Given correct models and correct inputs to those models, we assert that our simulator has

21
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sufficient relative accuracy to compare the effects of different task mapping approaches on system

lifetime. Additionally, the data presented in the following chapters imply that the simulator is self-

consistent in several ways (e.g, a system with more slack tends to have longer lifetime than a system

with less slack when all other things are equal).

The remainder of this chapter will explain use the of Monte Carlo simulation, the failure mech-

anisms that are modeled by the simulator, how the accumulation of wear on components due to

those failure mechanisms is tracked, how different task mapping approaches are plugged into the

simulator, the technique used to route communication between tasks, and how the simulator can be

used in practice. The work described in this chapter was presented in part in [11], [12], and [6].

3.1 Monte Carlo Simulation

Occurrences of the types of wearout faults addressed by our task mapping approaches cannot be

directly predicted by any mathematical equation, and instead, are better represented as statistical

distributions. Without a direct way of computing the exact points in time at which wearout faults

occur for a given system, it is impossible to directly compute the expected lifetime for that system.

Thus, we need to use an some indirect method that estimates system lifetime given a set of statistical

distributions which describe the wearout faults.

Monte Carlo simulation is a generally accepted method for estimating overall properties of a

physical system whose parameters are defined by probability distributions. A Monte Carlo simula-

tion is composed of a number of samples in which each sample represents one particular instance of

the system being modeled where the parameters have been set by randomly choosing values accord-

ing to their statistical distributions. Defining values for the parameters allows some property of the

sample system to be measured. Once a sufficient number of samples systems have been evaluated,

the measured values of the property of interest from each sample are averaged together to provide

an estimate of the actual value of that property.

The remainder of this section describes the assumptions used in building the system lifetime

simulator and details the process we use to measure tsys and tfirst for a sample system.
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3.1.1 Assumptions

We must make several assumptions about how components in the system fail and when these failures

cause the overall system to fail in order to better define our problem. Individual processors and

switches within a system may fail over the course of its lifetime due to wearout faults caused by

one of the three failure mechanisms explain in Section 3.2. We do not consider scenarios where

the individual memories in a system fail due to wearout faults since architectural techniques are

already commonly used to mitigate memory failure. However, a memory may become inaccessible

by the rest of the system if the switch to which it was connected fails. While such a memory is still

capable of functioning, the fact that no other components can communicate with it means that it is

indistinguisable from a memory that failed due to a wearout fault.

We assume that some systems can automatically detect the failure of any component (e.g, using

[13]), at which point the operating system signals the task mapping process to begin searching for

a solution which does not rely on any failed components. Certain switches may also need to be

reconfigured, independently of the task mapping process, when a component fails to avoid attempts

to route to failed portions of the communication architecture. While it is feasible to implement these

recovery and reconfiguration mechanisms, we recognize that their design and validation cost may

not make sense in some applications. For systems which eschew recovery and reconfiguration, our

simulator simply halts after the first component failure and reports that time as both tsys and tfirst

for the system. It is important to understand that our task mapping approaches do not rely on the

presence of recovery and reconfiguration mechanisms to improve system lifetime. But, our task

mapping approaches have increased impact in systems that implement recovery and reconfiguration

mechanisms because they allow the system to survive component failures and give task mapping a

longer amount of time in which to perform optimization.

In addition to this method of computing task mappings reactively when components fail, our

task mapping process can also be triggered at pre-defined time intervals in an effort to proactively

address system lifetime. In this thesis, we use reactive task mapping to evaluate our design-time task

mapping approach in Chapter 4 and proactive task mapping to evaluate our runtime task mapping

approach in Chapter 5. Regardless of when it is invoked, the task mapping process is responsible

for remapping tasks and data from failed resources to those with slack and re-routing the affected
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Figure 3.1: System lifetime evaluation process for a single Monte Carlo sample

traffic. We assume that if a valid task mapping exists according to the constraints in Section 2.2,

then the system can meet its performance requirements and continue to function. This assumption

implies that the operating system is able to create a task scheduling for each component that satisfies

the performance requirements of the application(s) given a set of tasks for that component where the

sum of the task requirements is less than or equal to the capacity of the component. The problem of

finding that task scheduling, and potentially optimizing it for system lifetime, is orthogonal to the

work presented in this thesis.

3.1.2 Sample Evaluation

Figure 3.1 gives an overview of our lifetime evaluation process for a single Monte Carlo sample.

First, an initial task mapping is applied to the system. If we are performing design-time task map-

ping optimization, as in Chapter 4, this initial task mapping is one of those being evaluated by the

search. When testing our runtime task mapping optimization, as in Chapter 5, then an initial task

mapping which minimizes power dissipation is used for a short time (0.01 years). After this short

initial period, the proactive task mapping process is automatically triggered to apply the task map-

ping approach being tested. This initial task mapping is required in this case because task mapping

approaches requiring information from wear or temperature sensors would be impossible to com-

pute when the system is first powered on due to the fact that those sensors do not have valid values
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at that instant.

Given an initial task mapping, or one that has been computed reactively or proactively, the

utilization of each component is calculated based on given information about the system and the

application (Component Activity Calculator block in Figure 3.1). Following the notation used in

Section 2.2, Equation 3.1 shows how processor and memory utilizations are computed.

utilj =

n∑
i=1

TMijreqi

capj
for j ∈ N≤m (3.1)

According to Equation 3.1, utilization is the ratio of the sum of the requirements of the tasks mapped

to that component to the capacity of that component for processors and memories. For a switch,

utilization is based on the amount of data passing through the switch, and in order to compute this

value, all of the communication between the tasks must be routed to the system’s communication

network. Details about the process we use to route communication between tasks are described in

Section 3.6.

Next, component utilization values are used to calculate the amount of power being dissipated

by each component (Component Power Calculator block in Figure 3.1). Processor power dissipa-

tion is computed by multiplying the utilization fraction for that processor by the maximum power

dissipation for that processor type according to manufacturer data sheets. Our library of processors

includes the Cortex-M3, ARM9, and ARM11 architectures created by ARM Ltd. [14]. Memory

power dissipation is computed by passing the memory’s utilization fraction to CACTI, which is a

piece of software which can compute various characteristics of user-defined memory configurations

[15]. We assume a library of SRAM memories optimized for low standby power with sizes ranging

from 64KB to 2MB. Switch power dissipation is computed by sending the data rate being routed

by the switch to ORION, a research tool which models power and performance for interconnect

networks [16]. We assume that switches can have a crossbar size of 3x3, 4x4, or 5x5 and that they

are equivalent to the Alpha 21364’s on-chip router. All processors, memories, and switches are

assumed to be implemented in a 90nm manufacturing process. Finally, when a processor or switch

has zero utilization, we assume that it switches to a low power state where its power dissipation was

1/3 of its maximum power dissipation.
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Component power dissipation values can be used to compute steady-state temperatures for each

component, but a system floorplan is also required to do this. For each system architecture being

tested, we create a floorplan using BloBB [17]. The floorplan and per-component power dissipation

data are sent to HotSpot [8], which returns one temperature value for each component in the sys-

tem (Component Temperature Calculator block in Figure 3.1). HotSpot uses information from the

floorplan to create a resistor network which models the ways in which heat can flow in the system.

The power dissipation values are applied to this network and the tool can then solve for the temper-

ature of each component. Our temperature modeling assumptions about range and average value

are designed to match previously published temperature modeling assumptions for the same types

of systems [18]. These component temperatures are then used to shape the failure distribution for

each failure mechanism in that component.

Given temperatures for all components, a statistical distribution is created for each failure mech-

anism in each component. Section 3.2 provides details about how component temperatures are used

to compute the statistical distributions that model failure mechanisms. Once the statistical distribu-

tions are computed, we initialize or update the failure times for each component in the system (FM

Update/Component Failure block in Figure 3.1). When entering this block for the first time in a

sample, a failiure time is selected from each statistical distribution, and each component is given a

failure time equal to the soonest failure time from all of its failure mechanisms. In subsequent iter-

ations of this block, we update the amount of wear accumulated by each failure mechanism in each

component since the last iteration, and this process is detailed in Section 3.3. In addition to their

place in the simulation, we use the time to failure and accumulated wear values that are calculated

in this step as “outputs” from the wear sensors we assume to exist on chip, and these values are used

as input to our wear-based task mapping heuristics in Chapters 5 and 6.

After failure times have been updated, we determine which component in the system has the next

earliest failure time. We mark this component as failed and proceed to the task mapping process

(Task Mapping Wrapper block in Figure 3.1). A high-level explanation of the task mapping process

can be found in Section 3.4. When marking the first failed component in the sample system, we also

record the current simulation time as tifirst. If we are able to find a valid task mapping, the “system

operational” path is taken, and the simulation loop begins another iteration. If a valid task mapping

does not exist, the “system failed” path is taken, and we record the current simulation time as the
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failure time for the sample system, tisys.

Once a sufficient number of samples have been completed, we compute the sample mean tisys

to estimate tsys. Similarly, the sample mean tifirst estimates tfirst.

3.2 Failure Mechanisms

Each wearout fault that causes a component failure in a system is a result of one of several phys-

ical phenomena known as failure mechanisms. Failure mechanisms represent the different ways

in which the structure of an integrated circuit can break down over time. For the purposes of the

experiments in this thesis, we have selected three important failure mechanisms to model: electromi-

gration, time-dependent dielectric breakdown, and thermal cycling. These three failure mechanisms

represent the most common causes of wearout faults [19], but several other failure mechanisms ex-

ist. Statistical distributions for failure mechanisms are an input to our system lifetime simulator, and

as a result, our simulator provides a generalized framework for modeling the effects of failure mech-

anisms. The generalized framework enables future work to focus on the set of failure mechanisms

that is most relevant to the experiments being performed.

The first failure mechanism we chose to model is electromigration (EM), which causes wearout

of the metal wires in an integrated circuit over time. As electrons move through metal wires, some

of their momentum is transferred to the metal atoms which causes the the atoms themselves to move

over time. It is possible for the metal atoms to move and separate in such a way that voids are created

in the wire, and these void degrade the performance of the wire from its original specification. If

the voids become large enough or cause the wire to separate completely, the wire will not be able to

transmit any information, and the component which includes the wire will fail.

Time-dependent dielectric breakdown (TDDB) is the second failure mechanism modeled by our

system lifetime simulator. TDDB affects the transistors in an integrated circuit rather than the wire.

The presence of electric fields in a transistor eventually causes the dielectric (i.e, the gate oxide)

to lose its insulating properties, and the transistor will not function correctly as a result. In any

component, a critical set of transistors will fail over time due to TDDB such that the component is

unable to function correctly.

The final failure mechanism we choose to model is thermal cycling (TC). While EM and TDDB
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are specific to certain parts of an integrated circuit, TC affects the system as a whole. The different

substances used to build an integrated circuit can experience different degrees of physical stress

under the application of heat due to their varying physical properties. This type of physical stress is

highest at the interfaces of different materials, usually between the die and package, and temperature

fluctuations can cause these junctions to break. It is especially important that our work models TC

because it captures the effects of temperature changes due to infrequent events such as changes in

the task mapping and component failures.

Equations 3.3, 3.4, and 3.5 are mathematical definitions of the EM, TDDB, and TC failure mech-

anisms [20, 21]. The values computed by these equations,MTTF{EM,TDDB,TC}, are related to the

typical mean time to failure (MTTF) of a component due to a particular failure mechanism. More

specifically, the result of each equation is used to calculate the mean of a lognormal distribution that

represents the probability with which a component will fail due to a given failure mechanism at a

given time [19, 22]. Lognormal distributions are used because they model the behavior of wearout

faults more accurately than other probability distributions. Monte Carlo simulation is required to

estimate tsys and tfirst from component failure rates because there are no analytic methods to com-

bine a set of lognormal distributions into a single lognormal distribution. Equation 3.2 shows the

calculation of the mean of a lognormal distribution, µ, given an MTTF value.

µ = ln(MTTF )− σ2

2
(3.2)

The term σ in Equation 3.2 represents the standard deviation of the lognormal distribution, for which

we use a value of 0.5. Our Monte Carlo simulation samples component failure times directly from

these distributions as described in Section 3.1 and they are also used to keep track of component

wear across temperature changes as discussed in Section 3.3.

MTTFEM = AEM (J)−ne
EaEM

kT (3.3)

MTTFTDDB = ATDDB

(
1

V

)a−bT
e

X+Y/T+ZT
kT (3.4)
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MTTFTC = ATC

(
1

T − Tambient

)q

(3.5)

The first term in each equation, A{EM,TDDB,TC}, is a scaling factor used to control the ef-

fective strength of each failure mechanism. We solve for values of these scaling factors such that

at a constant characterization temperature of 345K, the MTTF of a component due to each failure

mechanism is 30 years [23]. The effect of setting the scaling factors in this way is that each of the

three failure mechanisms will have an equal effect on component lifetime at the nominal temper-

ature. These equations also imply that the effects of one failure mechanism on a component are

independent of all other failure mechanisms.

In all three equations, the term T represents the temperature of a component which is computed

using the process described in Section 3.1.2. In Equation 3.3, J represents current density, n is a

parameter dependent on manufacturing process, EaEM represents the activation energy of electro-

migration, and k represents Boltzmann’s constant. All of these terms are constant values except for

current density, which is dependent on the amount of work being done by the component and the

area of the component. In Equation 3.4, V represents the operating voltage of the component, a,

b, X , Y , and Z are all constant fitting parameters dependent on the manufacturing process, and k

is again Boltzmann’s constant. The value of V may change depending on the current power state

of the component. In Equation 3.5, Tambient is a constant value representing the temperature of the

environment in which the system is operating, and q represents the Coffin-Manson exponent.

3.3 Wear Update Process

After a new task mapping is applied to the system for any reason, it is almost certain that the

temperatures of the components will change. Changes in component temperature cause changes

in the shapes of the statistical distributions that represent the failure mechanisms as described in

Section 3.2. When the statistical distributions change, we need to translate the amount of wear that

was accumulated in the previous distribution to the new distribution. Then, using the newly updated

amount of wear in the new statistical distribution, we can compute the time at which the component

fails due to that failure mechanisms based on the new task mapping.

The statistical distribution for each failure mechanism is, in fact, a probability density func-
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tion (PDF). The PDF can be interpreted as a function that describes the probability with which a

component will fail versus time. The cumulative distribution function (CDF) derived from a failure

mechanism’s PDF then represents the amount of wear that has been accumulated due to that failure

mechanism versus time. We select a failure time for each failure mechanism in each component

using the PDFs, and then we use the CDFs to map the selected time to a critical amount of wear

(i.e, the amount of wear at which the component will fail). CDFs can be used to find the amount of

time a component spends at one temperature to accumulate a certain amount of wear.

Equations 3.6 and 3.7 precisely define the wear update process. In these equations, T1 is the

temperature of the component under the previous task mapping and T2 is the temperature of the

component under the new task mapping. Given these temperatures, we can compute CDFT1(), the

wear versus time function for the previous temperature, CDF−1T1 (), the time versus wear function

for the previous temperature, andCDF−1T2 (), the time versus wear function for the new temperature.

In Equation 3.6, curWear is a real number between 0 and 1 which represents the amount of wear

accumulated due to the failure mechanism prior to this update, curT ime represents the current

time in the simulator in years, and lastT ime represents the last simulation time at which the wear

was updated for this failure mechanism. Subtracting lastT ime from currentT ime results in the

amount of time that the component spent at temperature T1, and CDF−1T1 (curWear) gives the

amount of time that would have to be spent at T1 to accumulated curWear. Adding these two

values together tells us the “age” of the component due to a failure mechanism as if it had only ever

been operated at temperature T1. This age can then be passed to the CDF for T1 to compute the

amount of wear caused by that failure mechanism; curWear is then updated with this amount.

curWear = CDFT1(CDF
−1
T1 (curWear) + (curT ime− lastT ime)) (3.6)

timeUntilFailure = CDF−1T2 (wearFail)− CDF
−1
T2 (curWear) (3.7)

In Equation 3.7, wearFail represents the amount of wear at which the component will fail

due to this failure mechanism and is computed as described above. CDF−1T2 (wearFail) calculates

the time at which the component will fail due to this failure mechanism at the new temperature

T2. CDF−1T2 (curWear) calculates the age of the component at the new temperature given the

updated amount of wear from Equation 3.6. The difference of these two values is the amount of time
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the component can operate at temperature T2 before it will failure due to this failure mechanism,

timeUntilFailure. After Equations 3.6 and 3.7 are computed, lastT ime is set to be equal to

curT ime to indicate that wear accumulation due to this failure mechanism has been updated. Once

a new timeUntilFailure value has been computed for all failure mechanisms in all components,

its minimum value across the entire system indicates how much longer the simulation needs to run

before the next component fails.

3.4 Task Mapping Process

Regardless of whether a system is using proactive or reactive task mapping, the process starts with

a set of common operations. The common operations are encapsulated in a wrapper which pro-

vides an interface between the system lifetime simulator and the different task mapping approaches

we present in this thesis. The interface simplifies the process of integrating new task mapping ap-

proaches into the simulator, and thereby enables the simulator to evaluate a broad range of task

mapping approaches in addition to our own.

The common task mapping operations are shown in Figure 3.2, and this figure shows a de-

tailed view of the “Task Mapping Wrapper” block in Figure 3.1. The task mapping process begins

by identifying the type of the failed component provided by the “FM Update/Component Failure”

block in Figure 3.1. If the failed component is a switch, we assume that all processors and memo-

ries connected directly to it become inaccessible and are consequently unusable in a task mapping

(“Find Attached Components”). After identifying the set of failed components and removing them

from consideration (“Remove Failed Components”), we consider the remainder of the components

as candidates for the new task mapping (“Remaining Components”). Our task mapping process

considers all tasks in the task graph when it is invoked rather than just the tasks that are orphaned

by failed and inaccessible components. Empirical results suggest that mapping all tasks leads to an

increase in system lifetimewithout a significant increase in the runtime of the task mapping algo-

rithm.

To short-circuit the task mapping process when possible, we perform two checks to compare

the requirements of the application to the remaining resources in the system. The first check sums

the requirements of all tasks in the application(s), separated by task type, and compares those total
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Figure 3.2: Task mapping wrapper process

requirements to the sum of the capacities of all components which have not yet failed (“Find Total

Requirement and ≤ Total Avail Cap”). The second check finds the largest single task requirement

in the application(s) for each task type and compares them to the capacities of the largest remaining

components in the system of each type (“Find Largest Requirement and ≤ Max Avail Cap”). If

either of these simple checks fails, we know that task mapping will be impossible given the current

system state, and the sample is ended (“system failed”). If both of the above capacity checks pass,

we know that finding a task mapping may be possible and continue on to the actual task mapping

algorithm being used for the current experiment. The “system failed” and “system operational”

boxes in Figure 3.2 correspond to the paths of the same names in Figure 3.1.

3.5 Communication Groups

In addition to the checks in the task mapping wrapper described in Section 3.4, there is a second

technique we use to prevent failures inside the actual task mapping algorithm. Components that have

not failed and are available for task mapping can be grouped in a way that reduces the number of

invalid task mappings in the solution space. This grouping prevents fragmentation of the task graphs

across disjoint sets of components during mapping, which would eventually lead to an invalid task

mapping solution. When the system is first powered on and after any switch failures, we analyze the

system topology to determine which pairs of switches are connected by at least one routing path.

Using this information, we create a list of communication groups. A communication group is a
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set of components which can communicate with each other but not with any components in other

communication groups. To determine if a component should be a candidate for a particular task in a

task mapping algorithm, we check whether or not the communication group to which the potential

candidate component belongs has enough capacity to accommodate the entire task graph to which

the task belongs. Each check that fails generates a new constraint for the task mapping algorithm

that disallows the construction of solutions which will eventually become invalid. However, the use

of communication groups does not guarantee that a valid task mapping will always be found.

The example shown in Figure 3.3 shows an example in which communication groups prevent

the construction of invalid task mappings. The five red squares represent processors, the five blue

circles represent switches, and the black circle represents a switch that has failed. Since the switches

on the left can no longer communicate with the switches on the right, two communication groups are

formed as indicated by the dashed boxes “CG 1” and “CG 2”. We assume that a fully connected task

graph with three tasks needs to be mapped to this system and that each task completely occupies one

processor. When choosing a component for the first task, all five of the processors are candidates

based on their available capacity. In the absence of the communication group check, the first task

could be mapped to p4, and the task mapping process would eventually be forced to map one of

the remaining tasks to one of the processors in communication group 1. In this case, the task

mapping process would fail since the task that was mapped to the processor in communication

group 1 would not be able to communicate with the task(s) mapped to processors in communication

group 2. With the communication group check active, no tasks will be mapped to p4 or p5 since

that communication group cannot accommodate the entire task graph. Thus, we prevent situations in

which the task mapping process fails due to assigning tasks which must communicate to components

which cannot. This communication group check can inherently handle situations in which multiple

task graphs must be mapped to a single system.

3.6 Routing Communication Between Tasks

While the nodes in a task graph represent the individual tasks that make up an application and

their requirements, the edges define which tasks communicate with each other and the data rates

that must be maintained to achieve performance requirements. If two tasks which communicate
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with each other are mapped to different components in the system, then the switches in the system

must be used to transmit the data from the first component to the second. Communication between

two tasks that are mapped to the same component does not generate any network traffic because

we assume that all tasks mapped to a particular component may freely communicate within that

component. Our simulator must determine the exact route used by each pair of communicating

tasks in order to compute the utilization of each switch in the system. This traffic routing process is

part of the “Component Activity Calculator” block in Figure 3.1.

For each edge in the task graph, we greedily select the route through the system that most

closely matches the the requirement of the edge. The routing of an individual edge is performed by

Dijkstra’s algorithm, a common method for finding the minimum cost path between two nodes in a

graph [24]. Dijkstra’s algorithm is a variation of a breadth first search in which the graph is explored

in the direction of low cost nodes. In the context of our overall routing algorithm, we use Dijkstra’s

algorithm to find a path between two components in the system where the cost of an edge is the

difference between the available capacity of that edge and the requirement of the communication

being routed. The capacities of communication links in the system are updated after each task

graph edge is routed by subtracting the edge’s requirement from the available capacity on each edge

used in the routing path. All communication links in the system are assumed to have a maximum

bandwidth of 256 MB/s.

Algorithm 1 contains pseudocode for the process we use to route all communication between

tasks. The inputs to this algorithm are the set of edges in the task graph, tgEdges, the set of edges

in the system, sysEdges, the set of nodes in the system, sysNodes, and the task mapping that is

currently applied to the system, tm. Lines 1 through 13 show the outer loop of the algorithm which
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is responsible for stepping through all edges in the task graph. The call to Dijkstra’s algorithm for

one edge in the task graph is shown on line 4. Lines 6 through 10 take the path found by Dijkstra’s

algorithm, path, and updates the capacity of each communication link in that path to express that a

particular task graph edge has been mapped to it.

An outline of Dijkstra’s algorithm is provided by lines 15 through 46 of Algorithm 1. The inputs

to Dijkstra’s algorithm are the node at which the route is to begin, sourceNode, the node at which

the route terminates, destNode, the edges and nodes in the system graph, and the requirement of

the task graph edge being routed, edgeReq. Initialization of the data structures used in Dijkstra’s

algorithm is performed in lines 16 through 25. Here, we set the cost of reaching each node, cost,

that is not the source node to a large value, and the cost of reaching the source node is 0. All entries

in the path to be returned are set to NULL and each node in the system is added to a priority queue,

Q.

Dijkstra’s algorithm then explores the nodes in the priority queue until it reaches the specified

destination node. The lowest cost node is removed from the priority queue, and the algorithm stops

if the destination node is found (lines 28 through 32). Next, the neighbors of the current lowest cost

node are explored to see if they can be reached with a lower cost using a path that goes through the

current lowest cost node (lines 34-42). If the cost of reaching a neighbor can be improved by using

the current lowest cost node, the cost of the neighbor and the path to the neighbor are updated to

reflect the improvement.

If the communication routing process is unable to find a valid path for all edges in the task

graph, then the process fails, and this means there is no valid routing for the provided task mapping.

Consequently, the task mapping itself is considered invalid according to the constraints in Section

2.2. If a valid routing is found, then a utilization value for each switch in the system can be computed

and the lifetime evaluation process can continue to the Component Power Calculator process in

Figure 3.1.

3.7 Using the System Lifetime Simulator in Practice

The Monte Carlo-based simulator described in this chapter may require a large number of samples

to converge, and this number will increase with the complexity of the system architecture and appli-
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Algorithm 1 Communication Routing Algorithm
1: function ROUTECOMMUNICATION(tgEdges, sysEdges, sysNodes, tm)
2: for each e in tgEdges do
3: if tm[e.source] 6= tm[e.dest] then
4: path =DIJKSTRA(tm[e.source], tm[e.dest], sysEdges, sysNodes, e.req)
5:

6: tempDest = e.dest
7: while tempDest 6= e.source do
8: sysEdges[path[tempDest], tempDest].capacity −=e.req
9: tempDest = path[tempDest]

10: end while
11: end if
12: end for
13: end function
14:

15: function DIJKSTRA(sourceNode, destNode, sysEdges, sysNodes, edgeReq)
16: Q.clear()
17: for each v in sysNodes do
18: if v 6= sourceNode then
19: cost[v] =MAX INT
20: else
21: cost[v] = 0
22: end if
23: path[v] = NULL
24: Q.pushBack(v)
25: end for
26:

27: while !Q.empty() do
28: u = Q.getMinCostElement()
29: if u = destNode then
30: return path
31: end if
32: Q.delete(u)
33:

34: for each v in Q do
35: if [u, v] ∈ sysEdges && edges[u, v].capacity ≥ req then
36: newCost = cost[u] + (sysEdges[u, v].capacity−edgeReq)
37: if newCost < cost[v] then
38: cost[v] = newCost
39: path[v] = u
40: end if
41: end if
42: end for
43: end while
44:

45: return path
46: end function
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cation(s) being modeled. In addition, the sequence of steps required to compute the sample system

lifetime (including several iterations of utilization, routing, power, temperature, statistical distribu-

tion, and task mapping processes) is computationally expensive. However, the fact that each sample

in a Monte Carlo simulation is independent by definition can be exploited to significantly improve

the runtime of the simulator. Each sample can be computed in parallel with all other samples, and

only a simple mathematical mean needs to be calculated once all samples are complete to produce

the final result.

All of the subsequent experiments in this thesis take advantage of a distributed computing in-

frastructure to perform the required system lifetime simulations. The distributed compute resources

are managed by Condor [25]. Given a batch of jobs, the Condor software will distribute them to any

available compute resources, monitor the execution of the jobs, collect the desired output files from

the jobs, and return the output files to the location from which the original submission occurred.

Thus, Condor can be used to divide a single system lifetime simulation among a collection of re-

sources by assigning a number of samples to each job. Some care must be taken in choosing the

number of samples assigned to a single job as there is overhead involved in transferring program

and input data to the networked resource and retrieving output from the network resource. Each job

must execute a sufficient number of samples such that the time required for the network transfers,

when amortized across the number of samples, is inconsequential. The number of samples required

for a single system lifetime simulation can be large enough to effectively exercise a collection of a

few hundred resources, and it is likely that without such a set of resources, the experiments in this

thesis would have been infeasible.

3.8 Summary

This chapter presented our system lifetime simulator that is used to evaluate the task mapping tech-

niques described in the remainder of this thesis. Our simulator uses Monte Carlo simulation to

estimate the lifetime of a system given its architecture, the set of applications running on it, and a

task mapping technique. Each sample in the Monte Carlo simulation represents an instance of the

system with a random set of parameters that defines how quickly each failure mechanism will cause

each component in the system to wear out over time. The lifetime of each sample system is mod-
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eled at a relatively high level of detail. Our simulation uses realistic statistical distributions to model

failure mechanisms, correctly accumulates wear on components even as temperature changes, per-

forms detailed routing to estimate switch power dissipation, and accounts for physical factors like

floorplan and component size. By averaging together the failure times of each sample system, we

obtain an estimate for the actual lifetime of that system. The architecture of our system lifetime

simulator allows arbitrary task mapping techniques to be plugged in so that they can be compared

using a common evaluation platform.

During the evaluation of each Monte Carlo sample, we keep track of the amount of wear ac-

cumulated by each component due to each failure mechanism. Once a critical amount of wear has

been accumulated on a component, that component is considered to be failed and unusable by the

remainder of the system. We use a series of mathematical operations on the statistical representation

of the failure mechanisms to model how wear is accumulated on each component on the system as

its temperature changes. In order to estimate the temperature of all components in the system, we

must compute the power dissipation for all components in the system. The power dissipation of

network switches is related to the amount of data flowing through them, and we use Dijkstra’s algo-

rithm to determine that amount. Finally, we discussed the use of Condor, a system which manages

distributed computing resources, as a way to decrease the overall runtime of the system lifetime

simulator. The massive set of parallel computing resources provided by Condor contributed signifi-

cantly to the level of detail possible in our simulator and the overall number of experiments that we

were able to complete.
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Design Time Task Mapping

Optimization Using Ant Colony

Optimization

The first time at which task mapping optimization can be used to enhance system lifetime is when

the system is being designed. Our solution for design-time task mapping involves the use of ant

colony optimization (ACO) to find the best initial task mapping for a given system and the appli-

cations being executed on it. ACO is a generic optimization technique that is applicable to many

domains and can be adapted to task mapping in a relatively straightforward manner. In ACO, the

task mapping solution space is represented as a graph which is traversed to build candidate task

mapping solutions. The solutions are then evaluated, and the graph is annotated with the results in

order to improve future traversals.

Given that embedded multiprocessor systems are typically designed over the course of many

months to multiple years, there is significant time available to designers to spend on optimization.

ACO takes advantage of some of this design time by performing a thorough search of the space of

task mappings for near-optimal solutions. This strategy is quite different than one that would be

employed to choose task mappings at runtime due to the much tighter time constraints present in

that scenario. Design time task mapping optimization is also different from runtime task mapping

optimization in that it doesn’t require any additional hardware cost in the form of sensors. The

39
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heuristic technique we use for runtime task mapping optimization is described later in Chapter 5.

In addition to being novel on its own, our design-time task mapping approach also affords us the

ability to compare direct and indirect lifetime optimization techniques. Due to the dependence of

wearout faults on temperature and power, one may suspect that techniques which optimized temper-

ature and/or power will also optimize lifetime. However, we will show that there are other effects at

play which prevent these types of indirect lifetime optimization techniques from maximizing life-

time. We perform this comparison between direct and indirect lifetime optimization techniques, as

well as the general evaluation of our design-time task mapping approach, using the system lifetime

simulator described previously in Chapter 3.

This chapter discusses two major contributions. First, we present a novel strategy based on

ACO for performing lifetime-aware task mapping and compare it to lifetime-agnostic (random) and

temperature-aware simulated annealing (SA) approaches along with observed optimal task map-

pings. On average, our ACO implementation significantly improves system lifetime as compared

to the lifetime-agnostic approach and performs similarly to the temperature-aware SA approaches,

albeit with shorter runtime. Second, we draw on our experimental results to demonstrate that task

mappings that optimize system temperature do not necessarily optimize system lifetime. In fact,

for a given system temperature, there is significant variation in the lifetime achievable by different

candidate task mappings. Further, we show that task mappings which optimize system lifetime also

do a good job of optimizing system temperature. Our results clearly demonstrate the importance of

performing lifetime-aware task mapping when enhanced system lifetime is a design goal.

The remainder of this chapter will explain how ACO is used to search for optimal task mappings,

the benchmark architectures and applications we use for evaluation, how our ACO-based approach

compares to a simulated annealing-based approach, and how well indirect lifetime optimization

compares to direct lifetime optimization. The work described in this chapter was presented in part

in [11].

4.1 ACO-Based Task Mapping

Our approach to task mapping requires a system description which defines the architecture of the

system (a list of components, their capacities, and the links between them), a task graph which
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Figure 4.1: Overview of initial task mapping optimization using ACO

defines the properties of the application to be mapped (a list of tasks, their requirements, and their

communication rates) and a system floorplan as input. Our goal is to determine the initial mapping

of tasks to processors and data arrays to memories which results in the longest system lifetime.

We use the term initial because we assume that as components fail, the failure is detected, and the

system restarts with a remapping which uses the remaining components. Runtime task mapping

optimization is not in the scope of this chapter and is detailed in Chapter 5.

There are a number of reasons for our selection of ACO as a search strategy. First, ACO is

capable of dealing with dynamic solution spaces, and while this work only uses ACO to find an

optimal initial task mapping, the approach could be extended to find optimal task remappings to be

used as components fail. ACO’s adaptability to dynamic solution spaces is important in this case

since it allows optimal task remappings to be constructed from knowledge gained in searching for

an initial task mapping, thereby speeding up the process. Second, the ability to handle dynamic

solution spaces makes ACO a good candidate for inclusion in a complete system synthesis flow. For

example, as a communication architecture search is synthesizing an optimal solution, an ACO-based

task mapping search can build partial task mappings that will become more complete as more of

the communication architecture is specified. Third, the ACO algorithm is parallelizable since each

ant acts independently. Fourth, our ACO-based approach provides excellent extensibility in that it

could be updated to take process variation information into account, and it could make decisions

about DVFS settings and task parallelization without significant modification. Finally, ACO has

been shown to be an effective solution for the generalized assignment problem, and task mapping is

a member of that class of problems [26].

Figure 4.1 gives an overview of our ACO-based approach to task mapping search. Information

is taken from the system description and task graph inputs and used to create the construction graph
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as described in Section 4.1.1. The construction graph is traversed by simulated ants to synthesize

task mappings which are subsequently checked for validity and scored. The task mapping score

is fed back into the construction graph via pheromone deposition and affects future task mapping

synthesis. As ants traverse the construction graph, the decisions they make about which edges

to take are random but weighted by the amounts of pheromones that have been deposited on the

edges. Thus, ants will typically follow the path created by a good solution while differing in some

decisions, and this allows other solutions in the neighborhood of a good solution to be searched.

The fact that the pheromones evaporate over time if not refreshed helps ACO from becoming stuck

in local minima. The jobs of a single ant (task mapping synthesis, lifetime/task mapping evaluation,

and pheromone deposition) are run to completion before another ant is spawned. Ants are spawned

until a pre-determined number of valid task mappings are synthesized.

4.1.1 Task Mapping Synthesis

The basis of any ACO implementation is its construction graph. In the case of task mapping, the

ants walk this graph to make decisions about how tasks should be mapped to the components. The

nodes in our construction graph consist of the set of all components in the system combined with the

set of all tasks in the application. The graph is connected by directed edges from each component

to each task, which we call decision edges, and from each task to each component, which we call

mapping edges.

Each ant begins its traversal by selecting a decision edge whose endpoint (a task) will be the

first task the ant maps. The ant then selects a mapping edge from the endpoint of the selected

decision edge to some component. The selection of each mapping edge defines a single task-to-

component mapping synthesized by the ant. The ant continues its synthesis by alternating between

the selection of decision and mapping edges (i.e, selecting a task and then the component to which

it will be mapped) until all tasks are mapped. Edges are selected according to a weighted, random

selection where each edge’s weight corresponds to the quantity of pheromone on it (described in

Section 4.1.3).

Figure 4.2 shows an example of our task mapping synthesis process when completed. Each of

the four tasks in the task graph is represented by a different color. The communication architecture

for this example is a central switch which connects four processors whose colors indicate the task
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Figure 4.2: Example of task mapping synthesis done by ACO

mapped to them in the synthesized task mapping. An ant begins its traversal of the construction

graph at the T1 node in the upper left of the construction graph. The ant then chooses between

four mapping edges (one for each component) by weighted, random selection. In this example,

the ant moves to node C2. Selecting this edge maps task T1 to component C2, and this selection

is reflected by the red color of C2 in the communication architecture diagram. The ant then uses

weighted, random selection to choose between three decision edges, each of which leads to one of

the remaining tasks to be mapped. Here, the ant moves along the decision edge from C2 to T3,

indicating that T3 will be the second task to be mapped. This process continues until all tasks have

been mapped.

4.1.2 Task Mapping Scoring

Once all tasks have been mapped, the initial task mapping can be evaluated. The first step in evalu-

ating any task mapping is to determine whether or not any component capacities have been violated.

While traversing the construction graph, an ant may place too many tasks on a given component.

The evaluation process checks for capacity violations while scoring the ant’s solution using infor-

mation about each component’s capacity and the requirements of each task. Processor and memory

capacity are measured in MIPS and KB respectively. We obtain the processing requirements of com-

pute tasks, in terms of MIPS, and the storage requirements of data tasks, in terms of KB, through

application profiling. We assume that tasks consume the same amount of compute power regardless

of which processor they get mapped to. That is, all processors in our component library have the

same efficiency; processors and memories differ from one another only in terms of capacity.
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The second step in task mapping evaluation is to route the communication traffic between the

tasks in the system. We use Dijkstra’s Algorithm to route traffic. Given a traffic routing, we can

determine if any link bandwidth is violated by summing the communication rates of all pairs of

communicating tasks which use a particular link and comparing that sum to our maximum assumed

link bandwidth of 256 MB/s. If a solution has neither component capacity nor bandwidth violations,

it is said to be valid; otherwise, the solution is invalid.

The process used to score a task mapping is shown in Algorithm 2. If a solution is valid, its score

is equal to the ratio of the resulting tsys as measured by the system lifetime simulator described in

Chapter 3 to a baseline tsys for that system (line 3). Baseline tsys values are obtained for our

examples using task mappings created by hand and without the intent of optimizing for lifetime.

This scoring method favors task mappings which yield longer system lifetime over those which

result in shorter system lifetime. If a task mapping is invalid, its score is related to the ratio of the

number of incurred violations (line 5) to the number of possible violations (line 6). Invalid scores

are further weighted by a fractional penalty which generally makes invalid solutions worth less than

valid ones (line 7). Through experimentation, we found that a penalty value of 0.8 works well for

the designs we tested.

Algorithm 2 ACO Task Mapping Scoring
1: function SCORETASKMAPPING(measuredTsys, validSol, bwsV iolated, capsV iolated)
2: if validSol then
3: score = measuredTsys/baseTsys
4: else
5: totalV iolations = bwsV iolated+ capsV iolated
6: possibleV iolations = numberOfLinks+ numberOfComponents
7: score = penalty ∗ (1− (totalV iolations/possibleV iolations))
8: end if
9: return score

10: end function

4.1.3 Pheromones

A key aspect of ACO algorithms is the way in which ants share information about their solutions

with each other through pheromones. In the real world, ants mark paths to food sources with

pheromones so that other ants in the colony can follow the same path to the food source. Over time,

the pheromones evaporate.
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The purpose of the pheromones is to direct the ants toward areas of the solution space which

are known to contain good task mappings while still allowing the ants to explore other, potentially

better, task mappings in that area. The amount of pheromones placed on each edge of a particular

ant’s path through the construction graph is equal to the ant’s solution score. An ant only deposits

pheromones on the path it has taken if the score of its synthesized solution is the highest found by

any ant in the colony up to that point in time. Figure 4.3 shows a construction graph in which some

edges have been updated with pheromones according to a good solution. Future ants traversing this

construction graph would select the red edges with higher probability than the black edges at each

node.

Chemical pheromones evaporate over time so that ants become increasingly disinclined to travel

paths which have not been recently shown to lead to a good location. Similarly, the edge weights

in a construction graph decay over time to prevent the ACO process from becoming stuck in local

minima and to drive the exploration of a larger area of the solution space. In our ACO implementa-

tion, edge weights experience decay after an ant has synthesized and scored its solution but before

any pheromone deposition occurs. We calculate edge weight after decay simply as a fraction of the

original edge weight.

Empirically, we have found that the best value for the evaporation rate parameter is dependent

on the fraction of valid task mappings in the solution space. The reason that this fraction changes

from design to design is discussed in Section 4.2.2. Generally, lower evaporation rates yield bet-

ter results when the solution space contains a smaller fraction of valid task mappings. The low

evaporation rates force ants to dive deeper into areas of the solution space which have been found

to contain near-valid solutions. For solution spaces with higher fractions of valid task mappings,

higher evaporation rates tend to produce better results since they allow the ants to explore many

areas of the solution space without strongly focusing on a single one. In the future, we would like

to automate the selection of the evaporation rate parameter based on the particular system for which

we are performing a task mapping search.
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4.2 Experimental Setup

To investigate the differences in system lifetime between task mappings which optimize for temper-

ature and lifetime, and to assess the ability of our ACO- and SA-based task mapping approaches to

find task mappings resulting in high tsys, we conducted a series of design experiments across several

different system architectures. In this section, we present the applications and architectures used in

our experimentation, our assumptions about the types of components being used, and a discussion

of the complexity of our benchmarks.

4.2.1 Bechmark Descriptions

We use three benchmark applications in the evaluation of our approaches: a synthetic application

(synth), multi-window Display (MWD) [27], and an MPEG-4 Core Profile Level 1 (CPL1) decoder

[28]. The task graph for the MWD application is shown in Figure 4.4, and the task graph for the

CPL1 application is shown in Figure 4.5.

The synthetic application was implemented on a minimal communication architecture consist-

ing of two switches (2-s). We experimented with one communication architecture for MWD, a four

switch architecture resembling a ring (4-s), which is shown in Figure 4.6. We also experimented

with two communication architectures for MPEG-4 CPL1, a data-flow pipeline of four switches

(4-s) and a five switch architecture resembling a ring (5-s) The four and five switch communication

architectures for CPL1 are shown in Figures 4.7 and 4.8, respectively.

We define a design point to be a communication architecture that is populated with a particular

selection of processor and memory types (i.e, a slack allocation). For example, two different MWD

4-s design points would have the same communication architecture, the one shown in Figure 4.6,
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Figure 4.4: Multi-window display task graph

Figure 4.5: MPEG-4 core profile level 1 decoder task graph

Figure 4.6: 4 switch communication architecture for the multi-window display application

Figure 4.7: 4 switch communication architecture for the CPL1 application
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Figure 4.8: 5 switch communication architecture for the CPL1 application

Table 4.1: Summary of benchmark complexity

Benchmark Design Point Components Tasks Max TMs % Feasible TMs Eval Time

synth 2-s 0 6 8 16384 2.2 5s
synth 2-s 5 6 8 16384 12.8 29s
MWD 4-s 0 12 16 6.8e13 1.8e-4 19d
MWD 4-s 5 12 16 6.8e13 0.01 3.2y
CPL1 4/5-s * 11 22 2.4e17 — —

but would differ in the processor types chosen to fill the spaces P1-9 and in the memory types

chosen to fill the spaces M1-3. Since the selection of components is different in each design point,

each design point contains a different amount of slack and is therefore able to survive different

sequences of component failures. The slack allocation in each design point is Pareto-optimal in

terms of floorplanned area and lifetime as determined by [29] and therefore, the set of design points

represents the best possible starting points for the task mapping search. Because each design point

has a different slack allocation, the set of feasible task mappings for each design point is different.

A number of design points were considered for each communication architecture: 6 for synth, 6 for

MWD 4-s, 16 for CPL1 4-s, and 38 for CPL1 5-s.

We constructed all system architectures for each application using Cortex-M3, ARM9 and

ARM11 processors, SRAM memories sized from 64KB to 2MB, and network switches. We as-

sume all components are implemented in a 90 nm process. Processor area is based on data sheet

values. SRAM area is derived using a low-standby power memory model from CACTI. Finally, all

network routers are equivalent to the Alpha 21364’s on-chip router and have a maximum crossbar

size of 5x5.
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4.2.2 Benchmark Complexity

The actual number of feasible task mappings for a given design can be determined through ex-

perimentation where each task mapping is enumerated and then tested for component capacity vi-

olations. While only testing for component capacity violations does not guarantee that the task

mapping is valid, because routing may be impossible, it does bound the size of the solution space

more tightly than the maximum number of task mappings. Table 4.1 summarizes the results of such

experimentation for some of our design points. The first column shows the benchmark name, and

the second column shows the design point within that benchmark being tested. The third and fourth

columns show the number of components and tasks for the given benchmark, respectively. The

fifth column shows the upper limit on the number of task mappings for the given design point as

calculated by Equation 2.9. The sixth column shows the fraction of task mappings that are feasible

for a given design point as determined by experimentation. The seventh column gives the amount of

time that would be required to evaluate the lifetime of all feasible task mappings for a given design

point using our system lifetime simulator. Cells in the table containing hyphens indicate pieces of

data which were infeasible to obtain.

In Table 4.1, we see that the percentage of feasible task mappings increases between the two

synthetic benchmark design points. This increase is due to an increase in slack between the two

design points which allows more freedom in the task mapping process. The same trend is observed

when moving between two MWD benchmark design points.

In general, we observe that the number of feasible task mappings increases extremely quickly

as the sizes of the application and system increase. This observation leads to three conclusions.

First, increased amounts of slack lead to an increased number of feasible task mappings, and some

of these may enhance system lifetime. Thus, larger investments in system slack potentially enable

greater lifetime enhancements though task mapping search. Second, it is infeasible to evaluate the

lifetime resulting from all of the feasible task mappings for each design point. Exhaustive search is

intractable for all but the smallest designs, and as a result, we have no verifiably optimal results with

which we can compare our approach. Third, because the fraction of feasible task mappings is small,

we cannot compare our approach to a truly random approach since randomly generating enough

feasible task mappings to obtain high-confidence results would be prohibitively expensive from the
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perspective of computational complexity. Thus, we use the benchmarks to compare the performance

of our lifetime-aware ACO-based task mapping approach to a directed, random approach that is also

based on ACO. Section 4.3.1 describes how the two approaches differ.

4.3 Validation of the ACO-based Tasked Mapping Approach

We created two variants of our ACO-based task mapping approach along with two variants of the

SA-based task mapping approach and compared them to observed optimal task mappings for all

design points in each of the benchmarks listed in Section 4.2.1. The remainder of this section

discusses the variations on our approaches and the evaluation of our lifetime-aware, ACO-based

task mapping approach.

4.3.1 Description of ACO and SA Variations

We tested two variations of our general ACO-based task mapping approach. In the first approach,

agnosticAnts, we set up the ant colony to generate only one valid task mapping before the search

was stopped. This strategy uses the ant colony to find a valid task mapping as fast as possible. The

task mappings returned by this approach are effectively random since each valid task mapping in

the solution space has an equal probability of being the first one found by the ant colony due to

the method we use for scoring solutions. Large numbers of task mappings were generated in this

manner for each design point to attempt to determine the range of tsys values that different task

mappings could produce for a given design point.

The second approach, lifetimeAnts, performs lifetime-aware task mapping. In this case, the ant

colony is allowed to evaluate 20 valid task mappings for each design point before the search is

stopped. Increasing the number of task mappings to be evaluated allows the ants to find a valid task

mapping and then attempt to refine it in order to locate a nearby solution that results in higher system

tsys while continuing to search other areas of the solution space for high-quality task mappings. The

task mapping resulting in the highest tsys out of the 20 valid task mappings was taken to be the result

of this approach.

To show that 20 valid task mappings is a reasonable number to choose for our lifetimeAnts

approach, we ran an experiment on one of our design points to compare the results of the approach
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Figure 4.9: Comparison of ACO solution quality as the number of valid task mappings is changed

when allowed to evaluate different numbers of valid task mappings. Figure 4.9 shows the results of

this experiment. The x-axis shows the number of valid task mappings that lifetimeAnts was allowed

to explore before being stopped, and the y-axis shows the average tsys resulting from the task

mappings produced by lifetimeAnts over a number of runs. The error bars in Figure 4.9 represent

95% confidence intervals for the average tsys based on the number of lifetimeAnts runs used to find

that average. We observe that the average tsys increases as lifetimeAnts is allowed to run longer.

However, there are diminishing returns in solution quality as the number of valid task mappings is

increased. We selected 20 valid task mappings as the constraint for lifetimeAnts for the remainder

of our experiments since it represents a good tradeoff between solution quality and runtime. Of

course, the number of valid task mappings can be changed to accommodate specific solution quality

or runtime constraints.

Since temperature-aware task mapping can target either average [30] or maximum [10] temper-

ature, we implemented two variants of the SA-based approach. In the first, avgSA, task mappings

which optimize average initial component temperature are found. We define the average initial com-

ponent temperature resulting from a task mapping as the average temperature of all components in

the system at the beginning of the system’s lifetime. In the second, maxSA, task mappings which
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optimize maximum initial component temperature are found. We define the maximum initial com-

ponent temperature resulting from a task mapping as the temperature of the hottest component in

the system at the beginning of the system’s lifetime. Both SA-based approaches begin by generating

a random, and potentially invalid, task mapping. The annealer temperature is initialized to a value

which allows any move to be accepted. We use a single move in the annealer: a task is randomly

selected, and then moved to a different, randomly selected component. We perform 100 moves per

temperature step and use a cooling rate of 0.9.

Similar to lifetimeAnts, the runtime of both SA-based approaches is limited by the number

of valid task mappings that are found. We stop the SA-based approaches when they reach 50

valid task mappings, instead of using traditional freezing conditions, to maintain some parity with

the lifetimeAnts approach. In particular, this limit lets the SA-based approaches achieve average

solution quality similar to the lifetimeAnts approach at the expense of an increase in runtime.

4.3.2 ACO-based Task Mapping Evaluation

This section covers the evaluation of our ACO-based approach as a method for performing lifetime-

aware task mapping. The evaluation is broken into a discussion of our synthetic benchmark results

and a discussion of our real world benchmark results.

Synthetic Benchmark Results

The first part of the evaluation of our lifetime-aware, ACO-based task mapping approach involved

a comparison with an exhaustive search. In Section 4.2.2, we showed that exhaustive search is

infeasible for our real world benchmarks (MWD 4-s, CPL1 4-s, and CPL1 5-s). However, the

synthetic benchmark was designed to be small enough to evaluate all feasible task mappings. To

perform the exhaustive search, we first generated a complete list of feasible task mappings for each

design point in the synthetic benchmark. We then used the Lifetime Evaluation block, from Figure

4.1, in isolation to determine the tsys that resulted from each task mapping.

Comparing the exhaustive data for the synthetic benchmark design points with the results from

the lifetimeAnts approach allowed us to ensure that our approach performed well in small design

spaces. We found that lifetimeAnts was able to locate a task mapping resulting in a tsys value
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Figure 4.10: Comparison of all approaches to observed optimal task mappings for design points in
the CPL1 4-s benchmark

equivalent to that of the best task mapping found by the exhaustive search for all six design points

in the synthetic benchmark set.

Real World Benchmark Results: CPL1 4-s

We compared the two ACO-based approaches and the two SA-based approaches, described in Sec-

tion 4.3.1, with observed optimal task mappings since obtaining the true optimal results is infeasible

for the remainder of our benchmarks. For each design point, each of the four approaches was run

several hundred times. We define the observed optimal task mapping for each design point as the

one resulting in the highest system lifetime as found by any iteration of our four approaches. The

tsys values resulting from all runs of a particular approach on a particular design point were aver-

aged to obtain an approximation of how well the approach performs on that design point. Figure

4.10 shows the results of this comparison for the design points in the CPL1 4-s benchmark.

Each group of bars in Figure 4.10 represents the results of our approaches for a single design

point. The green bars indicate the tsys resulting from the observed optimal task mapping (i.e, the

highest tsys resulting from a task mapping found by any single run of one of the four approaches).

Each other set of bars represents the average tsys found by all runs of one particular approach. The
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Table 4.2: Summary of results for ACO- and SA-based approaches

Benchmark agnosticAnts lifetimeAnts avgSA maxSA Lifetime Range

MWD 4-s 66.56% 77.3% 83.4% 82.4% 48.7%
CPL1 4-s 61.4% 83.9% 81.8% 81.8% 66.8%
CPL1 5-s 64.0% 85.1% 84.3% 83.1% 68.4%

data represented in Figure 4.10 shows that our lifetimeAnts approach consistently outperforms the

agnosticAnts (random) approach in the CPL 4-s benchmark. When averaging across the 16 design

points in this benchmark, the task mappings found by the lifetimeAnts approach result in 39.4%

higher system lifetime than the task mappings found by the agnosticAnts approach. In the best case,

design point 7, the average lifetime resulting from the task mappings found by our lifetimeAnts

approach is 59.7% higher than that of the agnosticAnts approach. Also, both SA-based approaches

perform about as well as the lifetimeAnts approach across these design points. This analysis is

expanded to the remainder of our benchmarks in Table 4.2.

Real World Benchmark Results: Generalized

Table 4.2 summarizes the results of comparisons of our ACO- and SA-based approaches to the

observed optimal task mappings for all design points in all benchmarks. The percentages in the

columns labeled with approach names show how close that particular approach came to the observed

optimal task mapping, on average, across all of the design points in a particular benchmark. These

results are expressed as a fraction of the observed optimal task mapping’s system lifetime, and thus,

higher percentages represent better results. For example, our lifetimeAnts approach produced task

mappings which resulted in lifetimes that were 85.1% of the lifetimes resulting from the observed

optimal task mappings when averaged across the 38 design points in the CPL1 5-s benchmark.

We observe that the lifetimeAnts approach consistently finds task mappings that are closer to the

observed optimal task mappings than those found by the agnosticAnts approach. Also, the quality

of results achieved by the lifetimeAnts approach is generally unaffected by the complexity of the

benchmark. Across all benchmarks, we see that lifetimeAnts is capable of finding task mappings

similar to the observed optimal ones. As mentioned in Section 4.3.1, the SA-based approaches were

tuned to produce solutions of similar average to the lifetimeAnts approach. Thus, the percentages

in Table 4.2 for those three approaches are quite similar. However, similar average solution quality
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does not tell the entire story since a user of these tools would not use the average result of several

runs; the best result of several runs would be used. This more detailed analysis of the results is

presented in Section 4.4.

In 45% of our 60 design points, the observed optimal task mapping was produced by a run of

the lifetimeAnts approach. The observed optimal task mappings for the other design points were

produced by one of the two SA-based approaches (26.7% by avgSA and 28.3% by maxSA). In the

cases in which the lifetimeAnts approach did not produce the optimal task mapping, it was able

to produce a task mapping resulting in lifetime within 3.9% of the observed optimal lifetime on

average.

The approaches have different tradeoffs between solution quality and runtime: for a given design

point, a single run of agnosticAnts evaluates a single task mapping while a single run of lifetimeAnts

evaluates 20 task mappings. In practice, the runtime for a single run of lifetimeAnts is less than

20 times the runtime of a single run of agnosticAnts and is on the order of tens of seconds. For

comparison, the observed optimal task mapping for each design point is the result of hundreds of

task mapping evaluations.

The rightmost column of Table 4.2 shows the average difference between the best and worst

lifetimes resulting from task mappings found by any run of the four approaches across all design

points in a particular benchmark. The average lifetime ranges are expressed as a percentage of

the lifetime resulting from the observed optimal task mappings in a particular benchmark. For

example, when averaging across the 16 design points in the CPL1 4-s benchmark, the difference

between the lifetimes resulting from the best and worst task mappings is 9.2 years, or 66.8% of

the lifetime resulting from the observed optimal task mappings. It is obvious that system lifetime

is greatly affected by the quality of the initial task mapping, and this data punctuates the need for

lifetime-aware task mapping.

The data in Table 4.2 clearly show that the lifetime ranges increase with the complexity of the

benchmark. Lifetime ranges also differ from one design point to another within a single bench-

mark. In each of the three benchmarks, we observed that the lifetime range generally increases

with the amount of slack in the system; design points with more slack exhibit higher lifetime ranges

than those with lower slack. Thus, as the opportunity to improve lifetime is increased through the

addition of slack, the importance of lifetime-aware task mapping increases since good initial task
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mappings are required to properly take advantage of the slack.

4.4 The Case for Lifetime-Aware Task Mapping

While the analysis in Section 4.3.2 shows that temperature- and lifetime-aware task mapping per-

form similarly in the average case, it does not explore the ways in which such tools would actually

be used. Rather than averaging all results together, this section examines the task mappings found

by the approaches that would actually be used (i.e, those found by a temperature-aware approach

which result in low temperature and those found by a lifetime-aware approach which result in high

lifetime). This comparison allows us to evaluate a temperature-aware task mapping approach’s

ability to find task mappings resulting in high system lifetime. We can also use the data to make

observations about a lifetime-aware task mapping approach’s ability to find task mappings resulting

in low maximum or average initial component temperature.

4.4.1 Single Design Point Comparison: CPL1 4-s

Figures 4.11 and 4.12 depict the results of our analysis for design point 10 in the CPL1 4-s bench-

mark. In Figure 4.11, the sets of task mappings found by the lifetimeAnts and avgSA approaches

are combined and plotted. Each point represents a single task mapping where average initial com-

ponent temperature resulting from the task mapping is encoded by the x-coordinate while lifetime

resulting from the task mapping is encoded by the y-coordinate. Figure 4.12 is similar to Figure

4.11 except that the task mappings found by the lifetimeAnts approach are combined with the task

mappings found by the maxSA approach. In Figure 4.12, the x-axis represents the maximum initial

component temperature resulting from a task mapping.

In Figure 4.11, we observe that large ranges of lifetimes result from task mappings which yield

nearly the same average initial component temperature. To calculate these ranges for a particular

design point, we first consider all of the points whose average initial component temperature is

within 1% of the lowest average initial component temperature in the dataset. We then compute

the difference in lifetime between the points with maximum and minimum lifetime in each set and

report the result as a percentage of the maximum lifetime resulting from any task mapping for that

design point. For example, the box in Figure 4.11 surrounds the set of points whose average initial
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Figure 4.11: Average initial component temperature and lifetime data for CPL1 4-s design point 10
task mappings

component temperatures are within 1% of lowest average initial component temperature resulting

from any task mapping in the dataset. The highest lifetime in this set of points is 17.7 years while

the lowest is 11.6 years, and the difference between the two is 34.5%. This range indicates that a

task mapping which results in a low average initial component temperature will not necessarily be

a task mapping resulting in long system lifetime. We expand this analysis to all of our design points

in Table 4.3.

The box drawn in Figure 4.11 also leads to a second important observation. As long as a task

mapping is found that results in system lifetime within 34.5% of the optimal, the average initial

component temperature resulting from that task mapping will be within 1% of the optimal average

initial component temperature. If we consider all of the task mappings explored for this design

point, we find that the range of resulting system lifetimes is 43.6% while the range of resulting

average initial component temperatures is only 2.0%. This relation of lifetime range to average

initial component temperature range shows that task mappings which result in high system lifetime

are also likely to result in low average initial component temperature.

The purpose of Figure 4.12 is to show that the analysis described in the two previous para-

graphs produces similar results when considering a temperature-aware task mapping algorithm that
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optimizes maximum initial component temperature (maxSA). In this case, the range of lifetimes

that results from task mappings within 1% of the lowest maximum initial component temperature

is 17.8%. While this range is smaller than the one resulting from the optimization of average ini-

tial component temperature, it is still significant and demonstrates that task mappings which are

optimized for maximum initial component temperature will not necessarily result in high system

lifetimes. The analysis done in Figures 4.11 and 4.12 is expanded to all of our design points in

Table 4.3 and is described in Section 4.4.2.

4.4.2 Generalized Comparison

Table 4.3 lists the average and maximum ranges in lifetime resulting from task mappings yielding

nearly the same maximum or average initial component temperature across all design points in a

benchmark. Before being averaged, the range for each design point is converted to a percentage of

the highest lifetime resulting from any task mapping found for that design point. For example, the

maximum lifetime range for task mappings which result in an average initial component temperature

within 1% of the lowest, across the design points in the MWD 4-s benchmark, is 47.9%. The results
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Table 4.3: Comparison of lifetime ranges for task mappings with temperature within 1% of optimal

Benchmark Max Initial Temp Avg Initial Temp

Avg Max Avg Max

MWD 4-s 27.4% 44.3% 32.3% 47.9%
CPL1 4-s 17.5% 24.5% 33.5% 53.2%
CPL1 5-s 15.3% 23.2% 30.0% 44.0%

in Table 4.3 show that observations made in Figures 4.11 and 4.12 are generally true across all

design points.

The lifetime ranges in Table 4.3 lead to another important result. Task mapping is complex

enough to make exhaustive search infeasible, thereby requiring the use of intelligent design space

searches. These searches cannot guarantee that the optimal answer will be found and instead hope

to return a near-optimal result. Here, we assume that a quality temperature-aware task mapping

approach will find task mappings that result in temperatures within 1% of the optimal. Our data

shows that task mappings in this small range of high-quality solutions, in terms of temperature, are

not necessarily high-quality solutions in terms of lifetime. In the case of one design point in the

CPL1 4-s benchmark, the range of lifetimes resulting from task mappings within 1% of the lowest

average initial component temperature is 53.2% of the lifetime that results from the task mapping

with the highest lifetime. The data in Table 4.3 lead us to the conclusion that the high-quality

solutions returned by temperature-aware task mapping approaches may be significantly sub-optimal

in terms of lifetime.

We also arrive at the closely related conclusion that the high-quality solutions returned by

lifetime-aware task mapping approaches are likely to be near-optimal in terms of temperature. Con-

sequently, we assert that temperature-aware task mapping is a subset of the lifetime-aware task

mapping problem. Specifically, a temperature-aware task mapping exploration will only find solu-

tions with good temperature, while a lifetime-aware task mapping exploration will find solutions

with both good lifetime and good temperature. The analysis of a larger number of task mappings

for each design point would likely only strengthen this argument since the ranges we use to draw

these conclusions would either stay the same or increase when looking at more task mappings (i.e,

the task mappings which currently define the range do not disappear).
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4.5 Summary

We presented an approach for lifetime-aware task mapping based on ACO. The approach works

by identifying areas of the design space containing good task mappings and communicating that

information to future synthesis runs to focus on those areas and find task mappings that yield high

system lifetime. By directly optimizing lifetime, our approach considers physical parameters and

the interaction of application and architecture that are not easily captured by temperature-aware task

mapping.

Our results showed that our lifetime-aware, ACO-based task mapping approach performs well

across a range of benchmarks. In a small, synthetic benchmark, our approach is able to locate

task mappings equivalent to the best ones found by an exhaustive search. In larger benchmarks, our

approach finds task mappings that result in tsys within 17.9% of the observed optimal task mappings

on average. Our lifetime-aware approach also outperforms a lifetime-agnostic approach by 32.3%

on average. Finally, we make a case for the importance of lifetime-aware task mapping by showing

that the difference between lifetimes resulting from good and bad task mappings averages 61.3% of

the best lifetime across three real-world benchmarks.



Chapter 5

Runtime Task Mapping Optimization

Using a Meta-Heuristic

The second time at which task mapping optimization can be used to enhance system lifetime is

while the manufactured system is executing its application(s). Compared to the problem of design-

time task mapping discussed in Chpater 4, a decision about how to change the task mapping at

runtime must be made very quickly. When it is decided that a system’s task mapping should be

changed at runtime, either reactively when a component fails or proactively at a set interval, the

amount of time used to select the new task mapping must be minimized to avoid system downtime.

Thus, a detailed search strategy like the one we used for design-time task mapping is unusable in

the context of runtime task mapping due to its computational cost. Instead, we propose the use of

a carefully designed meta-heuristic which is able to select good task mappings with significantly

reduced computational cost.

Our meta-heuristic combines several individual, component-level heuristics which optimize dif-

ferent system metrics that impact lifetime. Specifically, heuristics for power, temperature, amount

of wear, and amount of time until failure are weighted and combined to build our meta-heuristic.

While we cannot afford to spend much time searching for good task mappings at runtime, the real-

time information from temperature and wear sensors used in the meta-heuristic keeps the quality of

the task mappings high. Of course, the ability to account for actual system operating conditions at

runtime requires additional hardware cost in the form of the temperature and wear sensors that are

61
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not required for design-time task mapping.

In a wear-based task mapping heuristic, components which have smaller amounts of accumu-

lated wear are favored during the task mapping process. This type of heuristic minimizes the ac-

cumulation of wear on components, thereby directly extending their lifetime. In turn, the lifetime

of the system as a whole is also extended. Since the current amount of wear on a component is

simply the sum of all the wear that was accumulated prior to the current time, this single mea-

surement inherently captures all of the past wear-related state of a component. Thus, wear can be

contrasted with component temperature or power dissipation, which only capture the current state

of the system.

The main contribution of this chapter is the design of a runtime task mapping subsystem which

improves system lifetime through the use of component wear information and its ability to contin-

ually adapt to the current state of the system. Ours is the first approach to dynamically manage

the lifetime of embedded chip multiprocessors at runtime through the use of task mapping. By

definition, runtime task mapping allows us to account for variations in the applications or system

that would otherwise be impossible to address at design time. We will demonstrate that the systems

being tested have a significantly longer lifetime when using our task mapping subsystem as com-

pared to power- or temperature-based task mapping. Ultimately, we will be able to conclude that

runtime wear-based task mapping is a requirement for systems in which lifetime is an important

characteristic.

The remainder of this chapter will explain the details of how the individual heuristics are com-

bined to form our meta-heuristic, the set of benchmarks we use to evaluate our runtime task mapping

optimization, and how different balancings of the meta-heuristic affect system lifetime. The work

described in this chapter was presented in part in [12].

5.1 Task Mapping Heuristics

We use the lifetime evaluation process discussed in Chapter 3 to compare a number of task mapping

heuristics. The purpose of the task mapping process is to determine whether or not a component

failure can be survived through remapping or if the system is no longer able to satisfy performance

constraints. The task mapping process is successful if every task can be assigned to a single compo-
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nent without violating any capacity or communication constraints. Tasks cannot be split into pieces,

and so they must be mapped to a single component; a single component can accommodate as many

tasks as its capacity allows. Communication between tasks is routed through the network and is

subject to the communication constraints of the routers. The exception to this rule is when two

communicating tasks are mapped to the same resource, and in this case, no network traffic is gen-

erated. If a mapping has been created without violating any capacity or communication constraints,

we assume that the operating system will be able to create a valid schedule for the tasks mapped to

each resource, and this process is outside the scope of our work.

In the case that a task mapping may be possible, we use a weighted scoring function, detailed in

Algorithm 3, to map each task to a component. The algorithm is discussed below and corresponds to

the “Task Mapping Algorithm” block in Figure 3.2. The tasks are first sorted by their requirements,

and are run through the scoring function from largest to smallest (line 3). We performed some

experimentation with different task orderings, but found that the order of descending requirements

generally produced the best results. An in-depth analysis of the effects of task ordering in our task

mapping algorithm is the subject of future research.

Given a task, the scoring function only considers components which currently have the available

capacity to execute the task (lines 5-10). The score for a task/component pair is the weighted sum

(lines 21-26), where the sum of the weights is always 1.0, of a number of individual scores that are

each normalized to 1.0 (normalization values found on lines 14-18). Therefore, the highest total

score that any task/component pair can receive is 1.0. The given task is mapped to the component

with the highest score, and the available capacity for that component is reduced by an amount equal

to the requirement of the task (lines 32-33). We consider each unique set of weights to be a different

task mapping heuristic that is used within the larger framework of our task mapping algorithm.

The individual scores in the weighted sum are based on power, available capacity, temperature,

time to failure, and wear. The power score for a task/component pair is based on the amount of

power dissipated by the component per unit of work, and lower amounts of power dissipation per

unit of work receive higher scores (line 21). This definition implies that the power score is dependent

only on the characteristics of the component and is independent of the task requirement.

The available capacity score for a task/component pair is based on the difference between the

component’s available capacity and the requirement of the task, and smaller differences generate
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Algorithm 3 Task Mapping Algorithm
1: bool taskMapping(tasks, components)
2: mapping.clear()
3: tasks = sort(tasks,largeToSmall)
4: for all t in tasks do
5: candidates.clear()
6: for all c in components do
7: if c.availableCapacity() ≥ t.requirement() then
8: candidates.add(c)
9: end if

10: end for
11: if candidates.empty() = true then
12: return usePreviousSolution()
13: end if
14: minPow = findMinPow(candidates)
15: minCap = findMinCap(candidates,t)
16: minTemp = findMinTemp(candidates)
17: maxTTF = findMaxTTF(candidates)
18: minWear = findMinWear(candidates)
19: maxScore = 0
20: for all c in candidates do
21: powScore = powWt ∗maxPow/c.getPow()
22: capScore = capWt ∗minCap/c.getCap()
23: tempScore = tempWt ∗minTemp/c.getTemp()
24: ttfScore = ttfWt ∗ c.getTTF()/maxTTF
25: wearScore = wearWt ∗minWear/c.getWear()
26: totScore = powScore+ capScore+ tempScore+ ttfScore+ wearScore
27: if totScore ≥ maxScore then
28: maxScore = totScore
29: bestComp = c
30: end if
31: end for
32: mapping.add(t,bestComp)
33: bestComp.availableCapacity() -= t.requirement()
34: end for
35: return route(mapping)
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higher scores (line 22). As an alternative to this definition of the available capacity score, we tested

a method that was only based on the available capacity of the component; however, this method

produced inferior results.

The temperature score for a task/component pair is based on the current temperature of the

component, and higher scores are given to components with lower temperatures (line 23). We

assume that each component on the chip has a temperature sensor which reports the maximum

temperature observed within the area of that component.

The time to failure (TTF) score is based on the amount of time before the component will fail

due to a wearout fault, and higher scores correspond with higher times (line 24). The wear score is

based on the wear accumulated by the component as a percentage of the amount of wear which will

cause the component to fail (line 25). Components with a lower percentage of accumulated wear

are favored by this score, and this wear score offers a slightly different interpretation of the data

available from wear sensors than the TTF score. Our assumptions about the capabilities of wear

sensors are supported by existing research that is discussed in Chapter 7. Like the power score, the

temperature, TTF, and wear scores are all independent of the task requirement.

We implement different task mapping heuristics by changing the weights that are used in lines

21 through 24 of Algorithm 3. We tested numerous combinations of weights, and we chose a subset

of the best performing combinations to show in our results. The combinations of weights we used

to create different heuristics are shown in Table 5.1. Each column in Table 5.1 corresponds to one of

the weights used in Algorithm 3, and each row corresponds to one class of task mapping heuristics.

While each heuristic uses a significant power weight, power cannot be used by itself to create a

good task mapping heuristic.

We tested a combination of weights in which the power weight was set to 1.0 and all other

weights were set to 0.0, and the resulting heuristic did not perform as well as any of the other

heuristics we discuss in this chapter. The reason for this result is that many of the components

dissipate the same amount of power per unit of work, and some other measurement is needed to

intelligently break those ties. The heuristics are named according to the weight that is used in

addition to the power weight.

Once all processing tasks have been mapped as described above, we employ a simple, greedy

task mapping strategy for memory arrays. This strategy maps memory arrays from largest require-
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Table 5.1: Task mapping scoring weights used to create task mapping heuristics

Heur. powWt capWt tempWt ttfWt wearWt

Power 0.5 0.5 0.0 0.0 0.0
Temp 0.75 0.0 0.25 0.0 0.0
TTF 0.75 0.0 0.0 0.25 0.0
Wear 0.75 0.0 0.0 0.0 0.25

ment to smallest requirement and favors memories where the available capacity matches that of the

array being mapped. We chose not to employ our more sophisticated mapping heuristics for mem-

ory arrays due to our other assumption that memories cannot fail, and so the mapping of arrays to

memories will not significantly impact system lifetime.

If the task mapping process reaches a point where there are no valid candidate components for a

task or memory array, the process temporarily fails (lines 11-13). We found that some combinations

of system state (power, available capacity, temperature, TTF, wear) prevent a task mapping from

being found by our task mapping process even though one was previously found for the same set of

failed components and a different system state. When we encounter these cases, we simply apply

the previously found task mapping, even though it was “optimal” for a different system state. If no

task mappings exist given the current set of failed components, then our task mapping algorithm

fails (“fail” path in Figure 3.2).

The final step in the task mapping algorithm is traffic routing, which we perform via a basic

implementation of Dijkstra’s algorithm (line 32). After traffic routing, the amount of bandwidth

placed on each link is compared to the maximum allowed bandwidth for that link. If any links

exceed their maximum allowed bandwidth after the traffic routing process, our task mapping algo-

rithm fails (“fail” path in Figure 3.2). Assuming no link bandwidth violations are found, component

utilization and temperature are then re-calculated so that component failure times may be updated

accordingly (“pass” path in Figure 3.2).

When there are no feasible task mappings for the current combination of remaining components,

we record the time at which the sample system fails. We also record the time of the first component

failure in each sample system, although it may be equal to the system failure time depending on the

amount of slack in the system. When enough sample systems have been simulated, tsys is estimated

by computing the mean of all system failure times, and tfirst is estimated by computing the mean



67 Chapter 5. Runtime Task Mapping Optimization Using a Meta-Heuristic

of all first component failure times. We found that 10000 samples were enough to estimate both

tsys and tfirst with a 95% confidence interval of 1% or less of the measured tsys or tfirst value.

5.2 Benchmarks

We have tested all of the heuristics in Section 5.1 using a suite of benchmarks. Each of our

benchmarks consists of a hardware architecture and a task graph that must be mapped to it, and

remapped as components fail. The components used to construct the architectures include 4- and

5-port switches, three types of ARM processors, and memories of various sizes. The computational

capabilities of the processors range from 125 to 500 MIPS, and the memory sizes range from 64KB

to 512KB. Each processor or memory must be connected to exactly one switch, and each switch

may connect to any combination of processors, memories, or other switches so long as its port limit

is observed. We assume that components are connected via links with a maximum bandwidth of

256MB/s. BloBB [17] is used to create floorplans for all of our designs.

Our benchmarks can be divided into two groups. The benchmarks in the first group are related

by a common hardware architecture while the benchmarks in the second group are related by a

common task graph. Details about these benchmark groups are covered in the following subsections.

5.2.1 Single Architecture, Multiple Applications

For our first set of benchmarks, we selected a hardware architecture similar to one found commonly

in academic examples and in industry: a mesh. This architecture contains nine switches (9-s) ar-

ranged in a mesh topology, and each switch contains a 5x5 crossbar which allows it to connect to

five other components. The ports on each switch that are not used to connect to other switches are

connected to processors. Nine M3 processors, six ARM9 processors, and six ARM11 processors

are connected to the switches, and their arrangement is detailed in Figure 5.1. Although multiple

processors are shown in a single red box with a single link to the switch, each processor in the box

is actually independent of the others and has its own link to the switch. This simplification is also

used in Figure 5.2.

We used Task Graphs for Free (TGFF) [31] to generate nine random applications for the mesh

architecture. The generated applications contain a random number of tasks in the range of 45 to 55,
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Figure 5.1: 9-s mesh hardware architecture

and the computational requirements for each task are also randomly generated. We parameterized

TGFF such that a complete task graph would use about 80% of the resources of the system on

average. While communication rates between tasks are also selected randomly by TGFF, we set

the parameters for their generation such that they would fall well below the bandwidth limit of the

links. Consequently, bandwidth limits are unlikely to restrict the set of feasible task mappings for

this set of benchmarks.

To further expand this set of benchmarks, we used the same set of generated applications that

were described above in conjunction with a second hardware architecture. The second architecture

contains ten 4-port switches (10-s) arranged in a ring. Thus, each switch is connected to two other

switches and two processors. A total of ten M3 processors, five ARM9 processors, and five ARM11

processors are used in this architecture, which is detailed in Figure 5.2. The 9-s mesh and 10-s ring

architectures do not contain memories.

5.2.2 Single Application, Multiple Architectures

Our second set of benchmarks is based on an implementation of an MPEG Core Profile Level 1

decoder/encoder. The task graph for this application contains 17 processing tasks and five memory

arrays. While this task graph is somewhat smaller than the randomly generated task graphs, it

provides valuable data about how the various task mapping heuristics deal with a real-world system.

The MPEG task graph is combined with several different hardware architectures to create the
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Figure 5.2: 10-s ring hardware architecture

second set of benchmarks, and all of those architectures are built around five switches arranged in a

ring. This ring of switches is shown on the left side of Figure 5.3; the figure excludes the processors

connected to each switch since their types change as we vary the hardware architecture. We create

different hardware architectures by varying the types of processors and memories connected to the

switches. The first design point in this set of benchmarks contains just enough resources to execute

the task graph, and additional design points are created by replacing the baseline component with

those having greater computation or storage abilities. By varying the types of components in the

system, we are able to see how the task mapping heuristics use slack to affect the lifetime of the

system.

We duplicate the MPEG task graph in a second part of this group of benchmarks in order to

create another large-scale example and to see how the task mapping heuristics handle the mapping

of two, independent task graphs. The hardware architectures are doubled in size, by doubling the

number of components, to accommodate the addition of the second instance of the task graph. The

doubled hardware architectures contain two rings of five switches each which are connected to each

other through switches with previously unconnected ports. The switch topology for these hardware

architectures is shown on the right side of Figure 5.3. Thus, while the two instances of the task

graph do not communicate, the underlying tasks can be mapped to any component in the system

since there is a path between any two components in the system. We also assume that components
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are able to simultaneously accommodate tasks from the two task graphs if resource constraints are

met.

5.3 Results

We use the benchmarks from Section 5.2 to compare the effects of the task mapping heuristics

described in Section 5.1 on tsys and tfirst. We break down our results by benchmark set in the same

manner as Section 5.2.

5.3.1 Single Architecture, Multiple Applications

This section covers the results of the experiments we ran using the benchmarks in Section 5.2.1.

Figure 5.4 depicts the system tsys values that were obtained when several task mapping heuristics

were applied to the nine task graphs on the 9-s mesh architecture. The x-axis in the figure is a cate-

gory axis in which each group represents the tsys values resulting from the task mapping heuristics

for one of the task graphs. The y-axis shows tsys, as measured in years, when a particular task

mapping heuristic is used to map a particular task graph. Each group of bars is organized from

left to right as follows: power (red), temperature (blue), TTF (green), and wear (orange). For the
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Figure 5.4: 9-s mesh tsys results

temperature-, TTF-, and wear-based heuristics, we show the results when using the heuristic at two

different intervals with two different shades of the same color. The color used to represent each

heuristic remains consistent throughout the remainder of this chapter. The interval time (i.e, amount

of time between triggering of the task mapping subsystem) is prefixed by a “-” in the name of the

data set and is measured in years. When the power-based heuristic is used, new task mappings are

only generated when a component fails since the amount of power a component dissipates per unit

of work does not change over time. Thus, the power-based heuristic is listed without a task mapping

interval time in the legend.

In all task graphs, the power-based heuristic yields the lowest tsys. The temperature-based

heuristics produce higher tsys than the power-based heuristic, and this is further improved upon by

the TTF- and wear-based heuristics. The TTF- and wear-based heuristics produce similar results

for many of the task graphs, but there are a few cases in which the wear-based heuristics produce

the best results by a measurable margin. Since the task graphs are not listed on the x-axis in any

particular order, there is no observable trend in tsys influenced by the characteristics of the task

graph. Analyzing the relationship between task graph properties and system tsys is outside of the

scope of this thesis and is left for future work.
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Figure 5.5: 9-s mesh tsys improvement

Figure 5.5 shows the same data as in Figure 5.4, but all data has been normalized to the results

of the temperature-based heuristic using an interval of 0.1 years. The x-axis remains a category

axis representing the different task graphs, and it includes an “avg” group which shows the average

improvement in lifetime across the nine task graphs that each heuristic achieved. The y-axis shows

the percent improvement in tsys that a particular heuristic was able to achieve over the Temp-0.1

heuristic. For example, the value of the Wear-0.01 heuristic for task graph 1 is shown to be 1.016,

or a 1.6% improvement. We arrive at this value by dividing the tsys which results from using that

heuristic (11.61 years) by the tsys which results from using the Temp-0.1 heuristic (11.42 years).

The results for the power-based heuristic are not shown in this figure since they are always worse

than those of the Temp-0.1 heuristic. This figure shows that the Wear-0.01 heuristic usually produces

the greatest improvement over the Temp-0.1 heuristic with an average tsys improvement of 7.8%

and a maximum tsys improvement of 17.4%. These tsys improvement results are mirrored in the

“Wear-0.01” row of Table 5.2 by the values of 1.078 and 1.174 in the “9-s Mesh/Avg” and “9-s

Mesh/Max” columns.

Figure 5.6 is set up in the same manner as Figure 5.4 with the exception that the y-axis shows

tfirst as measured in years. All measurements shown in Figure 5.6 are less than or equal to the
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Table 5.2: Improvement in tsys by task mapping heuristic and benchmark set

Heuristic 9-s Mesh 10-s Ring MPEG MPEG (double)

Avg Max Avg Max Avg Max Avg Max

Power 0.951 0.997 0.975 1.026 0.947 0.980 0.974 1.014
Temp-1.0 1.000 1.011 0.999 1.005 1.000 1.011 1.002 1.004
Temp-0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Temp-0.01 0.999 1.003 1.002 1.007 1.000 1.007 1.000 1.005
TTF-1.0 1.054 1.151 1.046 1.102 1.041 1.105 1.046 1.136
TTF-0.1 1.065 1.176 1.057 1.127 1.052 1.134 1.050 1.165
TTF-0.01 1.068 1.184 1.061 1.137 1.055 1.134 1.050 1.169
Wear-1.0 1.062 1.141 1.044 1.091 1.051 1.094 1.045 1.121
Wear-0.1 1.076 1.167 1.057 1.113 1.061 1.116 1.053 1.156
Wear-0.01 1.078 1.174 1.060 1.123 1.062 1.115 1.053 1.154

Table 5.3: Improvement in tfirst by task mapping heuristic and benchmark set

Heuristic 9-s Mesh 10-s Ring MPEG MPEG (double)

Avg Max Avg Max Avg Max Avg Max

Power 0.882 0.996 0.913 1.038 0.883 0.971 0.885 1.009
Temp-1.0 1.011 1.033 1.004 1.030 1.001 1.009 1.001 1.010
Temp-0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Temp-0.01 1.000 1.002 1.002 1.007 1.001 1.008 0.998 1.005
TTF-1.0 1.108 1.245 1.071 1.156 1.070 1.105 1.117 1.218
TTF-0.1 1.149 1.289 1.095 1.173 1.100 1.134 1.157 1.261
TTF-0.01 1.170 1.326 1.105 1.190 1.104 1.133 1.177 1.288
Wear-1.0 1.154 1.265 1.089 1.152 1.095 1.130 1.141 1.210
Wear-0.1 1.182 1.329 1.103 1.184 1.109 1.153 1.175 1.275
Wear-0.01 1.186 1.339 1.108 1.193 1.111 1.157 1.177 1.279

corresponding measurements in Figure 5.4 since the systems have enough slack to continue func-

tioning after the first component failure. The same patterns observed in the tsys data also apply

to this tfirst data: the wear-based heuristic performs the best, followed by the TTF-, temperature-,

and power-based heuristics. Figure 5.7 shows the tfirst improvement over the Temp-0.1 heuristic

corresponding to the data in Figure 5.6, and it is set up in the same manner as Figure 5.5. Once

again, the Wear-0.01 heuristic shows the greatest improvement in tfirst across all of the task graphs

with an average improvement of 18.6% and a maximum improvement of 33.9%. These values for

average and maximum improvement can also be found in the “Wear-0.01” row of Table 5.3 as the

values 1.186 and 1.339 in the “9-s Mesh/Avg” and “9-s Mesh/Max” columns.

Table 5.2 summarizes the improvements in tsys yielded by each heuristic for all of our bench-
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mark sets. Each row in the table corresponds to one of the heuristics we tested in our task mapping

subsystem, and each of the four major columns corresponds to one of our four benchmark sets.

Under each benchmark set name, there are two subcolumns named “Avg” and “Max” which denote

the average and maximum results across all benchmarks in a benchmark set. Each entry in the ta-

ble represents a factor of improvement that is measured according to the description of Figure 5.5

above. These factors of improvement show how well a particular heuristic does compared to the

Temp-0.1 heuristic. Values below 1.0 indicate that a heuristic did not perform as well as the Temp-

0.1 heuristic, while values above 1.0 indicate that a heuristic performed better than the Temp-0.1

heuristic. The entire row for the Temp-0.1 heuristic contains entries of 1.0 to show that all results in

the table are normalized to this heuristic. Table 5.3 is set up in the same manner as described above,

except that it summarizes improvements in tfirst yielded by each heuristic.

Our second set of experiments involved mapping the nine random task graphs to the 10-s ring

architecture, and a summary of these results can be found in the second major column of Tables 5.2

and 5.3. In this set of experiments, the TTF-0.01 heuristic performed as well, on average, as the

Wear-0.01 heuristic in regard to tsys. Both heuristics managed to improve tsys by an average of 6%

over the Temp-0.1 heuristic. The Wear-0.01 heuristic does show marginal improvement over the

TTF-0.01 heuristic in regard to average tfirst improvement. Thus, the Wear-0.01 heuristic is again

the best heuristic of the ones we tested.

5.3.2 Single Application, Multiple Architectures

The results from our experiments with the MPEG decoder/encoder application can be found in the

third and fourth major columns of Tables 5.2 and 5.3. The Wear-0.01 heuristic again leads to the

greatest average improvement in tsys in both the single- and double-sized MPEG benchmark sets.

In the single-sized MPEG benchmark set, the Wear-0.01 heuristic improves lifetime by up to 11.5%

over the Temp-0.1 heuristic, and that maximum improvement jumps to 15.4% in the double-sized

MPEG benchmark set. Similar to the results in the synthetic benchmark sets, the Wear-0.01 and

TTF-0.01 heuristics perform similarly with respect to improvement in tfirst. On average, the Wear-

0.01 heuristic improves tfirst by 11.1% in the single-sized MPEG benchmark set and by 17.7%

in the double-sized MPEG benchmark set. The maximum tfirst improvements achieved by the

Wear-0.01 heuristic are even greater: 15.7% in the case of the single-size MPEG benchmark set and
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27.9% in the case of the double-size MPEG benchmark. These results indicate that not only does

our wear-based task mapping heuristic perform well across the benchmarks we tested, but also that

the improvements in tfirst scale with the number of tasks in the application.

5.4 Summary

We presented the design for a runtime task mapping subsystem which extends system lifetime by

using a wear-based heuristic. Our simulator allows us to assume the existence of on-chip wear

sensors and use data from them to modify the task mapping as the system runs to adapt to the

changing wear patterns in the system. Basing task mapping decisions on a combination of wear

and power data gives us a direct path to system lifetime optimization in contrast with using power

by itself, or a combination of temperature and power, as proxies for lifetime. Also, using wear

data is elegant and concise since it captures all relevant, previous system state in a single value.

Temperature and power information only show the current state of the system by default and would

require more complicated heuristics to capture and utilize prior values.

Our results showed that our wear-based task mapping heuristic performed well across a wide

range of benchmarks. When testing large, random task graphs on a mesh architecture, we were able

to improve tfirst by an average of 18.6% and tsys by an average of 7.8% over a temperature-based

heuristic. We then used the same set of task graphs on a different hardware architecture, a ring,

to show that our results were not dependent on a mesh architecture. Our wear-based task mapping

heuristic improved tfirst by 10.8% and tsys by 6.0% over a temperature-based heuristic when the

ring architecture was used.

We based a second set of benchmarks on a real-world MPEG decoder/encoder application with

a corresponding hardware architecture and a variety of slack allocations. We were able to improve

tfirst and tsys by averages of 11.1% and 6.2%, respectively, over a temperature-based heuristic. In

order to see how our heuristics scaled with system size, we composed another set of benchmarks

by combining two instances of the MPEG application with double-sized hardware architectures. In

these benchmarks, we improve tfirst by an average of 17.7% and tsys by an average of 5.3% over a

temperature-based heuristic.

Our data also led to two interesting secondary results. First, we showed that the addition of
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slack to the system can improve both tfirst and tsys when our wear-based task mapping heuristic is

used. Thus, we can conclude that task mapping and slack allocation are important considerations

in designs where lifetime is a design goal, even if those systems are not meant to be used after

the failure of any components. Second, we found that there are diminishing returns in lifetime im-

provement with regard to how often task mapping is performed. When decreasing the task mapping

interval from one year to 0.1 years in both the wear- and temperature-based heuristic, a reasonable

improvement in lifetime is seen in all benchmarks. As the task mapping interval is moved from

0.1 years to 0.01 years, we observed a much smaller improvement in lifetime. This observation

means that designers must choose an appropriate task mapping interval depending on the overhead

required to change the task mapping to obtain a good tradeoff between that overhead and lifetime

improvement. This observation also points to the fact that the time required to compute the task

mapping, which is on the order of seconds, is significantly shorter than the amount of time between

the computation of task mappings, which is on the order of tens of days. Therefore, the amount of

computation required during task mapping is insignificant compared to the amount of computation

the system performs while executing its target application.



Chapter 6

Co-optimizing Competing Lifetime

Metrics

In the previous chapters about design-time and runtime task mapping optimization, we focused on

optimizing tsys and reported resulting tfirst values as secondary results. However, depending on

design requirements and the use case of a system, tfirst may be a more important figure of merit

than tsys. This chapter explores how the previously described task mapping techniques can be used

to co-optimize these different lifetime metrics.

The notion of tsys is based on the idea that most systems are over-provisioned to some degree

and will therefore be able to withstand the failure of some components at runtime. In theory, system

failure is averted as long as the required tasks can be mapped to components in the system which

have not failed. The underlying assumption in these situations is that the system contains mecha-

nisms for detecting permanent component failures and logically reconfiguring itself to remove any

dependencies on failed components. In general, we define these recovery and reconfiguration mech-

anisms as any process which helps present a coherent and usable view of the hardware architecture

to the operating system. While such mechanisms are certainly feasible, they may not be a realistic

option for all use cases.

A system that must meet strict safety or security requirements may not be able to implement

recovery and reconfiguration mechanisms because the complexity of these mechanisms is at odds

with the strict verification requirements of these systems. Systems which implement recovery and

78
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reconfiguration mechanisms have the potential to operate in scenarios with different combinations of

failed components. This number of scenarios grows quickly with the number of components in the

system and the amount of hardware over-provisioning. In safety critical systems, each of these sce-

narios must undergo an extensive verification process which can quickly become untenable. Also,

a system which is being targeted for a quick time to market might not include recovery and recon-

figuration mechanisms since they would increase the difficulty of design and verification. In both

of these cases, where recovery and reconfiguration is not available, system-level techniques which

target tsys are ineffective since the system will become inoperable as soon as a single component

has failed, even if sufficient resources are still available.

The lifetime metric of importance in these cases is time to first failure (tfirst); the amount of

time between when the system is powered on for the first time and when one component in the

system has failed. System-level techniques which target tfirst are able to make use of any over-

provisioned hardware to delay the first component failure for as long as possible. In particular, the

runtime task mapping optimization described in Chapter 5 accomplishes this by changing the task

mapping as the system is running.

The main contribution of this chapter is an exploration of how various task mapping approaches

affect tsys and tfirst. Our results show that there are scenarios in which no single task mapping

approach maximizes tsys and tfirst simultaneously. We use our task mapping evaluation framework

to show that different task mapping approaches are required to properly optimize different lifetime

metrics. Simply put, there is no catch-all definition for lifetime, nor is there a task mapping approach

which always optimizes lifetime as defined in different ways.

As a secondary contribution, we introduce a floorplan-aware task mapping heuristic. This

heuristic combines information about the amount of wear on each component with the spatial rela-

tionships between components in the system floorplan. The benefits of this heuristic are twofold.

First, the use of our floorplan-aware task mapping heuristic increases the overall number of Pareto-

optimal task mapping approaches. This increase is important because it leads to a wider range of

worthwhile tradeoffs between tsys and tfirst from which a designer can select. Second, the use of

our floorplan-aware task mapping heuristic results in a modest increase in tfirst for some designs.
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6.1 Effects of System Utilization and Task Mapping on tsys and tfirst

As mentioned above, there are situations in which no task mapping approach can simultaneously

maximize tsys and tfirst. The situations in which tsys and tfirst cannot be simultaneously max-

imized mostly occur when system utilization is less than 50% (detailed results can be found in

Section 6.5.1). Situations in which system utilization is less than 50% are common and may even

represent the majority of a system’s lifetime depending on its use case. For example, cell phone

processors likely spend more time idling (e.g, the phone is locked and the display is off) than they

do at maximum utilization (e.g, a web browser or game is being used). A system must be designed

with enough hardware resources to be able to handle the most demanding software that is planned

for use on the system, but the system may not always be operating at maximum utilization. De-

pending on how system utilization changes over time, the task mapping approach may also need to

be varied to ensure the target lifetime metric is maximized. Therefore, designers must consider the

relative importance of tsys and tfirst in conjunction with the expected utilization when choosing a

task mapping approach for a system.

6.2 Floorplan-Aware Task Mapping Heuristic

The individual heuristics which are used in the meta-heuristic are based on power, available capacity,

temperature, time to failure, wear, and the system floorplan. The first five heuristics are identical to

those found in Chapter 5.

The system floorplan heuristic combines floorplan information with TTF information from the

wear sensors. This heuristic first computes the Euclidean distances between the candidate com-

ponent and the two components in the system which have the lowest TTF values (i.e, the two

components nearest to failure) based on the floorplan. We experimented with using distances to

other numbers of components but found that considering two components worked the best for many

of our benchmarks. The distances to these two components are then weighted by the inverses of

the TTF values of those components. Thus, distances to components which will fail sooner are

weighed more heavily. The two weighted distances are then averaged, and this average represents

the floorplan score for a candidate component. By favoring higher floorplan scores, this heuristic
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Figure 6.1: Example of the floorplan-aware task mapping heuristic

favors components which are far away from other components that will fail soon.

Figure 6.1 shows an example of how the system floorplan heuristic scores candidate compo-

nents. The figure shows a floorplan containing six components, and the candidate components for

the task mapping are labeled C1 through C4. The components with the two highest amounts of

wear are W1 and W2; all components in the floorplan are of size 1x1 (in arbitrary distance units).

In this example, W1 has the soonest failure time of any component in the system (TTF = 4) and is

shaded dark red, while W2 has the second soonest failure time (TTF = 7) and is shaded light red.

The arrows in the floorplan indicate the Euclidean distances from C3 to W1 and W2. The floorplan

heuristic score computation for candidate component C3 is shown in Equation 6.1 and evaluated in

Equation 6.2.

score(C3) =
dist(C3,W1) ∗ TTF (W1)−1 + dist(C3,W2) ∗ TTF (W2)−1

2
(6.1)

score(C3) =

√
2 ∗ 1

4 +
√
2 ∗ 1

7

2
≈ 0.278 (6.2)

A score for each candidate component is computed in a similar way, and in this example, C4 has the

highest score (0.351). C4 gets a higher score than C3 because even though C3 is equidistant from the

components with the highest amounts of wear, C4 is further away from the most critical component

in the system. C2 gets a lower score than C3 because it is closer to the critical component, and C1

gets the lowest score because it is the closest component in the floorplan to both W1 and W2.

The combination of these six heuristics into a single meta-heuristic has several benefits. First,
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each of the individual heuristics addresses at least one part of the system state that is related to life-

time in some way. The temperature, power, and available capacity heuristics indirectly affect life-

time while the wear, TTF, and floorplan heuristics directly affect lifetime. Thus, the meta-heuristic

can be used to improve system lifetime from a wide variety of angles. Second, the combination

of heuristics eliminates the weaknesses of any individual heuristic. For example, performing strict

wear-based task mapping would ignore the fact that some components may be more power efficient

than others. This issue can be overcome by giving non-zero weights to both the wear and power

heuristics inside of the meta-heuristic. Third, the meta-heuristic provides a platform that can easily

be used to compare combinations of heuristics to individual heuristics. These comparisons allow us

to see how our task mapping approaches perform with respect to existing, single-mode (i.e, power,

temperature, etc.) approaches.

6.3 Creating Task Mapping Approaches

To create a list of task mapping approaches based on our meta-heuristic, we first created a list

of all possible weight combinations. Each weight combination corresponds to one possible task

mapping approach, and thus, each approach is a unique blend of the individual heuristics. A weight

combination can be defined as a 6-tuple where each value is a weight for one of the six heuristics.

We consider a weight combination to represent a valid task mapping approach if the six values sum

to 1.0 and each value is a multiple of 0.2. While the number of possible task mapping approaches

would increase if the “multiple of 0.2” constraint was reduced to a smaller number, we found that

such a change would not significantly impact the results.

As an example, the ith weight combination can be written as shown in Equation 6.3. Each w∗

value in Equation 6.3 corresponds to one of the heuristics described in Section 6.2.

WCi =
{
wpow
i , wcap

i , wtemp
i , wttf

i , wwear
i , wfp

i

}
(6.3)

The list of weight combinations was constrained by setting a step size for each weight (s in Equation

6.4) and forcing the sum of all weights to be 1 (Equation 6.5).

w
{pow,cap,temp,ttf ,wear,fp}
i = n× s, n ∈ Z≥0, s ∈ R≥0 (6.4)
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wpow
i + wcap

i + wtemp
i + wttf

i + wwear
i + wfp

i = 1 (6.5)

WCexample = {0.2, 0.2, 0.4, 0, 0, 0.2} (6.6)

An example weight combination is shown in Equation 6.6; the six weights sum to 1, and each weight

is a multiple of a step size of 0.2. While decreasing the step size increases the number of weight

combinations, we found that results were not significantly improved by step sizes smaller than 0.2.

With a step size of 0.2, the list of weight combinations that we tested contained 252 entries.

While examining some early results, we noticed that some of the 252 weight combinations

did not give unique results. That is, there were cases in which two different weight combinations

produced exactly the same tsys and tfirst over the course of many samples. The reason why this can

happen is that in a weighted meta-heuristic like ours, results are more dependent on the proportions

of the weights to one another than they are on the exact values of the weights. It then follows that

some of the weight combinations we enumerated would cause the meta-heuristic to behave in the

same way as other weight combinations even thought they are not strictly identical.

We went through a process to eliminate weight combinations which produced identical results

since we are only concerned with unique task mappings. For each architecture/task graph combina-

tion, we simulated each of the 252 weight combinations for 10 preliminary samples. If the results

of all of the preliminary samples were identical for any pair of weight combinations, we removed

one of those weight combinations from the list. This process reduced the number of unique weight

combinations to between 100 and 150 depending on the architecture and task graph.

6.4 Benchmarks

We tested all of our task mapping approaches on each of several benchmarks. Each of our bench-

marks consists of a hardware architecture and a task graph that must be mapped to it, and remapped

as components fail. The components used to construct the architectures included ARM9 processors

and 3-, 4-, and 5-port switches. The computational capability of the processors is equivalent to 250

MIPS, and the links between the switches have a maximum bandwidth of 256 MB/s. Each pro-

cessor was connected to exactly one switch, and each switch was connected to one processor and

2, 3, or 4 other switches in square mesh topologies. Three different target hardware architectures
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Table 6.1: Summary of benchmark task graphs

Arch. TG Num. Num. Tasks Utilization

9 processors 1 1 0.111
2 2 0.222
3 3 0.333
4 4 0.444
5 5 0.556

64 processors 1 3 0.047
2 10 0.156
3 20 0.313
4 30 0.469
5 40 0.625

100 processors 1 15 0.15
2 25 0.25
3 35 0.35
4 44 0.45
5 55 0.55

were created in this way: a 9 processor (3x3) mesh, a 64 processor (8x8) mesh, and a 100 processor

(10x10) mesh. All floorplans were created to match the mesh topologies described above and have

no empty space between components.

We created five unique task graphs for each of the three architectures. The five task graphs for

any particular architecture cover a range of utilization values between about 5% and 60% of the

capacity of that architecture. Details about the task graphs are shown in Table 6.1. The first two

columns identify the task graph and the architecture on which it is used. The third column lists the

number of tasks in each task graph, and the fourth column lists the fraction of the system that is

occupied by each task graph.

6.5 Results

We completed a set of experiments using the benchmarks described in Section 6.4 to compare the

effects of the task mapping approaches described in Section 6.3 on tsys and tfirst. This section

breaks down the analysis of those experiments into three sections. First, we examine how well tsys

and tfirst can be simultaneously maximized by our task mapping approaches. Second, we discuss

the impact of floorplan-based task mapping on the number of good tradeoffs between tsys and tfirst.
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Figure 6.2: tfirst maximization potential using tsys-optimal task mapping approaches

Finally, we show that floorplan-based task mapping can be used to improve tfirst in some cases.

The tsys and tfirst values for each benchmark are calculated according to the lifetime evaluation

and task mapping processes described in Chapter 3. Each value is the result of 400 Monte Carlo

samples, which leads to 90% confidence interval sizes that are 1-5% of the calculated tsys and tfirst

values.

6.5.1 Maximizing tsys and tfirst

In this section, we examine the possibility of simultaneously maximizing tsys and tfirst using our

task mapping approaches. In other words, we look at what percentage of the maximum tfirst (or

tsys) is achieved by the task mapping approach that results in the maximum tsys (or tfirst). To do

this, we first tested all of the unique task mapping approaches in each benchmark (architecture/task

graph pair). We then determined the maximum values of tsys and tfirst that could be attained in

each benchmark from these data.

Figure 6.2 shows how well the task mapping approaches which maximize tsys are able to max-

imize tfirst. The x-axis shows system utilization, or the percentage of the system that is occupied

at any one time by the task graph being tested. The y-axis shows the percentage of the maximum
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Figure 6.3: tsys maximization potential using tfirst-optimal task mapping approaches

tfirst that was achieved by a task mapping approach. The y-values of the data points correspond to

the task mapping approaches which resulted in the maximum tsys for each benchmark. Each data

point represents the results from one benchmark, and like-colored data points share an architecture

and differ by task graph. For example, each of the five red squares represents the result of mapping

one of the 9 processor architecture’s task graphs to that architecture.

The main takeaway from these data is that, at utilization values below 50%, task mapping ap-

proaches that maximize tsys will not maximize tfirst. At 50% utilization, the tsys-optimal task

mapping approaches can only achieve about 70% of the maximum tfirst in all of the architectures

we tested. As utilization falls, these task mapping approaches are decreasingly able to yield good

tfirst results. Above 50% utilization, the fact that the tsys-optimal task mapping approach results

in about 96% of the maximum tfirst means that simultaneous optimization is possible in the 64

processor architecture. However, this result only addresses half of the simultaneous optimization

issue, and we still need to analyze the tfirst-optimal task mapping approaches.

Figure 6.3 is set up in the same way as Figure 6.2 except it shows how well the task mapping

approaches that maximize tfirst are able to maximize tsys. Thus, the y-axis now shows the percent-

age of the maximum tsys that was achieved by a task mapping approach, and the y-values of the
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data points correspond to the task mapping approaches that resulted in the maximum tfirst for each

benchmark. From this figure, it is clear that tfirst-optimal task mapping approaches are unable to

maximize tsys at utilization values below 50%. While the effect is not as severe as in Figure 6.2,

the fact that tfirst-optimal task mapping approaches can only achieve about 86% of the maximum

tsys may be at odds with some design requirements. Similar to Figure 6.2, the ability to simultane-

ously optimize tsys and tfirst decreases with utilization but is likely acceptable for most designs at

utilization values above 50%.

By combining the analysis of Figures 6.2 and 6.3, we conclude that there are no task mapping

approaches which can simultaneously maximize tsys and tfirst at utilization values below 50%.

This conclusion means that designers must make a decision about which lifetime metric is more

important when the system is deployed since it is impossible to maximize both with a single task

mapping approach in some scenarios. While tsys and tfirst can be simultaneously maximized at

utilization values above 50%, the scenario in which utilization is below 50% is likely to be common

for many systems as described in Section 6.1.

The reason that simultaneous maximization of tsys and tfirst is impossible in some cases is

related to the fact that the two metrics require the system to be loaded in different ways. In order to

maximize tsys, the general strategy is to load the system in such a way that some components are

reserved for use only when strictly necessary. tfirst is generally maximized by loading the system

in such a way that work is diverted from components that will wearout soon. It should be noted

that these general strategies alone will not maximize tsys and tfirst, and a number of other factors

must be accounted for in some fashion (e.g, using the meta-heuristic described in Chapter 5). These

two strategies can produce very different task mappings, which in turn prevent tsys and tfirst from

being simultaneously maximized, depending on the task graph and the architecture to which it is

being mapped.

6.5.2 Increasing the Number of Pareto-optimal TM Approaches

Because tsys and tfirst cannot be simultaneously maximized in some cases, designers will be forced

to choose from tradeoffs between the two. Figure 6.4 shows how well each of the task mapping

approaches that we tested performs with respect to tsys and tfirst. The x-axis shows the inverse

of tsys (in years), and the y-axis shows the inverse of tfirst (in years). Each data point on the plot
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Figure 6.4: Results for all task mapping approaches on the 64 processor architecture with task graph
1

corresponds to one of the task mapping approaches as tested on the 64 processor benchmark using

its smallest task graph; the two groups of data points will be discussed in Section 6.5.2. Points

closer to the origin have higher tsys and tfirst values and represent better task mapping approaches.

The points in the Pareto-optimal set of task mapping approaches are connected by a black line and

represent the best possible tradeoffs between tsys and tfirst. Before deploying a system, a designer

would generate a set of task mapping approaches and simulate them as we have described in this

chapter. Then, the designer would be able to examine the range of Pareto-optimal task mapping

approaches to determine which one has appropriate tradeoff for the design.

The task mapping approaches shown in Figure 6.4 are split into two groups. The group of blue

diamonds represents task mapping approaches where wfp was set to 0. The group of red squares

represents task mapping approaches where wfp was greater than 0. This second group of task map-

ping approaches were the ones that incorporated our floorplan-based task mapping heuristic. Figure

6.4 shows that the number of Pareto-optimal task mapping approaches is increased by the inclusion

of our floorplan-based task mapping heuristic. When only considering the task mapping approaches

which do not include this new heuristic (i.e, the blue diamonds), there are six Pareto-optimal task

mapping approaches. The number of Pareto-optimal task mapping approaches increased to 15, a
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factor of 2.5, when considering approaches which incorporated our floorplan-based task mapping

heuristic.

We observed similar increases in the number of Pareto-optimal task mapping approaches in

most of the other benchmarks. Details about these increases can be found in the last three columns

of Table 6.2. Column four shows the number of Pareto-optimal points when approaches which use

the floorplan-based heuristic are excluded (wfp = 0). Column five shows the number of Pareto-

optimal points when all approaches are included (wfp ≥ 0), and column six shows the factor of

improvement. An increased number of Pareto-optimal task mapping approaches is a benefit since it

gives a wider range of tradeoffs from which designers can select.

6.5.3 Improvements from Floorplan-based Task Mapping

We draw one final conclusion from our data that is alluded to in Figure 6.4. The group of red squares

is closer to the x-axis than the group of blue diamonds, indicating that there are task mapping

approaches which use our floorplan-based heuristic that provide better tfirst than any of the task

mapping approaches that do not use the heuristic. In the case of Figure 6.4, the maximum tfirst

given by an approach using the floorplan-based heuristic is 9.5% higher than the maximum tfirst

given by any approaches that do not use it. Across all of our benchmarks, the average improvement

in tfirst is 4.5% when using the floorplan-based heuristic. The exact improvement in tfirst for each

benchmark can be found in column three of Table 6.2.

6.6 Summary

In this chapter, we argued that there are two different definitions for lifetime that are relevant in

different situations. Complicated recovery and reconfiguration mechanisms may not be able to be

implemented in situations where design time is short or verification requirements, like those for

safety-critical systems, are strict. Without these mechanisms, it makes no sense to measure lifetime

as the amount of time between when the system is first switched on and when the system no longer

has sufficient resources to accommodate the required task graphs (i.e, tsys) since it is impossible to

take advantage of any over-provisioned hardware resources. Instead, tfirst is the lifetime metric of

interest for these systems since they are only usable until a single component fails.
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Table 6.2: Summary of floorplan-based task mapping heuristic results

Benchmark Lifetime Inc Num. Pareto-opt TMs

(arch-TG) tsys tfirst wfp = 0 wfp ≥ 0 Inc.

9p-1 0.888 1.053 14 13 0.929
9p-2 0.804 1.058 6 12 2.0
9p-3 0.806 1.044 8 14 1.75
9p-4 0.878 1.034 5 16 3.2
9p-5 0.969 1.054 7 23 3.286

64p-1 0.884 1.095 6 15 2.5
64p-2 0.73 1.021 4 4 1.0
64p-3 0.733 1.066 6 7 1.167
64p-4 0.886 1.042 15 25 1.667
64p-5 0.99 1.041 7 20 2.857

100p-1 0.703 0.994 4 8 2.0
100p-2 0.701 1.056 5 7 1.4
100p-3 0.756 1.045 7 6 0.857
100p-4 0.869 1.039 12 17 1.417
100p-5 0.972 1.033 5 11 2.2

In light of there being two valid lifetime metrics, we explored how task mapping is able to

maximize them. We tested a wide range of task mapping approaches that we created using a meta-

heuristic that can take power, temperature, component capacity, wear, and system floorplan into

account. Each task mapping approach was tested on 15 different benchmarks, which were created

by applying 15 different task graphs to one of three hardware architectures.

Our results showed that when system utilization is under 50%, no single task mapping approach

can simultaneously optimize tsys and tfirst; this result was replicated in all of our benchmarks.

When system utilization is greater than 50%, some task mapping approaches are capable of pro-

viding maximum, or near-maximum, values for both lifetime metrics. However, task mapping

approaches that maximize one of the lifetime metrics are increasingly unable to maximize the other

as system utilization decreases. Scenarios in which system utilization is 50% or smaller can be

common and may represent the majority of the lifetime of some systems. Thus, the selection of

a task mapping approach is dependent on which lifetime metric is of interest, which is related to

whether or not the system includes recovery and reconfiguration mechanisms, and the typical uti-

lization of the system. In scenarios where tsys and tfirst cannot be simultaneously maximized, we

show that there are a subset of approaches which are Pareto-optimal. These Pareto-optimal task
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mapping approaches could be presented to a designer who would then choose one that resulted in

an appropriate tradeoff between tsys and tfirst for the design.

We also presented a floorplan-based task mapping heuristic. This heuristic combines component

wear information with spatial information from the system floorplan to map tasks to components

thqt are far away from the parts of a system that will fail the soonest. We incorporated this heuris-

tic into our overarching meta-heuristic and compared approaches which did and did not use the

floorplan-based heuristic. Adding the floorplan-based heuristic increased the number of Pareto-

optimal task mapping approaches in many of our benchmarks, which effectively increases the range

of tradeoffs from which a designer can select. Finally, we found that task mapping approaches that

use the floorplan-based heuristic can increase tfirst by up to 10% when compared to task mapping

approaches that didn’t.



Chapter 7

Related Work

This chapter reviews two areas of existing work in the literature: research from which we draw

foundational concepts and research that studies system lifetime optimization.

7.1 System Lifetime Simulation

Our system lifetime simulator is fundamental to the evaluation of our task mapping techniques, and

its design relies on prior work in a wide range of subjects outside the scope of this thesis. This

section discusses the published results and methods that we have incorporated into our simulator to

give it a high level of detail.

7.1.1 Failure Mechanism Modeling

All of the work in this thesis relies on mathematical models of failure mechanisms developed in

the literature. The models for electromigration, time-dependent dielectric breakdown, and thermal

cycling were originally described in [20] and [21]. The work in [22] and [19] provides information

about how those models can be used in the context of a system-level simulation. Specifically, this

work presents the idea of using the mathematical models to create lognormal distributions, which

are then sampled by a Monte Carlo simulation.

92
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7.1.2 Power Modeling

In order for the failure mechanism models to produce useful results, we must be able to compute

component power dissipation and temperature accurately. Although our work focuses on optimizing

system-level metrics (i.e, tsys and tfirst), we use type-specific component-level power models to

increase the fidelity of our simulation. We rely on existing work for these power models because

the details of memory and network switch architecture are not relevant to the work presented here.

[15] describes CACTI, a tool developed to model various characteristics of caches and memo-

ries. The models in CACTI are validated against actual manufactured devices to prove their accu-

racy. We use CACTI as the source of our power models and floorplan areas for memory components

in our benchmark systems.

ORION is a specialized tool for modeling the power and area characteristics of communications

components in NoC architectures [16]. It covers a range of manufacturing process technologies and

operating conditions for network links and switches. We integrated ORION’s source code into our

system lifetime simulator and used the provided interface to give us direct and fast access to the

models.

7.1.3 Floorplanning

Along with component power dissipation values, Hotspot takes the floorplan of the system as input.

We again turn to existing work to create floorplans for our benchmarks because it it outside the

scope of our work to optimize the floorplan for lifetime.

Over the course of our work, we have used two different tools to create system floorplans.

Initially, we used a simulated annealing-based tool called Parquet to build the floorplans for our

benchmarks [32]. Later, we turned to BloBB for floorplanning [17]. Because BloBB is a construc-

tive floorplanner, it has a much shorter runtime than Parquet and is still able to produce compact

floorplans. And, because the number of components in our designs is relatively small in the con-

text of floorplanning problems, we could obtain sufficient results from BloBB without incurring the

runtime cost of Parquet. Both tools accept the dimensions of each component as input, and produce

a block-level layout of the system.

There is a slight disconnect between the floorplans produced by Parquet/BloBB and the floor-
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plans accepted by Hotspot. The outputs of the floorplanning tools may have sections of empty space

in them where components did not fit together perfectly, and Hotspot expects a floorplan without

any empty space. To solve this problem, we created a greedy algorithm which fills any empty space

in the floorplan with a set of rectangular components. All of these space-filling components have

zero power dissipation, and therefore, they do not contribute any heat to the system.

7.1.4 Condor

As mentioned earlier in this thesis, the level of detail in our system lifetime simulator and the range

of experiments that we ran would not have been possible without the use of distributed comput-

ing. In our case, Condor was used to manage the distributed computing resources provided by the

department [25]. A Condor environment is composed of a central computing resource that acts as

the manager and numerous other computing resources that act as helpers. The manager and helpers

must all be able to communicate with clients through a network.

The Condor manager is a continuously running process that listens for job submissions from

clients. A job submission usually includes the compiled binary of the program to be run, a set of

arguments to pass to the program, the set of input files required by the program, the set of output files

to be collected when the program terminates, and a description of the type of computing resource

that should be used to execute the program. A client can submit a large number of jobs, each of

which performs some portion of an expensive computation, by changing only the arguments or input

files. The Condor manager will then dispatch individual jobs to computing resources on the network

based on the requirements set by the client and the amount of work the client has submitted recently.

The computing resources are shared evenly, or unevenly according to a pre-defined policy, across

all clients by measuring the amount of time being spent on each job.

Each computing resource runs a Condor helper process which accepts jobs sent to it from the

Condor manager. Given a job to execute, the helper process sets up an environment for the specified

program, executes it, and returns the requested output files to the client. The helper process is

also responsible for communicating the state of the computing resource to the manger so that the

manager has a complete view of all computing resources on the network.
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7.2 Ant Colony Optimization

Our design-time task mapping optimization uses ACO to find near-optimal task mappings, but we

are not responsible for the creation of this algorithm. ACO was first introduced as a generalized

optimization technique in [33]. Since then, a significant body of work has been published in which

ACO is applied to different types of problems. While the applications of ACO are too numerous to

list here, there are cases where it has been applied to solving problems similar in nature to ours. For

example, the authors use ACO to solve the task mapping and scheduling problem while optimizing

for performance in [34]. [35] also solves the performance-aware task mapping problem with ACO.

Finally, [36] uses ACO to solve the task mapping problem but with a focus on energy instead of

performance.

7.3 Wear Sensors

Some of the work we present in this thesis relies on the existence of on-chip wear sensors to provide

data to the task mapping approaches. The design and performance of wear sensors is discussed

in several pieces of existing work. [4] presents a method for creating a wear sensor which tracks

TDDB via critical path delay and is able to accurately predict when microarchitectural components

fail with a small overhead cost. [37] discusses wear sensors which can be placed inside of flip-

flops to track system wear due to negative bias temperature instability (NBTI), and although we do

not model the effects of NBTI in this paper, our framework allows us to include it in the future.

[38] details a slightly different method for sensors which track wear caused by NBTI. Finally, [39]

explains how circuitry can be added to SRAM cells in order to track accumulated wear in memories.

7.4 Task Mapping for Non-Lifetime Metrics

Task mapping optimization can be formulated to focus on a number of different metrics. In this

section, task mapping techniques that do not directly optimize system lifetime are discussed. These

techniques are further classified into those which optimize metrics unrelated to system lifetime and

those which optimize system lifetime indirectly through a related metric.



7.4. Task Mapping for Non-Lifetime Metrics 96

7.4.1 Metrics Unrelated to Lifetime

In Chapters 5 and 6, one of the comparison approaches we use is power-aware task mapping, and

this topic is explored extensively in the literature. [40] proposes a task mapping and scheduling tech-

nique to minimize power consumption due to leakage effects. [41] explains a runtime power-aware

task mapping technique where a set of task mappings that minimize average power consumption is

precomputed at design time. Then, the best task mapping is chosen from the set at runtime accord-

ing to current workload on the system. [42] builds on the concept of power-aware task mapping to

solve energy optimal task scheduling with integer linear programming. In a special case of energy-

aware task mapping, [43] and [44] optimize task mapping and scheduling to maximize battery life

in sensor networks and distributed mobile applications, respectively.

In heterogeneous chip multiprocessors, changing the task mapping and scheduling can also im-

pact the performance of the system. In [45], the authors develop a method to create a number of

static schedules at design time that satisfy performance constraints, each of which is tailored to a pat-

tern of manufacturing variation. The variation of the manufactured systems can be measured when

they are produced, and an appropriate task scheduling can be applied to each individual system. The

problems of task mapping and task scheduling are solved simultaneously in [46]. An integer pro-

gramming forumulation is used to perform communication/performance-aware task mapping while

a constraint programming formulation is applied to task scheduling. The two solvers communicate

infeasible solutions to each other as a way to converge on the optimal combination of solutions.

Using a completely different strategy, [47] improves performance via a task mapping approach de-

signed to avoid permanent, transient, and intermittent faults. The three types of faults in this work

are combined into a single, general model for component faults.

A few researchers have chosen to investigate how task mapping can be used to improve system

availability by decreasing the rate at which transient faults occur. [48] builds on a commercial tool

to create a simulator used to measure system reliability due to transient faults, and performs some

exploration of how a task mapping approach can be evaluated using the simulator. Transient faults

are addressed by co-optimizing the task mapping and system redundancy allocation via a multi-

objective genetic algorithm in [49]. [50] points to communication energy and the number of tasks

being migrated as causes of transient faults and seeks to reduce both using task mapping.
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Task mapping optimization can also be used to control the temperature of a chip multiprocessor.

Given a set of repeating tasks, [51] finds the sequence that minimizes system temperature. The

authors extend their approach by exploring how voltage scaling settings can be altered to provide

additional benefit to the system temperature. [30] proposes heuristics for temperature-aware task

mapping and scheduling alongside an approach to temperature-aware floorplanning. The combined

approaches are used to show that temperature cannot be indirectly optimized using power-aware

techniques. Using an extended temperature model, [52] performs temperature-aware scheduling

for system manufactured in a 3-dimensional (i.e, layered) process. [53] also examines temperature-

aware task mapping in 3-dimensional ICs while specifically focusing on the tradeoffs between using

intra-layer wires and inter-layer wires (i.e, through-silicon-vias) for communication. The difference

between these temperature-aware task mapping techniques and those in the next section is that these

make no claims about impact on system lifetime.

7.4.2 Metrics that Indirectly Optimize Lifetime

A number of task mapping techniques claim to optimize lifetime indirectly via some more easily

computed metric. While the experimental results we present in this thesis dispute such claims, the

related work is discussed here for reference.

Temperature optimization is claimed to be a proxy for system lifetime optimization by several

works in the literature. [18] details a runtime task mapping technique that improves temperature

profiles and claims that system reliability will be improved as a result, but no lifetime data are

provided. [54] improves upon the previous work by modeling system lifetime so that the effect

of temperature-aware task mapping on system lifetime can be measured, but the overall approach

still optimizes lifetime indirectly via temperature. [55] determines a temperature profile that will

maximize lifetime at runtime and then changes the task mapping and scheduling to achieve that

temperature profile. The authors also present a method to adaptively control how often the task

mapping is changed at runtime to reduce any performace impact. In [56], task migration is directed

to reduce average temperature and smooth thermal gradients without sacrificing performance, and

many details about the mechanics of task migration are provided, which can be used to show that our

task mapping techniques are feasible. Similar to other work, system lifetime improvment is claimed

by the authors without any measurement. In addition to another temperature-aware task mapping
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technique, [57] also describe an accurate and fast steady-state dynamic temperature analysis as an

alternative to Hotspot. The authors examine the effects of their approach on system lifetime, but

thermal cycling is the only modeled failure mechanism.

Another collection of work proposes that system lifetime can be optimized by controlling the

utilization of components. [58] employs a control theoretic approach to achieve utilization targets

that result in optimal system lifetime for homogeneous soft-real-time systems. Instead of controlling

component utilization via the task mapping, the authors manage the DVFS settings in the system

as a way to change apparent utilization. [59] searches for task mappings that create uniform sys-

tem utilization in an effort to reduce hotspots and improve lifetime, but system lifetime is never

evaluated. Another attempt to improve lifetime in [60] focuses on reducing the load on the NoC

communication fabric, thereby implying that it is the bottleneck for system lifetime. The approach

was found to decrease the amount of time required to complete tasks, and the authors claim that

system lifetime is inversely proportional to computation time; there is no strong justification for that

simplification, however.

7.5 Task Mapping for Lifetime

This thesis contains some of the earliest published work on lifetime-aware task mapping. In the

time since those original publications, the volume of work in this research area has grown in step

with the significance of the problem of degrading system lifetime. This section summarizes some

of the more recent publications related to lifetime-aware task mapping and closely related topics.

Perhaps the most comprehensive work on lifetime-aware task mapping can be found in [61] with

the only caveat being that it does not include a design time technique. The authors propose a combi-

nation of greedy and genetic algorithms to optimize task mapping and scheduling for lifetime, and

detailed models for TDDB and NBTI are used. [62] considers NBTI as the only failure mechanism

and co-optimizes power consumption and lifetime in a performance neutral manner. [63] combines

a lifetime-aware task mapping approach based on simulated annealing with solution space prun-

ing to improve runtime. [64] suggests that lifetime-optimal task mappings can be selected using

convex optimization and includes the possibility of communication link failure due to wearout in

the system lifetime model. The last two approaches select a static mapping and scheduling that do



99 Chapter 7. Related Work

not change at runtime, use Weibull distributions to model failure mechanisms, and do not support

lifetime modeling of systems with slack.

There are also several works in the literature that use task mapping to co-optimize system life-

time and one of several additional objectives. [65] presents a runtime task mapping algorithm where

the metric being co-optimized is communication energy. [66] effectively improves upon the previ-

ous work by using Hotspot to model component temperatures, thereby improving the accuracy of

the system lifetime evaluation. The work is further extended in [67] where a genetic algorithm is

created to co-optimize transient faults and system lifetime. [68] also targets transient faults and

system lifetime for co-optimization, but uses hardware/software partitioning to reach that goal.

To summarize, ours is the only work that accounts for all of the following items:

• Design time and runtime task mapping approaches

• System architectures with and without slack

• Components that experience temperature changes, and subsequent changes in the rate at

which they accumulate wear, as the task mapping changes

• Failure mechanisms that are modeled accurately using lognormal distributions instead of less

accurate Weibull distributions

As a caveat, our system lifetime simulator uses a more constrained model for applications, in that it

is limited to streaming applications, than some of the other work described above.

Other work defines task mapping as a one-to-many mapping of tasks to components, in con-

trast to the one-to-one definition we use throughout this thesis. A one-to-many mapping implies a

system structure in which a task is executed on multiple components and the correct result is se-

lected to guard against problems in a single component (i.e, modular redundancy). [69] describes a

novel task mapping approach for use in systems with modular redundancy, which improves both the

amount of time during which a system is fault tolerant and total system lifetime. Co-optimization

of performance and reliability in the context of modular redundancy is proposed in [70], but only

transient failures are modeled.
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7.6 Other System-Level Lifetime Optimizations

In addition to task mapping, a number of other system-level techniques have been leveraged to

improve system lifetime. [71] explores ways to cost-effectively add slack to a system in order to in-

crease both its lifetime and its manufacturing yield. [72] proposes a complete system synthesis flow

that is designed to be lifetime-aware through temperature optimization. Wear sensors are modeled

to drive a core gating algorithm that favors components with less wear in [73]. Routing optimiza-

tion is addressed in [74], which uses a dynamic programming technique to route communication

along the paths that contain network resources with the least amount of wear. Finally, [75] attempts

to mitigate the closely related problem of reliability through dynamic voltage scheduling strategies

that lower the occurence of single event upsets.
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Conclusions

System lifetime is becoming a primary target for optimization, as performance, cost, temperature,

and power have been in the past, because of the rapidly increasing effects of wearout faults on

system lifetime due to advances in manufacturing process size. Without mitigation, the decrease in

system lifetime due to increases in the rate of wear will be significant enough to prevent cutting-edge

manufacturing processes from being used in particular applications. There exist certain manufac-

turing techniques and guidelines that address these concerns, but they tend to be most effective only

when the use case of a system is well understood before it is manufactured, as in the case of ASIC

design. However, the increasingly high cost of ASIC design means that many designers are turning

to generalized chip multiprocessors for solutions. New techniques for improving system lifetime are

required in order for chip multiprocessors to continue to be usable for a wide range of applications.

This thesis addresses the problem of embedded chip multiprocessor lifetime by proposing and

evaluating two techniques for lifetime-aware task mapping. Our work is the first to examine the

differences between the design time and runtime task mapping problems and to exploit the charac-

teristics of each as a method of optimizing lifetime. While a system is being designed, there are

significant computational resources available to the designer that can be used for optimization, but

there is potentially little known about what will happen to the system at runtime. For our first con-

tribution, we use ant colony optimization to exercise the time and resources that the designer has

budgeted for optimization and search the large space of task mappings for initial solutions that are

near-optimal with respect to system lifetime. In contrast to the design-time scenario, there is less

time and fewer resources available to compute a task mapping at runtime, but there is a significant
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amount of information available about the actual state of the system. Our second contribution is a

meta-heuristic which considers data from wear and temperature sensors that are built into the hard-

ware as well as information about the application(s) currently running on the system and quickly

optimizes the task mapping given that state.

The overall contribution of this work is that the evaluations of our techniques demonstrate that

task mapping has a significant effect on system lifetime and that we are able to choose task mappings

that improve system lifetime at both design time and runtime. The advantage our task mapping

techniques have over manufacturing-level techniques is that we are able to specifically optimize

for the actual application(s) being run on the system. Further, our runtime task mapping technique

allows us to dynamically manage system lifetime using real-time feedback from hardware sensors as

the system is in use. This ability to do dynamic management is unique to our runtime task mapping

technique and cannot be realized through either manufacturing-level optimizations or system-level

optimizations that suggest architectural changes.

We also analyze how our lifetime-aware task mapping techniques compare to task mapping

techniques that optimize for different, but related, metrics such as temperature and power. This

analysis leads to another contribution, which is a series of experiments that shows system lifetime

cannot be indirectly optimized by techniques that primarily focus on other metrics. Though system

lifetime has strong dependencies on temperature and power, neither temperature- nor power-aware

task mapping techniques result in near-optimal system lifetime. We discovered an interesting corol-

lary to this contribution, as well: lifetime-aware task mapping is able to produce results which are

near-optimal in terms of temperature. Our studies of lifetime-aware task mapping are supplemented

by an investigation of how well different lifetime metrics can be co-optimized, and this study serves

as the final contribution of this thesis.

While all of the results presented in this thesis are based on simulations and not measurements

of actual systems, it is important that the learnings detailed herein be applicable in the real world.

To that point, all of the technology required to implement our techniques is already available, so

designers can draw on this work immediately to begin exploring how to leverage task mapping as a

way to extend the lifetime of their systems. The fact that our techniques span a broad range of use

cases gives designers the flexibility to choose the subset of optimizations that best fits their require-

ments. Our work enables designers to make suitable tradeoffs between design effort, system cost,
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and optimization quality to easily reach the desired lifetime targets for their system. In addition, our

system lifetime simulator can be used to evaluate the effects of design choices independent of task

mapping on system lifetime. The flexibility of our system lifetime simulator, along with the analysis

of lifetime-aware task mapping presented in this thesis, opens the door to new areas of research in

task mapping and generalized system-level lifetime optimization. Some potential directions for this

future research are discussed in Section 8.2.

8.1 Summary

Chapter 1 of this thesis begins by describing trends in integrated circuit manufacturing which con-

tribute to the degradation of system lifetime. We cite these trends as motivation to solve the problem

of system lifetime optimization. This chapter outlines our approach to improving system lifetime

via task mapping and the experiments we used to validate that approach.

Then, Chapter 2 covers much of the required background information and theoretical founda-

tions of our work. The purpose of this chapter is to explain to the reader why our proposed task

mapping techniques should be successful before discussing the details of those techniques. We give

an overview of the type of system that we target with this work and the assumptions we make about

such systems. We also provide precise definitions of the lifetime metrics for which we are optimiz-

ing and explain how they can be influenced by task mapping and the presence of over-provisioned

system resources.

Chapter 3 provides details about the system lifetime simulator that we used to evaluate our

task mapping approaches. The simulator is built around a Monte Carlo simulation that models the

statistical nature of the failure mechanisms that most significantly affect system lifetime: electro-

migration, time-dependent dielectric breakdown, and thermal cycling. Each sample in the Monte

Carlo simulation represents an instance of the system being examined under a unique set of param-

eters, which define the exact effect that each failure mechanism will have on each component in the

system. The sample is simulated by advancing time until a component fails or until the task map-

ping needs to be recomputed, updating the amounts of wear accumulated by each component in that

time step, and determining whether or not the system can continue to operate given the remaining

set of resources. By averaging together the results of all of the samples, we can obtain a precise
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estimate of the lifetime of an arbitrary hardware architecture which is executing an arbitrary set of

applications under a task mapping approach of interest.

In Chapter 4, we present our approach of design-time task mapping optimization. We use ant

colony optimization to search the large space of initial task mappings to find solutions which are

near optimal in terms of system lifetime. Ant colony optimization is a graph-based search technique

which iteratively improves the solution quality while avoiding local minima in the solution space.

We compare our solution to an exhaustive search for sufficiently small designs and to a simulated

annealing-based approach for larger designs to prove that our task mappings are high quality. Also,

we use this experimental framework to examine how well a more traditional temperature-aware

task mapping approach optimizes lifetime compared to our lifetime-aware approach. These results

are generalized to show that temperature cannot be used a proxy when optimizing for lifetime, but

optimizing for lifetime directly will result in both near-optimal system lifetime and temperature.

Our meta-heuristic for runtime task mapping optimization is described in Chapter 5. Due to the

resource and time constraints on finding a task mapping while the system is running, we forego a

detailed optimization algorithm in favor of a carefully designed set of heuristics that can be evaluated

quickly. Each individual heuristic focuses on a single metric that impacts system lifetime; wear,

temperature, power, and component capacity are all represented. A series of experiments is used

to determine how to best weight the individual heuristics for use in the overarching meta-heuristic

and how often the meta-heuristic should be used to change the task mapping. These experiments

are conducted across several applications while the system architecture is held constant and across

several system architectures while the application is held constant. We use the results to conclude

that our meta-heuristic can significantly improve system lifetime compared to any other runtime

task mapping approach which only considers a single metric.

Chapter 6 contains a discussion of how well task mapping is able to co-optimize different life-

time metrics. This is an important topic because the design requirements and use case for a particular

system will determine whether it is more important to optimize tsys or tfirst. While the previous

chapters focus on optimizing tsys and report the corresponding tfirst as secondary information, this

chapter explores how our optimization techniques would need to be re-framed in scenarios where

tfirst is more important than tsys. This chapter also introduces floorplan-aware task mapping as

an additional element in our runtime task mapping meta-heuristic. This new element jointly con-
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siders the amount of wear on a component together with the component’s physical location in the

system to further improve system lifetime and provide a wider range of task mappings from which

a designer can choose.

Finally, Chapter 7 covers related work in the literature regarding lifetime simulation concepts,

ant colony optimization, wear sensors, task mapping, and other system-level lifetime optimizations.

We include a discussion of the differences in assumptions between our approaches and competing

approaches along with a summary of the existing work on which we rely for foundational concepts.

8.2 Directions for Future Work

To conclude this thesis, we summarize extensions of this work that could be interesting research

areas in the future.

Machine learning-based runtime task mapping. Our runtime task mapping meta-heuristic is

composed of individual heuristics that capture information about the system state that affects life-

time. However, it is possible that system lifetime could be further improved by recognizing a more

complex pattern in the system state and choosing the task mapping based on that. Machine learning

algorithms are able to find complex patterns in data sets that may not necessarily be recognizable by

a human. We could employ a machine learning algorithm in our runtime task mapping technique in

two different ways. First, we could create a hybrid approach in which the machine learning algo-

rithm would be responsible for changing the weights in the meta-heurstic as the system is running.

This approach would account for the fact that the optimal meta-heuristic weighting may change as

the system ages, and machine learning may be uniquely able to determine the best time for any such

changes to occur. Second, we could replace the meta-heuristic completely and allow a machine

learning algorithm to alter the task mapping directly. In this case, our runtime task mapping may

have greater potential to improve system lifetime since the task mappings it selects would not be

influenced by the set of individual heuristics we chose to use in the meta-heuristic.

Application of the techniques to place and route for FPGAs. Although the techniques in this

thesis were developed to find suitable locations in for software tasks in embedded chip multipro-

cessors, they could also be extended and used to find suitable locations for synthesized hardware

blocks in an FPGA fabric. FPGAs are manufactured using the same types of processes as embed-
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ded chip multiprocessors, and so FPGAs will also be increasingly susceptible to wearout faults and

shorter lifetime. Our design-time techniques could be used during the floorplanning stage of an

FPGA design flow to find arrangements of blocks which maximize lifetime. Similarly, our runtime

techiques could be combined with the ability to partially reconfigure an FPGA as it is running to

move hardware blocks around the fabric such that the accumulation of wear is distributed and life-

time is increased. The biggest challenge in making this extension would lie in converting our task

mapping approaches from working in a discrete solution space (where each task gets mapped to a

component in a set location) to working in a continuous solution space (where each hardware block

could be placed at any location in the fabric). Alternatively, our system lifetime simulator could be

incorporated into current floorplanning and placement algorithms to make them lifetime-aware.

Comparisons to manufacturing-level techniques. In Chapter 1, we state that manufacturing-

level techniques that improve lifetime tend to do so by adding guardband across the entire system. It

is difficult to quantify the added cost of the guardband because integrated circuits are rarely designed

without the suggested guardband. The only way to measure the cost of the guardband would be to

perform the physical design of an integrated circuit according to a set of design rules that did not

include any rules related to guardband. Then, we could measure the difference in area between a

system with guardband and a system without guardband. This cost difference due to guardband

could then be compared to the area added by implementing a wear sensor in each component in the

system, which is the physical cost of our best runtime task mapping approach. If the cost of the

wear sensors in all components turned out to be too high, further experiments could be completed

to determine the subset of components to instrument with wear sensors to achieve Pareto-optimal

cost/lifetime tradeoffs.

Effects of inaccurate wear sensors. Our work assume that each wear sensor in the system can

accurately measure the amount of wear on the component to which it belongs. This assumption

is somewhat unrealistic because it is likely that a real wear sensor would only provide an approx-

imation of how much wear a component has accumulated or how soon the component will fail.

Our system lifetime simulator could be augmented to model wear sensor inaccuracies by perturbing

the calculated wear values before passing them along to the task mapping techniques. With this

change, additional experiments could be conducted to determine the degree to which the improve-

ments in system lifetime are affected. Of particular interest would be the new optimal weighting
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of our runtime meta-heuristic under inaccurate wear sensors. One would expect to observe a direct

relationship between the accuracy of the wear sensors and the weight given to the wear metrics in

the meta-heuristic; low accuracy should lead to low weights, and high accuracy should lead to high

weights.

System lifetime simulator improvements. While the system lifetime simulator described in

this thesis is quite flexible and models many details relevant to system lifetime, there are three facets

of the simulator that could be improved. First, the simulator could model applications that start at

a given time and continue for a finite amount of time instead of only modeling a set of applications

that execute indefinitely. This change would allow more realistic workloads to be modeled for some

use cases, like cellular phones. Second, the simulator could use a more realistic DVFS model for

processors. Currently, the simulator models only two power states for processors, and the realism

of the simulation could be improved becuase state-of-the-art processors typically have a greater

number of power states. Third, the simulator could model additional types of components. It is

increasingly common for embedded chip multiprocessors to include specialized hardware acceler-

ators that are able to execute a subset of the tasks in an application. Task mapping could be given

the choice between executing a task on a general purpose processor or on a compatible hardware

accelerator by altering the requirements of the task based on the type of component to which it is

mapped.

System lifetime simulator speedup. While we do exploit the inherent parallelism of Monte

Carlo simulation, the granularity at which it is exploited is relatively coarse and limited by our use

of distributed computing. By re-engineering some parts of the simulator to allow for more finely

grained parallelism, the runtime of the simulator could be decreased. One method of doing this

involves creating an implementation of the simulator that targets graphics processing units (GPUs)

as an execution platform. The hardware architecture of a GPU is designed such that large numbers

of threads can run simultaneously. If a thread was created for each Monte Carlo sample, it is

possible that hundreds of samples could run in parallel on a single system. In fact, we did create an

initial implementation of our system lifetime simulator for GPUs, and the preliminary results were

promising. However, it became clear that the use of distributed computing would be easier in the

short term, and so further work is required to complete the GPU implementation.
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