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Abstract 
 

Increasing data-centric nature of compute has motivated the need for overcoming the von 

Neumann memory-access bottleneck. Multi-functional beyond-CMOS have shown a great 

potential in uniquely complementing and augmenting the compute capability by utilizing 

emerging paradigms like on-chip memory and brain-inspired computing. In this work, we focus 

on first understanding the physics of devices that show S-type negative differential resistance 

behavior (S-NDR) and then engineering them for use in emerging memory (RRAM, selectors) 

and compute (oscillators for simulated annealing, neural networks, physically obfuscated keys) 

architectures. 

To understand the electro-thermal dynamics of filament formation in metal- semiconductor/oxide 

-metal (MSM) stacks, we first develop a novel high-speed transient thermometry. This reveals a 

two-step current localization and nucleation process that is responsible for forming or threshold 

switching in these MSM stacks. This current localization event manifests as S-NDR in these 

devices, which we explore to variously understand threshold switching and oscillatory behavior. 

We also apply the developed nano-scale thermometry to resistive switching memory devices to 

extract the role of temperature in the switching process. After establishing self-consistency with 

microstructural changes under a TEM, we estimate the filament size and evolution with bias and 

current compliance.  

In order to use these S-NDR devices as threshold switches and oscillators, we show for the first 

time, stack-engineering by changing the material composition, the electrode material and ballast-

types to achieve > 500 MHz frequency, < 50 W power, 0.6 V voltage-swing operation as a 

compact 1T1R oscillator, < 1 V operation, < 1 pA leakage current, ON-OFF ratio of > 106, and a 

JON,max of > 1 MA/cm2 for a threshold switch. Finally, using this engineered device, we show 

demonstrations of oscillator coupling and phase control, injection-locking and noise-reduction. 

On understanding the role of circuit parasitics on the oscillator behavior, we propose directly-

connected simulated annealing for < 100 fJ/compute image feature extraction engine. The 

application of these oscillators in oscillatory neural networks (ONNs) and entropy sources for 

generating physically obfuscated keys (POKs) is also explored. 
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Chapter 1 

Introduction 

  



2 

 

Increasing data-centric nature of computation has motivated the need for overcoming the 

memory-access bottleneck, also known as the von Neumann bottleneck. In massively parallel 

computational tasks, such as pattern recognition, conventional computing architectures have 

insufficient power efficiency for energy constrained environments. Thus, multi-functional 

beyond-CMOS have shown a great potential in uniquely complementing and augmenting the 

compute capability by utilizing emerging paradigms like on-chip memory and brain-inspired 

computing. By design, modern computer architecture assumes spatio-temporal locality of data 

and hence tries to maximize the data loaded in cache located on chip. If the desired data is not 

found in cache, it has to go off-chip to access the main memory (DRAM) and eventually storage 

(HDD/SSD). The latencies associated with data access range from ns for SRAMs and DRAM; 

and ms scale for HDDs. Most of this delay comes from transit delay associated with going off-

chip or from mechanical access. This problem is exacerbated in data-intensive applications like 

image processing. Two possible methods of resolving this problem are: (1) Integrating a storage 

class memory at the backend of the line (BEOL) [1] or (2) Parallelizing compute using brain-

inspired graphical methods [2]. As flash scaling is reaching its limits [3]-[5], newer memories 

like resistive random access memory (RRAM) and magnetic random access memory (MRAM) 

are being looked at, as a storage-class flash replacement and DRAM replacement [1] 

respectively. Similarly, some of the emerging devices like Carbon nanotubes (CNTs), RRAM 

and S-type negative differential resistance (S-NDR) oscillators can be utilized as a BEOL 

graphical processing engine for increased compute parallelism. These unique devices exhibit 

physical and electrical properties that make them uniquely suited to improve compute without 

the need for the expensive wafer stacking using interposers and through-Si-vias (TSVs). 

Moreover, because the operation of these devices involves a fundamentally different mechanism 
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resistance (dV/dI) are both positive. As the source bias is increased for this circuit beyond the 

labeled threshold or forming voltage, Vth,form, the device enters a negative differential resistance 

regime where the voltage across the device decreases as the current increases. If the bias is 

increased further, the device again reverts to a positive differential resistance, with a much lower 

resistance than the OFF state. This regime is known as the ON-state. Previous works [6] have 

proposed that the OFF-state corresponds to uniform conduction through the device whereas the 

ON-state corresponds to the device conducting locally. Associated with this localization event, 

the electrical properties of the device can thus be tuned temporarily or permanently. As the S-

NDR element is a simple MIM/MSM stack, they can be integrated in large and dense cross-point 

arrays [11] with of minimum-pitch (4F2 footprint) that the lithography can provide. Moreover, as 

the conduction mechanism of these devices is filamentary in nature in the ON-state, they can be 

scaled to very small footprints of ~ 10 nm [9]. 

In this work, we focus on first understanding the physics of devices that show S-type negative 

differential resistance behavior (S-NDR) and then engineering them for use in emerging memory 

(RRAM, selectors) and compute (oscillators for simulated annealing, neural networks, physically 

obfuscated keys) architectures. The central idea is to integrate the working of S-NDR devices as 

memory units with their oscillatory response under the same framework.  

 

1.1. Resistive Random Access Memory (RRAM) 

RRAM devices generally have a very simple metal/oxide/metal heterostructure as shown in 

Figure 1.2, akin to the S-NDR devices explained in the previous section. The oxide thickness is 

usually in the range of 2-50 nm. Over the last few years, many different oxides have been found 
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applying a voltage of the opposite polarity (referred to as RESET). Once the conductive filament 

is disconnected, the device resistance increases, and the device is said to be in the HRS. 

Applying a voltage of the same polarity as forming, causes the device to revert back to the LRS 

(referred to as SET). The device can now be cycled between the two states. The nature of the 

conductive filament is still a matter of debate. Typically, the conductive filament is assumed to 

be made up of a reduced oxide (sub-oxide) phase that is conductive in nature, often referred to as 

an agglomeration of oxygen vacancies (absence of oxygen atoms).  

As memory (RRAM), these resistive switching devices have shown to offer great potential in 

terms of compactness & scalability [9], endurance [10], integration [11] and power efficiency 

[9]-[10]. Additionally, despite being an area of research since past 4-5 decades, it still continues 

to generate exciting questions regarding the fundamental nature of electronic conduction and 

ionic motion. While a huge corpus of research exists in dielectric breakdown phenomenon and 

resistive switching, one of the most significant challenges associated with commercialization of 

RRAM is the lack of depth in understanding the resistive switching physics, thus resulting in 

several often circumstantially degenerate models with limited predictive ability [12]-[15]. In this 

work, we will develop novel electro-thermal characterization techniques that can guide existing 

models. In this work, we will discuss how the forming process, which is central to the device 

operation as a memory (post-forming), is a natural extension of the S-NDR behavior that these 

devices exhibit pre-forming. As per the explanation of S-NDR behavior from the previous 

section, the devices that undergo forming process are biased in the ON-state of the S-NDR I-V 

curve. If the ON-state is maintained even after the bias has been removed, it implies that the 

devices has permanently changed, or formed or ‘memory switched’. If the ON-state is volatile, 

the device in ON-state is considered to be ‘threshold switched’. This will help us in addressing 
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the challenges associated with the physical understanding of the forming and subsequently 

switching process. Specifically, this work will attempt to examine the following questions: (1) 

What are the steps preceding the forming process? (2) What initiates vacancy migration? (3) 

What are the peak temperatures reached during the forming and switching process? (4) What is 

the role of temperature in the conductive filament formation and vacancy migration during 

forming and switching? (5) What controls the peak filament size during forming and switching? 

(6) What is the role of temperature in endurance failure of RRAM devices? 

1.2. S-NDR Oscillators 

Using the preliminary understanding of resistive switching obtained in the initial course of this 

study; we will also explore the possibility of using a similar device stack as an oscillator for 

brain-inspired oscillatory neural networks. These oscillatory elements utilize threshold switching 

phenomenon that exists in several sub-stoichiometric transition metal oxides, a phenomenon 

often associated with electronic localization effects that eventually lead to oxide breakdown [16]. 

Specifically, when the devices are biased in the negative differential resistance regime, they 

exhibit sustained relaxation oscillations, as shown in Figure 1.3 (intersection of the green dotted 

line with the I-V shows the bias-point corresponding to oscillatory behavior). Similarly, if the 

devices are biased to a higher current value in the ON-state, the device will undergo threshold 

switching i.e. settle to an ON-state. Depending on the material parameters (whether or not it 

undergoes forming or not), the device will remain in the ON-state till the bias is maintained, a 

phenomena referred to as threshold switching. Once the bias is removed, the device will revert 

back to the unformed OFF-state (violet dotted line represents the bias point required for 

threshold switching). 
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blocks for large arrays, offering the possibility of coupling, compactness, and power efficiency in 

oscillator networks. However, the major challenges faced by this class of devices are: (1) Lack of 

physical understanding of the threshold-switching/oscillatory response, (2) High voltage and 

power needed to operate these devices, and (3) Poor understanding of co-design needed between 

device design and circuit topology connected to the device. This work will use TaOx as a 

demonstration vehicle to show co-existence of memory switching, threshold switching and 

oscillations. Current attempts at engineering these devices for low-power and high-performance 

have met with limited success. In this thesis, we will generate an understanding of these 

oscillatory devices so as to engineer them for low-power and high-performance. Specifically, this 

thesis will explore the following questions: (1) What determines the transience of the ON-state? 

(2) How are threshold switches/oscillators different from memory switches? (3) What sets the 

performance metrics of the oscillator and how can it be modified? 

1.3. Organization of thesis document 

This document consists of a total of six chapters and a conclusion. The first chapter introduces 

the concept of S-NDR and its relationship with RRAM devices and oscillators. Detailed 

literature survey is intentionally left out to maintain high-level simplicity; literature will be 

surveyed at the beginning of each chapter for details. As the final goal is to attempt to shed light 

on the multi-functionality of the S-NDR element, we will first attempt at understanding the 

physics behind the device operation. This involves the understanding of the threshold 

switching/forming process. The forming process controls the filament diameter and its 

properties; however, it is a failure mechanism for threshold switches and oscillators that are 

created out of S-NDR devices. Chapter 2 will discuss the reversibility of the filament formation 
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during the formation process, thus clearly separating the difference in forming and threshold 

switching/oscillations. For this purpose, we develop a novel high-speed thermometry to 

understand the process of localization and the associated temperature excursions. In Chapter 3, 

we use the same thermometry to determine the filament properties (size, temperature, electrical 

properties etc.)  of an RRAM device in the LRS. Thermometry in switched devices enables us to 

understand the role of temperature in switching, the microstructural changes that accompany 

these temperature excursions and failure mechanisms. 

Chapter 4 revisits the S-NDR devices and discusses the origins of oscillations in TaOx-based 

devices, clearly highlighting origin of frequency control, the role of parasitics and ballasts on the 

oscillation response. The devices explained in Chapter 4 cannot be used as is, for computation; 

they have to be engineered for low-power and high performance. Chapter 5 delves into the stack-

engineering of TaOx –based oscillators to yield the best-in-class oscillator (in terms of power and 

performance) and explores its use in oscillatory neural networks (ONNs). While compact 

oscillators provide unique advantage for dense array implementations, the CMOS circuitry 

around ONNs makes the implementation both power and area inefficient. We also discuss 

scalability in area and power, and variability in these oscillators. Thus Chapter 6 discusses how 

these oscillators can be directly coupled using unique physics that maintains the temporary ON-

state in presence of coupling elements like capacitors. With this, we demonstrate for the first 

time, coupled oscillator pair with full phase coupling and control using transistors. To overcome 

some of the challenges discussed in Chapters 2, 4 and 5, we demonstrate injection-locking in 

these oscillators. This enables us to program the initial phase of these oscillators using a global 

clock and reduce the drift in frequency due to aging. In order to simulate dense parallel systems 

with these oscillators, we first develop a SPICE model of these relaxation oscillators using van 
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der Pol’s formalism, which is a second order non-linear differential equation. Using this 

equation, we then construct a fully connected oscillator network and program it for robust image 

feature extraction engine. Using similar concepts, we finally demonstrate a full simulation of a 

stereo vision engine that utilizes the unique parallelism that is offered by the oscillator arrays to 

efficiently implement data and smoothness costs. A full scale foundry PDK and data driven 

SPICE simulation is described to understand the unique advantages that these networks offer for 

energy minimization-type problems. 
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Chapter 2 

Forming in Binary Metal Oxide-based Resistive 

Switching Memory 

  



13 

 

2.1. Introduction to forming 

Binary oxide-based resistive switching devices have shown a great potential as the next-

generation non-volatile Resistive Random Access Memory (RRAM) elements [18]. These 

memory cells are based on changes in resistance thought to be due to the change in the 

stoichiometry of the oxide which typically becomes more conductive when deficient in oxygen 

[19]. It is now well established that the change of resistivity occurs only locally within a small 

diameter filament [7]. The switching between high and low resistance states (OFF and ON states, 

respectively) is thought as due to changes of the vertical extent of the filament [7],[20] or a 

formation of a lateral constriction within the filament [21]. Before a device can be switched, it 

has to undergo an initialization process referred to as the electroforming or simply the forming 

step. During this process, a voltage is applied to the device resulting in the creation of an metallic 

filament in the initially uniformly conducting device. Even though the forming establishes the 

active area of the device and determines many of its characteristics, very few reports have 

addressed the complex details of this process [22]-[25].  

Recent experimental results on oxide-based devices indicate that the formation of a permanent 

conducting filament is not instantaneous. Instead, after application of a bias pulse, the device 

retains its high resistance for the time referred as the incubation time after which the resistance 

rapidly decreases. This process is associated with current localization, as the initially uniform 

current flow spontaneously localizes to a narrow filament. The incubation time is strongly 

dependent on applied voltage and temperature [26],[27]. It was also observed that the initial 

decrease of resistance is volatile i.e. if the voltage pulse is terminated soon after the drop of 

resistance (typically less than 1 μs), the device will return to its original highly resistive 
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unformed state. Only after the voltage is maintained for sufficiently long time, does the 

resistance change become permanent [24]. Similar phenomenon is well documented in 

chalcogenide-based phase change memory (PCM) where volatile resistance drop is referred to as 

threshold switching (with retention times of less than 1 μs) and is distinctly different from 

memory switching (with retention time of years) [28],[29].  

The dynamics of the switching process is best described by a classical nucleation switching 

theory [31] applied in the past to interpret the results on chalcogenide [30] and oxide devices 

[31]-[34]. We note that the model is universal and has been applied to describe phase transitions 

of different physical nature, both involving the amorphous-crystalline transition in chalcogenides 

and those involving electronic changes, for example, Mott transitions in strongly correlated 

oxides [33]-[34]. However, it must be noted that the nucleation model does not specify the exact 

nature of the conductive phase. Thus, this phase could be either an electronic phase or a 

structural distortion. The model is briefly described here for the reader's convenience. It 

interprets the sudden drop in resistance as due to the nucleation of a conductive second phase 

inclusion in the functional layer under bias. This inclusion changes the free energy of the system, 

∆G, by: 

G  A  WE             (2.1) 

where the first term describes the energy of the interface between the two phases with A being 

the nucleus surface area and  being the interface energy per unit area. The second term is a 

volumetric change, with  being the free energy difference between the insulating and 

conducting phases per unit volume, and  is the nucleus volume. This term, if μ is negative, can 

lead to spontaneous nucleation of the conductive phase at elevated temperatures in absence of the 






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field. In the dielectric materials here, the nucleation model could describe the transition between 

the insulating disordered oxygen vacancies phase, and the small inclusion of conductive phase 

consisting of ordered vacancies. This inclusion can nucleate at any non-uniformity in the 

material, and will grow into a filament when the growth is thermodynamically favorable. The 

reduction of an energy barrier for a formation of a vacancy pair when two vacancies are close 

has been theoretically predicted for oxide materials, supporting that cluster and ordered 

vacancies filament formation is energetically favorable. Clustering was experimentally observed 

in TiO2 single crystals with applied bias and ordered vacancy phases known as Magnéli phases 

had been observed in TiO2-based RRAM devices [19]. Although the oxygen-vacancy model 

appears to be the leading interpretation of resistance switching in oxides, we do not want to 

exclude the possibility that the conducting phase is of different, as of yet unidentified, nature. 

One such possible phase transition would be an insulator-metal Mott transition in Ti and Ta 

suboxides. The nucleation of the inclusion of the critical size R0 is delayed by the incubation 

time due to nucleation barrier (W0 in Fig. 2.1) associated. The last term in Eq. (2.1) is the 

electrostatic energy associated with the conductive ‘inclusion’ (as shown in Figure 2.1 (b)) in the 

charged parallel plate capacitor. This term grows more negative with the applied electric field 

and causes the nucleation barrier to decrease (Weff in Fig. 2.1). The barrier reduction lowers the 

incubation time. In parallel with decreasing the barrier, the electric field causes the size of the 

nucleus corresponding to the maximum of energy to shrink (Reff < R0). This has important 

consequences. For example, if the statistical fluctuation in the functional layer under bias 

produced a nucleus with size R < Reff, such nucleus is expected to dissolve. Only the larger nuclei 

(R > Reff) should be stable and grow in the presence of field. It is evident that the inclusion 

which, in the presence of field, is stable and starts to grow (Reff < R < R0), would become 
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In this chapter, we have measured the incubation time (τ) as a function of applied bias and stage 

temperature for TaOx and TiOx crossbar devices, extracted the activation energy for the 

incubation time as a function of applied voltage, and applied a nucleation model which was 

extended to include a self-heating effect in dielectric film to explain the data. We find that the 

model very well describes the complex functional dependence of τ(V, T). The extracted 

parameters of the nucleation switching model are compared with data available from other 

experiments. To understand the nature of the forming process better, we also conduct DC testing 

of RRAM devices in the presence of resistive ballast to understand the process of filamentation 

that precedes the forming process. The complex functional dependence of temperature and 

voltage are then utilized to estimate the temperature as the device undergoes filament formation 

process. 

 

2.2. Experimental Techniques 

The devices used in this study were TaOx- and TiOx-based metal-insulator-metal (MIM) 

crossbars designed specifically for high-speed pulse forming experiments. The vertical MIM 

stacks consisted of 15 nm Pt / 60 nm TaOx / 5 nm Ta / 10 nm Pt and 15 nm Pt / 15 nm TiOx /5 

nm Ti/ 10 nm Pt, respectively. The top view of the device at two different magnifications is 

shown in Fig. 2.2 (a) and (b). The devices have been designed to be a matched 50 Ω air-coplanar 

waveguide in a Ground-Signal-Ground configuration. Moreover, 50  characteristic impedance 

as seen from the source (pulse generator), the oscilloscope port, and the 2.92 mm cables (40 GHz 

bandwidth) ensured that the pulse consistency was maintained and there were no parasitic 

reflections. The switching dynamics was measured using a time domain transmissometry (TDT) 
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then at 5.75 V snaps back (electroforms) leaving the device in the low resistance ON state. The 

decrease of resistance is permanent although the device can be switched between ON and OFF 

states repeatedly. The current value after the snap-back for the RS = 100  case, reaches about 

180 µA due to the current compliance (with a likely overshoot during snap-back). The 

electroformation event is effectively instantaneous on the time scale of the source meter response 

with no intermediate states recorded. The red I-V curve which was collected beforehand, does 

not show a permanent change and can be retraced for decreasing source voltage. The red curve 

corresponds to RS  = 34 k (standard ohmic resistors of 33.7 k chosen for experimental 

convenience; ~300  added extracted by calibrating for the resistance of pad and cross-bar 

traces). At low voltages, it follows the same path as the one for RS = 100  but extends to higher 

current values without forming. At about 6 V, the I-V trace gradually bends back forming a part 

of an S-type curve characteristic of current-controlled negative differential resistance (CC-NDR). 

The presence of CC-NDR usually indicates the presence of an instability that can lead to the 

spontaneous formation of localized high current density filaments within the device [6]. This 

phenomenon is characteristic of nonlinear dynamic systems and is often referred to as 

bifurcation. This also implies that the system will ‘snap’ to a low resistance state (in this case, 

the current runaway will result in permanent change of resistance i.e. forming) whenever the 

total differential resistance becomes negative (equation 2.4). By increasing the source resistance 

(RS), one can limit the range of voltages corresponding to negative total differential resistance 

(dVS/dI) and increase the range accessible to testing. This enables the device to support a stable 

filament and a corresponding negative differential resistance (dVD/dI negative). At sufficiently 

large RS, the total differential resistance becomes positive (due to dVRS/dI positive) and the snap 

can be prevented altogether.  
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Fig. 2.7(a) shows the voltage across the device as a function of time. Each curve corresponds to 

the trace during a single voltage pulse applied to the same Ta2O5-x device. In this experiment, 

each pulse had the same amplitude but slightly different duration, allowing for the interruption of 

the process at different stages, a few nanoseconds prior to the completion of forming. As the 

pulses applied brought about reversible changes (explained below), we were able to use the same 

device for the entire experiment. The oscilloscope trace started at t = 0 with a fast rise if the 

voltage due to the leading edge of the applied pulse (not shown).  This was followed by a gradual 

decrease of voltage (initial negative slope) which is associated with decrease of device resistance 

due to Joule heating. It must be noted here that, while the device has high resistance (~1 M) at 

low biases, it shows a low resistance (~ 5 k) at high biases (~ 11 V across the device), 

following a strong voltage non-linearity (R  V-2), as shown in Figure 2.7(b). This part of the 

transient can be accurately simulated using known materials parameters and assuming uniform 

current flow, [discussed in Appendix A for Ta2O5-x]. The bump at 38 ns is due to a parasitic 

pulse reflection in the system while the rapid drop between 45 and 55 ns corresponds to the 

beginning of the electroformation process (and we arrest the pulse at different points, in this 

range). We assert this based on the magnitude of the resistance change of the device. For 

example, the device resistance during pulse 4 (green curve in Fig. 2.7(a)) at the onset of the rapid 

drop is 5 k and the resistance value at the point of pulse termination is 250 . This change is 

too big to be explained by thermal effects in the uniform conduction regime. Moreover, while 

there was no permanent change of the device resistance after pulses 1-3 terminating before the 

completion of the process, the device was formed after the pulse 4. The resistance did not 

recover and remained at the 250  level after the pulse. The conclusion here is that the rapid 

drop in resistance in Fig. 2.7(a) does correspond to the electroformation process.  The initial part 
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of the sharp reduction of resistance is volatile and therefore has to be electronic in nature rather 

than one involving atomic motion. 

The results of the similar experiment performed on TiO2-x devices are presented in Figure 2.7(b). 

Each voltage transient and the corresponding SEM image were collected on a different but 

nominally identical device and each device was exposed to only one pulse. Different devices 

were used in this experiment for the ease of SEM imaging, while making sure that the incubation 

time before resistance change (reversible forming, akin to Ta2O5-x) is the same for all the devices 

under test. The images show the cross bar-type devices with the light grey vertical strip 

corresponding to the top electrode and the horizontal darker grey strip corresponding to the 

bottom electrode. The active area of the devices is the rectangle at the intersection of the 

electrodes. As in Figure 2.7(a), the pulses were interrupted at various stages of the 

electroformation process. Traces 1-3 correspond to devices that retained their original resistance 

after the pulse while trace 4 corresponds to the device on which the electroformation was 

completed with the permanent drop of resistance. The red trace (1) corresponds to the process 

interrupted during the uniform current flow stage. The SEM image obtained after this single 

pulse shows perfectly uniform contrast over the active part of the device. SEM image obtained 

on the device which experienced the first part of rapid decrease of voltage (trace 2 in Figure 

2.7(b) and image 2 in (c)) shows a characteristic halo with diameter of 1.5 m.  The size of the 

halo on the device which experienced larger resistance decrease (trace 3) increased to 2 m 

eventually attaining diameter of 3 m on the device with permanent resistance change. Such 

morphological changes on the top electrode are not seen on Ta2O5-x devices apparently as a result 

of lower temperature excursions. This observation is a direct evidence of current filamentation 
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The nucleation model predicts that a prolate ellipsoid shape will produce the lowest energy 

barrier and will be the fastest to nucleate. The electric field will be locally enhanced at the tips of 

the spheroid what in turn should provide a positive feed-back for the nucleus growth. This will 

lead to fast elongation of the nucleus and shunting of the field across the dielectric layer. This 

behavior results in S-shaped I-V characteristic part of which is observed in Figure 2.8 (b). The 

device is initially in high resistance (OFF) state with current increasing super-linearly as the 

function of voltage. At about 6.3 V corresponding to threshold voltage, the device enters into the 

negative differential resistance portion of the characteristics due to filament nucleation. The I-V 

rapidly evolves along the load line (upper dashed line in Fig. 2.8 (b) corresponding to RS ~ 700 

) to stabilize in a low resistance state at much lower voltage (due to voltage division). The 

voltage ramp rate in Fig. 2.8 (b) was 50 V/s and was fast enough that when the device arrived at 

the holding voltage (marked Vh,DC in the figure) it was still in the volatile stage of the filament.  

At this point, the I-V snapped again along the load line to reach the OFF state at higher voltage. 

There were no permanent changes to the device and the procedure has been repeated many times.  

Figure 2.8 (c) shows the I-V characteristics of identical device with a slower ramp-rate (10 V/s).  

The nucleus has enough time to reach the critical size and the device permanently changes or 

‘locks-on’ to a low resistance state, as indeed observed in Fig. 2.8 (c). One should note that the 

series resistance used in Fig. 2.8 (c) is much higher than the one used in 2.8 (b).  

Whether the NDR-type characteristics are purely a result of heating or supplemented by field 

dependent conductivity is assessed in the following sections. 
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2.5. Voltage Dependent Transient Measurements 

The incubation times in TiOx and TaOx devices were measured by applying a series of 

rectangular pulses to the device under test and monitoring voltage across the device as a function 

of time. The duration of pulses was kept constant while their amplitude was gradually increased. 

For low pulse amplitudes, the voltage across the device slightly drops with time due to decrease 

of device resistance associated with uniform Joule heating. At certain pulse amplitude, the device 

undergoes an abrupt reduction in resistance during the pulse, an event that is reflected in a rapid 

drop of the voltage across the device. This time is defined as the incubation time. The pulse 

width was determined by the temporal resolution of the oscilloscope. For example, pulse widths 

for high voltages (> 10 V) were kept constant at 100 ns and the amplitude was changed. After 

this, the incubation time (which is less than the pulse width) was recorded. Thus, the applied 

pulse widths were such that the incubation times were contained within the scope trace, without 

any loss of temporal resolution. The formed state was volatile similarly as happens in 

chalcogenide-based devices. Each device was used only once as the formation causes permanent 

change in characteristics. 
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2.6. Temperature, Filament-size and Activation Energy Estimation 

Two procedures allowing for the estimates of the device temperatures have been described in 

our earlier publications [24],[26] and Appendix A. The first is purely experimental relying on 

acquiring the I-V characteristics at different stage temperatures using voltage pulses much 

shorter than the thermal time constant of the device. The accumulated data can be used as a look-

up table to extract the temperature of the device with the uniform current flow. The second 

approach relies on finite element modeling of the temperature increase due to measured power 

dissipation during the voltage pulse. 

For transient measurements, as we are interested in extracting the temperature as the device 

uniformly heats up (before filament formation takes place), the first method can be used to plot 

the device temperature as a function of time for every data point in Fig. 2.9 (a) and (b). It was 

observed that the temperature increases monotonically during the pulse and at the end of the 

incubation reaches 450 K and 600 K for TaOx (60 nm) and TiOx (15 nm) devices at the stage 

temperature of 300 K and highest voltages. Both types of devices reach the maximum of 700 K 

at the stage temperature of 475 K. At low voltages for which the incubation time exceeds the 

thermal time constant of our devices [24].[26] (marked with a horizontal dashed lines in Fig. 2.9 

(a) and (b)), the dependence on the bias becomes very steep.  
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barrier in Fig. 2.1 (a)). It is apparent that the incubation time shows thermally activated behavior 

with barrier height changing with bias. Figure 2.10 (c) shows the extracted effective barrier 

height as a function of (1/electric field) and illustrates a strong dependence of nucleation barrier 

on the electric field. In the intermediate bias regime the dependence is linear in good agreement 

with Eq. (2.3) which gives the electric field dependent effective barrier height Weff as W0V0/V.  

It is apparent from Fig. 2.10(a) that, with the exception of the high field region, the 

incubation time depends strongly on both the applied voltage and the device temperature. In the 

absence of Joule heating and assuming that W0 and V0 do not depend on temperature and field, 

the ratios of slopes of ln(τ) vs. 1/V would correspond to inverse of the stage temperature (Tstage) 

ratios, which is not the case. To illustrate the origin of this discrepancy, let us consider the 

intermediate voltage regime at 475 K stage temperature where ln(τ) depends linearly on 1/V. 

Decreasing the voltage between two arbitrary values should increase the height of the barrier and, 

therefore, increase the incubation time.  If we consider the contribution from self-heating, the 

barrier change would remain the same but the device temperature in the denominator of eq. (2.3) 

would decrease due to lower dissipated power. It is this change of device temperature that 

changes the slopes from 1/Tstage dependence expected from Eq. (2.3) in Fig. 2.10(a).  

The data in Fig. 2.10(a) can be explained fully by Eq. (2.2) if the voltage dependent internal 

device temperature instead of stage temperature is used. To calculate the temperature T(V) at the 

nucleation  event, we solve the thermal heat balance differential equation in a dielectric film 

under constant field E applied during incubation time ߬:  

																																																								ܿ௏
ఋ்

ఋ௧
ൌ ܧ	ܬ െ 	൫ܶ െ ୱܶ୲ୟ୥ୣ൯            (2.5) 
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The nucleation event is assumed instantaneous. The temperature T of the nucleus is the same 

as the temperature of the surrounding dielectric which is higher than the stage temperature Tstage 

due to current J flowing in the film before the nucleation event. The equation (2.5) represents 

balance of the power components: heat absorption rate in the device (product of temperature 

increase rate and specific heat cv) with Joule heating power and heat loss rate (product of 

temperature increase and thermal resistance characterized by the cooling coefficient ). The 

thermal parameters cv= 2.3x106 J/K/m3
 and = 2.2 x1012 J/s/m3/K were calibrated by fitting the 

experimental thermal transient obtained for V = 3.76 V at 475 K stage temperature.  

The Joule heating is generated due to the finite current density J flowing in the film. To model 

the current density J we fitted the pulsed I-V characteristics with the following function [38]: 
 

I  JAd  AdE o exp 
EA

kT


E

a T kT






          (2.6) 

which is a generic formula used to describe field and temperature activated transport, which we 

attribute to the field and temperature assisted conduction through existing oxygen vacancies in 

the film. Ad is the device area, ΔEA thermal activation energy, E is electric field, and ܽሺܶሻ 

describes the field dependence of conductance.  We found ܽሺܶሻ to be weakly temperature 

dependent: ܽሺܶሻ= 1.25x109 V/m/J – (T-300) K x 2.5 x106 V/m/J/K. ΔEA= 0.249 eV and the film 

conductivity ߪ଴ = 20.9 S/m. For TiOx, while the temperature dependence is the same, the 

parameters are numerically different. 

We solved above equations self-consistently to calculate the electroforming time. We used 

parameters W0 = 0.65 eV, R0 = 3 nm and the high aspect ratio approximation for the oblate 

nucleus to calculate the effective barrier Weff. Note that W0 and R0 were obtained by fitting the 
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The nucleation switching model with self-heating was also used to explain another 

characteristic of the devices, namely the change of the threshold voltage as a function of oxide 

layer thickness. The experimental data for the threshold voltage values obtained by a quasi-DC 

sweep for TaOx- and TiOx-based devices are shown in Fig. 2.11 (a). The voltage scales linearly 

with the functional layer thickness indicating that a unique field inside the functional layer is 

needed to form the device. Thus, while there may be some interface effects associated with the 

forming voltage, the electric field has the most significant effect on the forming. Figure 2.11 (b) 

shows the calculated incubation times as a function of applied voltage at three values of the 

oxide layer thickness: 60, 30, and 20 nm. The dots correspond to experimental values in good 

agreement with the calculated ones. Fig. 2.11 (a) and (b) illustrates that the nucleation switching 

model with self-heating reproduces the scaling of forming voltage with the film thickness within 

the data error bars. 

However, as the devices undergo NDR, the temperature extraction methodology used in the 

transient experiments fails. This is because the device no longer conducts uniformly (Appendix 

A) and needs a self-consistent methodology to estimate the local temperature during the forming 

process. 
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We will now try to experimentally assess the role of Joule heating in NDR and filament 

formation. Figure 2.12(a) shows three I-V characteristics: the black and red traces are DC I-V 

with RS = 100  and 34 k, respectively, as shown in Fig. 2.4(a). Since the sweep rate is low, 

the devices reached thermal steady state at every point (i.e. they heated up). The points on the 

blue curve were obtained in a pulsed experiment where the current and voltage across the device 

was measured 1 ns after the pulse leading edge. Since the thermal time constant of our devices 

was experimentally measured in our earlier work [24][26] to be about 2.5 s, one can assume 

that the temperature of the device remained at the stage temperature. It is apparent that excluding 

the self-heating (blue curve) extended the range of voltages that could be reached without device 

forming and reduced the current at any given voltage eliminating the CC-NDR. In other words, a 

device not undergoing self-heating (pulsed I-V), would have a much higher breakdown voltage 

and current compared to ones that undergo DC forming. Next, we try to experimentally establish 

the relation between the pulsed I-V and the DC I-V. In addition to three I-V curves, Figure 

2.12(a) also shows the results of another series of pulsing experiments represented by almost 

vertical violet lines. The pulse duration in this experiment was always 5 μs and the violet line 

corresponds to voltage and current evolution across this 5 μs pulse due to Joule heating. During 

the pulse, the temperature of the device evolves (Appendix A), approaching the steady state at 5 

μs. The coincidence of the end points in this experiment and the black trace (DC with the same 

load resistor) confirm that filamentation and CC-NDR in the low voltage/current range is purely 

a thermal phenomenon. In other words NDR appears because the device becomes more 

conductive as it carries more current because of self-heating creating a positive-feedback. 

Accordingly, the origin of NDR in this part of the I-V characteristics appears to be thermal. 
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While we have argued that CC-NDR indicates filamentation, it is not clear, at which specific 

voltage the filament forms or the temperature the local electronic filament reaches before 

breakdown. We can estimate this by analysis of the dependence of device temperature on 

dissipated power. For the sake of discussion, let us assume that the current flow is uniform for 

the entire I-V curve obtained with RS = 34 k (Fig. 2.4(a)). The device temperature at every 

voltage was extracted from the pulsed I-V measurement calibration as a function of stage 

temperature, shown in Figure 2.12(b). This data maps the non-linear dependence of current on 

voltage and temperature and allows the device resistance itself to serve as a thermometer. It must 

be noted that the pulsed-I-V measurements were taken up to 18 V (not shown here) as the device 

does not electroform for 5 ns pulses [41]. In Figure 2.12(c), we use this thermometry technique to 

plot the rise in steady-state temperature due to Joule heating during the DC voltage sweep as a 

function of power dissipated in the device (red trace). The expected rise in temperature should 

depend linearly on power: 

           (2.7) 

where, ∆T is the rise in temperature in Kelvin, Rth is the thermal resistance seen by the source of 

heat, and P is the power dissipated at the heat source. The thermal resistance, in turn, can be 

expressed as: 

           (2.8) 

thT R P 

1
th

th

t
R

k A

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where, kth is the thermal conductivity of the materials leading to the thermal ground, t is the 

distance the heat travels to thermal ground and A is the area getting heated up (in steady state) 

and depends on the filament size. At low voltages, the current flow is uniform and A corresponds 

to the area of the device. This gives the constant slope of 0.025 K/W in Fig. 5(c)). This slope 

corresponds to an Rth which is consistent with the thermal resistance felt by a uniformly 

conducting 5 m square device deposited on 1 m thick SiO2. At 600 W, the ΔT(P) slope 

increases indicating the onset of current constriction (point A in the DC I-V curves). The 

subsequent section of the curve is gray (at powers above 600 W) to indicate that the 

temperature calibration is no longer correct when filamentation sets in; the gray section can only 

be taken to be a lower bound on the device temperature.  As the bias increases further past the 

onset of filamentation, the slope continues to increase indicating gradual reduction of the 

filament diameter.  The deviation from the initial slope up to 2 mW is attributed to thermally-

induced CC-NDR. Following this, a steep change of slope occurs at higher powers indicating 

that the mechanism of the non-linearity is completely different from the one that occurs at point 

A. This region corresponds to the collapse of the filament resulting into a very localized current 

flow, which we refer to as the electronic filamentation (making a clear distinction in the non-

linearities). 

After filamentation onset, the temperature reached is a strong function of filament diameter, with 

greater current localization leading to higher temperature. Rather than simply postulating a 

filament size and then estimating the temperature based on that assumption, we have attempted 

to extract a filament size self-consistently from our data by reconciling temperature rise as 

estimated from thermal modeling and temperature rise estimated from conductivity change. We 
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assume, in this case, that the conduction through the filament dissipates power uniformly across 

the filament. The true temperature is calculated with a self-consistent solution for a filament size 

under the constraints of simultaneously satisfying the adiabatic I-V-T relationship (Figure 2.12(b) 

with extrapolation as necessary) and the Rth experienced by the same filament size. The adiabatic 

I-V-T relationship measured with pulsed I-V technique indicates how much power is generated in 

the device at a given temperature for a combination of current density, J, assuming a filament 

size. The Rth is a measure of how effective can the generated power be dissipated and is unique 

to a given filament size. As Rth represents the thermal resistance that is connected between the 

filament as the heat source and the thermal ground, it can be easily calculated from material 

properties and a steady state finite element simulation. We use Comsol Multiphysics finite 

element method solver for the calculation of the Rth as the ratio of the rise in temperature 

experienced with unit increase in the power dissipated in the filament, at steady state. Figure 2.13 

(a) shows the simulation setup used for the solver. The results of the simulation are summarized 

in Fig. 2.13 (b). From this figure, then, it is possible to estimate the temperature given a filament 

radius and the measured power dissipated in the device after the onset of the filamentation. 
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the current axis in the I-V-T thermometer (Figure 2.12(b)) by the ratio of the uniform device area 

(conduction radius r = 2.5 m) and the filament radius, r we get a new range of temperatures for 

an effectively higher current density. Thus, the corrected curve so constructed is a SECOND, 

independent figure we can consult to extract a temperature from an assumed filament radius and 

known I and V measurements. Figures 2.13 (c) and (d) consist of two curves each. The red 

curves represent the ∆T obtained by multiplying the power at points B and C in Figure 2.12(c) 

with the Rth and parameterizing the radius. The black curves represent the temperature rise 

predicted by the pulsed I-V with parameterized current density for different filament radii. The 

unique intersection of the two curves is used at each power level to calculate the true filament 

temperature and radius as the device undergoes electronic constriction of current. Thus, these 

two constraints are simultaneously applied to the DC measurement to yield the true localized 

temperature of the device as it undergoes thermal and electronic filamentation. This gives the 

blue trace (full details of the extraction procedure are explained in the Appendix A). The solid 

line represents the extraction of temperature made within the experimental limits of the adiabatic 

I-V-T measurement. The dotted lines indicate the non-linear extrapolation of the measurement 

data. The non-linear extrapolation was made by assuming a space-charge limited conduction (to 

which the data matches). It must be noted that the entire NDR curve (up to point C) is reversible 

and hence we assert the nature of this localization to be electro-thermal and preceding the motion 

of atoms or vacancies. 

Moreover, such deviation is also seen in dynamics measurements in TiO2-x, (more details in 

Appendix A for Ta2O5-x). The device temperature can be both measured and simulated till just 

prior to resistance drop. Temperature rises ranging from 10-150 K have been measured in 
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devices prior to filamentation in pulse experiments (range refers to the pulse voltage used to 

form the device, like our previous work [24][26]). 

We have presented the experimental evidence of electronic instability in oxide materials 

commonly used in fabrication of memristive devices. During the approach to the instability, the 

temperature gradually increases linearly with power to about 320 K. At this point the current 

flow constricts and the actual temperature of the filament increases faster than uniform current 

flow calibration. For the Pt/Ta2O5-x/Pt device discussed in this work, the steady temperature 

reaches ~500 K as the extracted filament diameter reduces from 5 m (uniform conduction) to 1 

m due to thermal NDR. Additional power produces further filament collapse, and temperature 

increases rapidly, reasonably estimated as high as 1000 K as the filament diameter collapses to ~ 

10 nm (same as reported by Kwon et al. [19]). The filament diameter estimation has been 

explained in the supplementary document. These temperatures provide sufficient activation 

energy to change the oxide in the different ways reported in literature – cause oxygen vacancy 

creation, crystallization, secondary phase formation[30] and/or melting of the top electrode [19]. 

The proposed mechanism explains these changes and removes the inconsistency in explaining 

reduction of the oxide at low temperature. It parallels the mechanism that has been widely 

accepted in chalcogenide glasses and referred to as "threshold switching" [37],[39]-[41]. 

The CC-NDR in metal/oxide/metal structures have been reported number of times in the 

literature [39]-[41]. Most observations have been made on electroformed devices that already 

contained a permanent conducting filament. This clearly is only remotely relevant to the 

discussion of the electroformation process presented here. As noted in the introduction, the 

model presented in the paper and its experimental evidence agrees with the simulation of the I-V 
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characteristics reported by Alexandrov et al. [42] The CC-NDR is caused by increase of the 

conductivity with temperature and electric field. One could, therefore, pose the question if the 

observations reported here are consistent with what is known about conductivity mechanisms in 

oxide thin films. The as-deposited oxide films in memristive devices are typically n-type but 

highly resistive indicating that the Fermi level is located significantly below the conduction 

band. The mechanisms most frequently identified as responsible for conductivity in such layers 

are thermionic emission, hopping between defects sites, Poole-Frenkel effect, or small polaron 

hopping [43]-[48]. All of these mechanisms result in the conductivity increase at higher 

temperatures and can lead to thermally induced current constriction. At high electric fields, 

Poole-Frenkel and hopping-based models could lead to sudden mobility increase by transfer of 

electrons from localized states to extended band states with high mobility. On the other hand, the 

traditional field-induced nucleation model described above assumes existence of two distinct 

phases of the material to account for threshold switching that precedes forming: the stable 

insulating phase and a metastable (at low temperatures) metallic one. The structure of the 

functional film in our devices has been assessed by transmission electron microscopy (TEM). 

The image in Fig. 2.3 shows a characteristic mottled contrast of amorphous material for TaOx 

and SiO2 layers in the device structure. The Fourier transform of the image (inset) has a perfect 

radial symmetry in agreement with this assertion. Since the sputtering was done in argon (no 

oxygen present), the oxygen content of the film is likely significantly below Ta2O5 fully oxidized 

tantalum. The exact composition is very difficult to assess. The initial state of the threshold 

switch is the amorphous tantalum sub-oxide. The difference between the two phases in the well-

understood threshold switch materials, namely chalcogenides such as GeTex [33] and suboxides 

such as VO2 [34] and NbO2 (from the same column of periodic table as Ta), is the change of 
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atomic arrangement without change of composition. The Ge atoms change their coordination 

from tetrahedral to octahedral in GST while in transition metal oxides the metal ions form pairs 

in the low temperature low symmetry phase. This characteristic allows for fast switching 

observed in all of these systems.  This re-bonding is the underlying reason for metal-insulator 

transition and the conductivity change of both types of structures making it is conceivable that a 

similar transformation is responsible for the threshold switching in TaOx.  

2.7. Summary of S-NDR during forming in RRAM devices 

In summary, we argue that electronic current localization precedes permanent filament formation 

during electroformation in oxide-based resistive switches. The presence of negative differential 

resistivity in the material causes the device to go into a negative differential resistance regime 

which causes current constriction. Unless prevented by the circuit load, this process frequently 

occurs in the form of an uncontrolled runaway. We support these claims by analysis of the 

steady-state DC behavior and the dynamics of the instability. Both DC and dynamic 

measurements indicate the presence of an instability that is reversible and, hence, electronic in 

nature as distinct from structural. The initiation of the constriction is temperature dependent and 

higher temperature is shown to cause the point of bifurcation to appear at a lower voltage. Hence, 

we propose the following mechanism of electroforming - with increasing bias, the device 

conducts uniformly throughout its area. At a well-defined point depending on source voltage, 

series resistance, temperature and time, the device enters into the I-V range of negative 

differential resistance which results in the electronic current filamentation. This current 

filamentation starts off with being thermally induced (due to the thermal non-linearities) before 

the effects of voltage non-linearity set in. This final stage of current filamentation causes the 
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device to change resistance to a value close to the post-forming value. We estimate the localized 

temperature in the current filament using a self-consistent electro-thermal measurements and 

simulation. Temperature excursions that exceed 500 K (over the ambient) were estimated in a 

localized sub-20 nm region on the onset of forming. This localized temperature excursion then 

triggers the physical changes in the structure to form the permanent filament. The constriction 

can be controlled with the use the external circuit loading thus affecting the permanent filament 

structure. In order to corroborate the results with temporal dynamics of filamentation, we 

observed and explained the three regimes of electroforming time dependencies on forming 

voltage. The observed 1/E field dependence of forming times is consistent with field-induced 

nucleation model from which we extracted material properties  such as  the nucleation barrier 

height at zero bias (W0 ~ 0.65 eV) and voltage acceleration factor V0 of ~ 2.8 V (for 60 nm TaOx 

film) at intermediate voltages. While the nucleation model provides a robust framework that can 

be populated with details of the reversible conductive phase (electronic or structural), It is 

agnostic to the exact mechanism that results in the reversible nature of threshold switching that 

precedes forming. Also consistent with nucleation model, a clear difference in the temporal 

dynamics was identified for low voltages with corresponding forming times longer than the 

thermal time constant and at high-fields where the film self-heating is important. Moreover, we 

were able to detect, and study the volatile filament that precedes formation of the non-volatile 

filament. The forming process was analyzed in the framework of nucleation model which was 

extended to include the self-heating effects.  This yielded an estimate of the critical nucleation 

radius (R ~ 1 nm) below which filament is always volatile.  This implies that the filament-based 

RRAM technology can thus be scaled to a physical limit dictated by the critical nucleus size 

which could be as low as 1 nm in size. We also demonstrated that forming is a field accelerated 
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phenomenon and that the forming can be sped-up by nearly 6 orders of magnitude compared to 

DC forming typically used for RRAM. The thermometry is fairly general in its applicability and 

hence can be applied to switched RRAM devices in LRS. The next chapter (Chapter 3) will deal 

with how the temperature excursions affect the switching behavior, filament size and endurance 

failure modes. The understanding of S-NDR in oxides acquired as a part of this chapter will be 

later used in Chapter 4 to explore the applicability of these devices as oscillators and threshold 

switches. 
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Chapter 3 

Switching Thermometry and Modeling in RRAM 
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3.1. Introduction 

Although there has been a huge corpus of research conducted to understand the underlying 

resistive switching mechanism and improve device performance [7],[36], the fundamental nature 

of the conductive path and basic switching mechanisms are still under debate. This is largely due 

to a lack of microstructural proof of the suggested switching and failure mechanisms. Indeed, the 

microstructural proof (e.g. size, location, distribution, and configuration of conductive filament 

in oxide functional layer during resistive switching), associated with the switching models is 

essential for its eventual commercialization because it is believed that the non-volatile nature and 

device reliability issues (i.e. thermal stability and endurance) are directly related to the 

irreversible structural transformations in the device [19].  

It is well known that the temperature plays a key role in microelectronic device performance and 

reliability, and thus device temperature estimation during switching has also long been an active 

research topic. Chapter 2 discussed the evolution of temperature in RRAM devices as they 

underwent the forming process. However, the role of temperature on switching is also regarded 

as being central to achieve resistive switching. This is primarily attributed to the fact that the 

motion of oxygen vacancies that participate in resistive switching is a thermally activated 

process [7, 50]. 

The temperature estimation so far, however, has been largely relied on simulations that make 

several assumptions about both the geometry and microstructure of the filament [49]-[51]. 

However, to understand the physics of resistive switching in RRAM devices, it is important to 

first characterize the temperature excursions that filamentary RRAM devices experience. In spite 

of the importance of thermal effects in VCM RRAM devices, experimental evaluations of the 
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filament temperature are scarce [52]. Experimental evaluation of the temperature in a confined 

conduction area is critical for the device technology development because an accurate modeling 

of the complex electro-thermal behaviors at the nanoscale is not possible yet: heat dissipation 

mechanisms as well as the thermal properties of resistive switching materials e.g. the thermal 

boundary resistance values are not well known.  

Direct measurement of the local filament temperature is extremely challenging for the following 

reasons. The typical device is composed of a vertical metal-insulator-metal (MIM) structure, 

where the insulator is a thin resistive switching film. The temperature increase occurs locally in 

the insulator or insulator-electrode interface on a scale of few nano-meters [49]-[52]. Several 

studies on the local filament temperature in RRAM materials were previously reported. Janousch 

et al. were able to show qualitatively local heating at the anode side of a large lateral device 

using IR thermal imaging [53]. Other studies compared electro-thermal simulations with 2-

terminal electrical measurements to model the temperature distribution in the RRAM cell [49-

51]. In order to obtain the actual temperature profile in the device using the aforementioned 

method the following inputs are required: filament geometry, dimensions, heat 

generation/dissipation mechanism, thermal/electrical properties of the filament and its 

surrounding, and in particular the thermal and electrical interface resistance which become 

dominant at the nano-scale.  

In this chapter, we will discuss the applicability of pulsed thermometry discussed in chapter 2, 

for switched RRAM devices in the low resistance state. Unlike the thermometry applied to the 

forming process where the conducting area evolves as a function of applied bias (due to current 

localization), the area of the conductive filament remains constant in RRAM devices in the low 
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resistance state (LRS). Thus the concept simply relies on using pulses in order to determine I-V-

T characteristics of the device in the absence of self-heating, without the need for maintaining 

self-consistency needed in Chapter 2. This can be accomplished if the pulses used are short 

enough that significant temperature increases will not occur. Once collected, the I-V-T data serve 

as a look-up table for extracting the actual temperature of the device (in the presence of self-

heating). If the device has not yet undergone forming process, the conduction is uniform. Thus, 

the area of conduction is fixed to the device area at low biases. At high biases, the current 

constricts into a narrow filament (i.e. conduction area changes), with temperature to be sensed by 

the thermometry (Chapter 2). We will also validate our physical picture by providing a direct 

evidence of microstructural change (local crystallization) associated with the local temperature 

excursion and dynamics during switching by using a high-resolution transmission electron 

microscopy (HRTEM). The TEM analysis is done by Jonghan Kwon to supplement and validate 

the results of thermometry. Thus, we use a combination of these two techniques to determine the 

filament size evolution with cycling, shedding light on the endurance failure mechanisms in 

RRAM devices. Crossbar patterned resistive switching device stacks, TiN (40 nm) /HfAlOx (5 

nm) /Hf (10 nm) /TiN (30 nm), have been prepared on Si substrates as shown in Figure 1 by 

IMEC (Leuven, Belgium). The functional HfAlOx layer was deposited via atomic layer 

deposition (ALD), and the bottom TiN and the top Hf/TiN electrodes were sputter deposited. The 

sputter deposited Hf-cap acts as an oxygen getter layer that allows formation of the oxygen 

deficient, off-stoichiometric HfAlOx functional layer, facilitating conductive filament creation 

under applied electrical bias. The devices are defined by the region where the bottom electrode 

(BE) and top electrode (TE) overlap. These devices were encapsulated by a SiO2 passivation 
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around it. The peak local temperature suggested by the simulation is ~ 1600 K at the core of the 

filament with the pre-switching heat affected zone experiencing temperature in excess of 800 K 

over a 5 nm radius. 

It must be noted that these values are sensitive to the filament size, the oxide matrix and the 

testing methodology (DC versus AC). Our thermometry is capable of determining the size of the 

filament agnostic to all of the aforementioned parameters as long as the pulsed-IV calibration is 

done for each device state. Fig. 3.6 shows the filament size extracted using the pulsed 

thermometry technique for different current compliance values. It is clear that the filament size 

seems to increase with increasing compliance, consistent with previous works.  

 

Fig. 3.6: Increasing filament diameter as a function of current compliance. 
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The HfAlOx functional layer exhibits slightly lighter contrast than the Hf oxygen getter layer 

because of the atomic mass difference. The lightest contrast surrounding the TiN BE is the SiO2 

passivation layer. Recesses are seen at the corners of the device that is presumably due to etching 

process during device fabrication. It is noted that the recesses provide landmarks to confirm that 

the magnified images were recorded at the same location. Speckle contrast is seen in the SiO2 

layer which is indicative of deposited Ga+ ions from the FIB specimen preparation process. Note 

that the speckle contrast is not seen in the device area and does not affect phase contrast imaging 

of the device layers. The initial microstructure of the HfAlOx in as-fabricated device is 

amorphous. No crystallinity was observed in the HfAlOx functional layer, even when performing 

a through focusing series and FFT analysis. The result has been further confirmed by examining 

a much larger volume of HfAlOx layer in another larger device (1×1 μm2).  

A cross-sectional HRTEM analysis has been conducted on devices operated at different 

compliance currents and local crystallization (lattice fringe) of HfAlOx layer is observed as seen 

in Figure 3.8. The micrographs are magnified views of right corner of the devices (the recess is 

seen at the bottom-right corner) showing microstructure of the programmed devices at 10 μA 

(Figure 3.8a), 50 μA (3.8b), and 200 μA CC (3.8c).  
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is proportional to the dissipated power (Equation 3.1), local Joule heating during programming 

event presumably causes the crystallization.  

Crystallization temperature of HfAlOx has been estimated by combining rapid thermal annealing 

(RTA) and cross-sectional HRTEM analysis. 3×3 μm2 crossbar type devices were used for 

annealing experiment and ~4 μm wide TEM lift-out specimens were prepared. 5 different 

locations were randomly selected and through focus imaging has been performed. The devices 

were annealed at fixed temperatures for 2 s in a forming gas. Figure 3.9 shows cross-sectional 

views (one of the through focus series) of the devices annealed at (a) 820 K, (b) 870 K, (c) 920 

K, (d) 970 K.  
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does not change in LRS or HRS except during SET and RESET processes at the end of I-V plot. 

The power dissipation causes temperature increase of the filament and through thermal 

conduction of the surrounding oxide. Since the conductivity of the oxide is increasing with 

temperature, at higher power levels the surrounding heated oxide starts to contribute to total 

current flow. In other words, the volume where the power is dissipated expands. The 

consequence of this should be the reduction of the thermal resistance associates with the heat 

flow through the stack and the substrate to the thermal ground.  

In DC measurements, the temperature rise is approximately proportional to the dissipated power 

with a proportionality constant of the thermal resistance (Rth). As stated above, at low bias the 

current is flowing through the filament with fixed diameter. Plotting the measured temperature 

rise as a function of power (Fig. 3.3) and finding the slope at low bias allowed for an estimate of 

the filament diameter and as a consequence its electrical conductivity. Also, it is clear that the 

slope of the temperature increase versus power (i.e. the thermal resistance) decreases with 

increasing bias indicating power dissipation in the oxide. One should be able to reproduce this 

effect in the electro-thermal simulations. It will be shown in the following sections that the 

heating taking place in the filament during the first 100 ps of the pulse is significantly lower than 

the peak temperature that is reached at longer times.  

In order to estimate the electro-thermal transients in the device, we simulated heat and current 

flow assuming the cylindrical geometry of the filament. The electrical conductivity and TCR 

(temperature coefficient of resistance, positive for the metallic filament) of the filament can be 

extracted once the area of the filament and the resistance measured during 100 ps are known. 

Our simulation involves surrounding the filament with an oxide which has an electrical 
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The thermometry used in this chapter indicates that the device experiences temperatures in 

excess of 1000 K which eventually causes the surrounding oxide matrix to become conductive, 

thus acting as a self-limiting process to reduce the power density and the peak temperature. Apart 

from changing the area of conduction, the switching process also creates a change in the lateral 

temperature gradient. This change in gradient could affect the lateral out-diffusion of vacancies, 

eventually causing SET and RESET failures. While the primary actor in endurance failure is 

excess vacancies being created due to thermal cycling of the device and vertical temperature and 

concentration gradients, the lateral gradients play an important role to ensure that the filament 

does not get disconnected when the filament self-heats. More experiments are needed to 

understand the role of lateral temperature gradients on the switching mechanism. This is also 

partly because the vertical temperature gradients may be a strong function of electrode material 

properties (most notable thermal properties). 
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Chapter 4 

S-type Negative Differential Resistance for 

Compact Oscillators 
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4.1. Introduction to S-NDR Oscillators 

Brain-inspired neurocomputing is considered as an emerging alternative to computing based on 

traditional techniques due to its massive parallelism. A neurocomputer attempts to mimic the 

human brain via a network of coupled artificial neurons that process information in parallel. 

Each brain neuron represents a computational unit in a neural network and a connection between 

two such neurons represents is known as a synapse. The strength of this connection, the synapse 

is in form of a synaptic weight in a neural network that relates one artificial neuron to another. 

Traditional computing schemes (that utilize the von Neumann architecture) run a software 

algorithm for a specific application by sequentially executing each line in the instruction code. 

Even though each execution might take a very short time the overall computation efficiency is 

not that high due to the serial execution of instructions [58]. Instead, a neural network performs 

pattern recognition via associative memory in a massively-parallel manner. It maps a set of input 

patterns to a set of output patterns via synaptic weights, whereby an output pattern can be 

retrieved for a given initial pattern. Graphical applications would otherwise require numerous 

memory fetch operations and a processor that is executing a list of commands for optimization. 

Oscillatory neural networks (ONN) are one such example of phase-based neurocomputing, in 

which the state variable is represented by the phase of an oscillator. For this, frequency-tunable 

oscillators are used to implement circuit blocks. Specifications of these circuits typically have 

stringent power and area constraints. One of the implementations of ONNs requires oscillators 

with frequency as the processing state-variable [59],[60]. These oscillators utilize frequency shift 

keying (FSK) to implement states, and thus, must be frequency tunable. The other 

implementations of ONN require phase coupling and control (Phase Shift Keying, PSK). One of 
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the challenges in implementing such oscillators in CMOS (Voltage Controlled Oscillators, 

VCOs) is the relatively large footprint needed to realize them along with the need for a large area 

phase-locked loop (PLL) [60] for ONNs, and the consequent power consumption. This challenge 

becomes exacerbated in highly parallel oscillatory neural networks that need dense oscillator 

arrays for associativity [59]. If ring oscillators are used, small areas can be achieved but 

providing a wide tuning range is very difficult.  Furthermore, coupling of oscillators requires 

significant additional circuitry adding to the overall size and power.  This has increased interest 

in oscillatory behavior exhibited by emerging nanoscale devices based on chalcogenides, oxides 

and spin-torque oscillators [59]. Moreover, these oscillators can be easily coupled directly 

[61],[62], thus naturally lending themselves to ONNs. In this chapter, we will revisit the concepts 

of S-NDR devices developed in Chapter 2, but under the context of how the same devices are 

used as oscillators due to their unique characteristics. 

Oscillators based on devices that exhibit S-shaped negative differential resistance (NDR) have 

been explored for several decades [63-65]. These devices consisted of metal-semiconductor -

metal structures in which the functional layers were either chalcogenides or oxides. Recently, 

parallel efforts by Parihar et al [62] have shown phase coupling of two such resistance ballasted 

VO2 oscillators. However, these devices have to be fabricated as lateral structures on rutile 

single-crystal TiO2 substrates, severely limiting their prospects for CMOS integration in the 

BEOL. Moreover, VO2 has a very low transition temperature of ~85 ºC associated with 

insulator-metal transition (IMT), rendering it impossible to expose it to typical CMOS operating 

temperatures. Thus, we will focus our attention to materials that have high glass transition 

temperatures at which the ON state can be thermally activated. 
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This indicates that there is a clear need for vertical device stacks with > 500 K transition 

temperatures for CMOS compatibility and area scaling. In order to address this, we use TaOx as 

the functional layer. As we noted in Chapter 2, TaOx does not change its state at least up to 500 

K and shows characteristics that are desirable for oscillators. Thus, this work serves as the first 

report of TaOx as a material that exhibits an ON state that that can be stabilized and used for 

oscillators. While frequency tunability has been shown in both oxide and chalcogenide-based 

devices, it usually involved changing the ballast resistance. In addition, frequencies higher than 

10 MHz have never been reported which heretofore has represented a serious limitation.  

In this chapter, we demonstrate precise frequency control over four decades (20 kHz - 250 MHz) 

using an emerging class of oscillators based on metal-insulator-metal (MIM) structures, where 

the insulator is an oxide thin film. We exploit unique properties of these materials and devices 

which result in filamentary relaxation oscillations. Thus, the oscillator is a single MIM device in 

series with a ballast, capable of displaying a large resistance change (> 100x) while being both 

CMOS compatible and scalable. Additionally, we show the oscillator operation in two distinct 

regimes in which the frequency tunability is dictated by two variables – ballast and the source 

voltage. We explore how the oscillations are affected by using a linear resistor-ballast and a non-

linear transistor-ballast. Moreover, the oscillation characteristics reported here shed light on the 

dynamics of the resistive memory switching devices during forming. 

 

4.2 S-type Negative Differential Resistance and Oscillations 

To implement these oscillators, we use two MIM crossbars to prove scalability of oscillators and 

generality of the oscillation phenomenon. The first structure consists of a 5 µm crossbar in form 
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dynamics that set the transition between these two states was modeled as triggered voltage 

thresholds having a sigmoidal transition between resistance states, with two distinct 

parameterized transition times. Figure 4.5 shows an overlay of the measured voltage and current 

oscillations and the simulation results. Chapter 5 will discuss a more detailed model. In the next 

section, we will describe how the devices operate under two distinct regimes: (1) Accelerated 

filament dynamics due to overdrive voltage when a large resistor ballast is used; (2) Parasitic 

dominated regime when a transistor is used as a ballast element. 

When a ballast resistance is used in series with the device, the frequency can be tuned from 3 

kHz to 500 kHz with a single series resistor as shown in Fig. 4.6(a). With increasing ballast 

resistance, a larger source voltage is needed to raise the potential of the device to threshold 

voltage and induce oscillations. In such cases, the frequency is found to increase as the series 

resistance is increased indicating that the frequency is not only controlled by the electrical 

parasitics, but also the acceleration of filament dynamics in the presence of a high overdrive 

voltage, as has been reported in other material systems [63],[66]. Overdrive voltage can be 

defined as the voltage that device experiences beyond the Vth (i.e. |Vapp – Vth|). Sakai et al. [66] 

have presented a comprehensive summary of how large RS results in biasing the RS-device 

combination with a larger supply voltage, VS, which in turn increases the frequency of 

oscillations. Thus, it appears that as the frequency increases with increased RS. This may appear 

to be counterintuitive but it should be noted that the supply voltage needed to initiate oscillations 

(Vdevice > Vth) also increases with increased RS. Conversely, if the Vapp is held at a constant value 

and RS is gradually increased, the frequency decreases, self-consistent with parasitic [63] and 

overdrive-dominated [66] oscillations. 
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shortcoming would lead to faster and more energy efficient oscillators. The above argument 

indicates that, if the parasitic capacitance due to the leads in our set up is eliminated, the 

frequency is modulated by the overdrive voltage which changes the device dynamics (in addition 

to being affected by the parasitics), which can unlock higher frequency and low-power operation 

at the same time. This is tied to previous reports that when the device is in the ON state, the 

maximum current determines the radius of the filament [6,67]. An increase in the overdrive 

voltage is estimated to cause the filament size to increase. Subsequently, the recovery time 

associated with a larger RS (and consequently higher current and larger radius) is expected to be 

longer [6,67]. Thus, in the low-current, high-frequency regime, the oscillations would result in 

very narrow filaments, making the device highly scalable when used at high frequencies. 

In order to look at the effect of scaling and non-linear ballast, we present oscillation dynamics in 

700 nm TaOx devices that are dominated by circuit parasitics, similar to previous works [63-65]. 

For this case, we use a transistor as a ballast which results in a decrease in frequency as the 

channel/output resistance is reduced. The transistor used is a PMOS and enables lower resistor 

values that can unlock higher frequencies without any additional need for overdrive voltage. 

Figure 4.8 shows a schematic of the transistor load-line intersecting with the device I-V. 
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higher frequencies require the device to operate such that the filament formed during the 

oscillations is small. This is very amenable to scaled implementations of the device as both 

frequency up-scaling and power downscaling are compatible. This is especially important in 

dense array-type implementations. The next chapter will shed significant light on methods of 

reducing power of this class of oscillators down to < 100 W. Being relaxation oscillators, the 

peak power is dissipated in these oscillators during the capacitive discharging event that leads to 

a current spike. It must be noted that while the peak power in these oscillators ranges from 4 mW 

to 60 mW, the average power is significantly lower, ranging from 300µW to 3 mW. This is due 

to the asymmetric nature of oscillations – most of the oscillation period is spent in the device 

being in the OFF state with low power dissipation (Fig. 4.3(a)). 

While oscillations have been stable, without permanently changing the resistance state of our 

device (i.e. forming), permanent filament formation has been previously reported as a failure 

mechanism for these type of oscillators [64,65]. However our oscillators show a different source 

of failure - abrupt ceasing of oscillations leading to a threshold switching event, without a 

permanent forming event. This usually occurs when the overdrive voltage is very high and can 

be mitigated by adjusting the source voltage. Detailed study of the failure modes and the 

persistence of ON state are needed to understand different failure modes. In all of our 

oscillations, we see the device repeatedly recover its original, pre-formed resistance state each 

time the device oscillates back to the OFF state. This suggests that the filamentation occurs 

without significant migration of oxygen vacancies that the forming process usually involves. 

Because these oscillations are not based on vacancy motion, the randomness in the initial 

distribution of vacancies due to process variations is likely to have minimal effect on the 
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oscillator, which is a positive for durability. Moreover, we chose TaOx which is known to have 

very narrow distribution of forming and switching voltages with high endurance [69], to ensure 

minimum pre-forming variability in threshold-switching. For these oscillators, the oscillations 

last for > 106 cycles when operating at 3 mW average power (> 50 mW peak power), improving 

to ~107 cycles when the average power is 300 µW (peak power < 10 mW). This implies that 

significant improvement can be achieved with this class of oscillators when the peak current 

overshoot is minimized (typically by increasing the ballast). Prior to failure (by forming), the 

oscillators could undergo a change in frequency, especially for the high power modes of 

operation, as has been reported earlier [64]. Chapter 5 and 6 will show that presence of different 

load ballasts or drive elements can be used to provide a degenerative feedback mechanism that 

prevents a change in frequency, effectively locking it. 

The primary reason for the oscillatory nature of these oxide stacks is negative differential 

resistance, which occurs due to a strong dependence of conductivity on temperature and current 

density. Mott transitions [62] are one of the examples of how this steep dependence of 

conductivity can be observed. While specific mechanisms of conductivity increase can vary, the 

overall behavior could be universal [6,29,67]. More experiments are needed to establish the 

universality of oscillatory behavior in other TMOs. While reliability is still a valid concern, 

circuit techniques could potentially mitigate failures arising from eventual forming by using 

feedback. More extensive investigation of such techniques is needed to validate this hypothesis. 

Moreover, it must be noted that if the same device is biased in the positive differential resistance 

regime of the ON-state, it behaves as a threshold switch. This understanding is also important 

from the point of view of the use of threshold switches in RRAM memory arrays. If an S-NDR 

device is biased inappropriately, it may start oscillating. This challenge becomes especially 
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exacerbated due to the distributed trace resistance of the word-lines and bit-lines of RRAM 

array. Thus the engineering requirements of an oscillator and threshold switch are fundamentally 

different. The holding voltage must be low for both oscillatory and threshold switching 

applications. However, threshold switches require the holding current to be as low as possible. 

This is to enable threshold switching instead of oscillations. On the other hand, a high holding 

current for oscillators implies the device has a wider selection of bias points for phase-frequency 

tunability.  
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Chapter 5 

Engineering S-NDR Oscillators 
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disciplinary nature of this area and lack of applications that needed such highly compact 

oscillatory units. It is now well-known that the circuit and the NDR element interact with one 

another to result in a self-sustained limit cycle that races a loop in the I-V trajectory. Several 

examples of such oscillators using chalcogenides, VOx, NiOx and NbOx exist in literature. The 

frequency of these oscillators was found to decrease with increasing value of ballast resistor, 

implying that the frequency is limited by the charging time associated with charging the node 

shared by the ballast and the oscillator. 

One of the challenges that these oscillators face include poor parameterization of physics 

associated with oscillations. For example, the threshold voltage (akin to forming voltage) has 

been stated to linearly depend on the thickness of the material and yet the holding voltage has 

been found to be relatively independent of thickness [70]. This has been attributed to three 

factors viz. (1) Electrical contact resistance, (2) Schottky barrier height at the electrode-

semiconductor (or insulator) interface, (3) Resistance of the filament [6]. It must be noted that 

other effects associated with the filament field and temperature [72] also play a very important 

role in deciding the holding voltage and current values. Sustainable scaling of threshold voltage 

has to be accompanied by scaling of holding voltage to retain the large voltage swing as being 

the advantage of these oscillators. Thus careful engineering of the device is crucial. 

This chapter builds upon the understanding from Chapter 4 and examines TaOx-based compact 

oscillators (RRAM-type) as neuronal elements of an ONN compute block and experimentally 

demonstrates: (1) First ever 1T1R integrated structure, (2) Maximum frequency of ~500 MHz, > 

2 orders of magnitude higher than reported in this class of oscillators, (3) Lowest reported power 

down to < 200 µW, one order of magnitude lower than best reported, (4) Full-system simulation 
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of an ONN-based associative memory (design and simulations carried out by Thomas C. 

Jackson).  
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of these oscillators is < 1%/°C over 25 °C to 150 °C making them insensitive to on-chip 

temperatures. 

 

5.4. Discussion 

It has been observed in previous works on chalcogenides that the non-linear dynamics of the 

oscillators are very tightly coupled with the circuit parasitics that they are loaded with (Chapter 4 

and [73]). Thus device-circuit co-optimization is essential to ensure that the devices are scalable 

alongside CMOS scaling and that they do not show fundamental limitations in being deployed as 

nano-primitives for ONNs. In this section, we will look at the effect of scaling and circuit 

parasitics on the oscillator dynamics. 

It has also been observed that the threshold voltage associated with these oscillators is dependent 

on the number of nucleation sites existing in the insulator matrix for the temporary filamentation 

to occur, the thickness of the oxide/semiconductor film and the temperature at which these films 

operate as oscillators [74]-[76]. As the device area is scaled down, a weak increase in threshold 

voltage is often observed due to the reduction in the nucleation sites needed for the temporary 

filament to form. However, previous works in threshold switches [6],[75]-[76] have shown that 

scaled devices can be formed into a permanent secondary high-resistance state consisting of 

conductive phases, which in turn act as nucleation centers for the temporary filament during 

oscillations. It has also been shown that semiconducting glasses (both chalcogenides and oxides) 

have an almost linear dependence of threshold voltage on the thickness of the film. For threshold 

switches, sub-1 V switches have been developed with both oxides and chalcogenides. This 

implies that these devices can be scaled down to the minimum nucleation size (~3 nm) [77]. 
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Because the frequency is almost always limited by the device dynamics in the OFF state, the role 

of the parasitic capacitance charging at the oscillating node is crucial to ensure reliable 

oscillation phase portraits. 

Shaw et al. [74] have shown that the maximum current after the device transitions to the ON 

state is governed by the displacement current associated with the parasitic node capacitance as 

well as the inductance of the system. Ideally, if the system has minimal capacitance, the 

oscillating nodes would be limited by the filament dynamics. In such cases, it is observed [74] 

that the oscillations have much higher frequencies which implies lower holding currents. 

Typically, holding current is a DC quantity that refers to a critical nucleus size that the filament 

has to reach, below which, the filament dissolves. However, transient ON Characteristics [71] 

show that the ON state would have much lower holding currents if the duration for which the 

nucleus exists is shorter. Thus higher frequencies which are possible with low parasitics would 

eventually correspond to a smaller duration for which the subcritical nucleus persists and this 

results in a lower holding current.  

The nature of filament formation is considered to be an electronic or nucleation switching 

process process. In Appendix B, we will present some results showing NDR at cryogenic 

temperatures which indicates that the process should not involve motion of atoms, making the 

cycle to cycle variation minimal. Thus the same defect site serves as the initial nucleation site for 

the oscillations to initiate. However, the parasitic heating in presence of oxygen getters or 

presence of point defects with low activation energies [79] is the main cause of oscillation 

failure. In most cases, this problem is exacerbated due to the large discharge current that 

accompanies the onset of ON state. This discharge current is directly proportional to the 
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5.5. Oscillatory Neural Networks (ONNs) 

Brain-inspired neurocomputing is considered as an emerging alternative to computing based on 

traditional techniques due to its massive parallelism. A neurocomputer attempts to mimic the 

human brain via a network of coupled artificial neurons that process information in parallel. 

Each brain neuron represents a computational unit in a neural network and a connection between 

two such neurons represents is known as a synapse. The strength of this connection, the synapse 

is in form of a synaptic weight in a neural network that relates one artificial neuron to another. 

Traditional computing schemes (that utilize the von Neumann architecture) run a software 

algorithm for a specific application by sequentially executing each line in the instruction code. 

Even though each execution might take a very short time the overall computation efficiency is 

not that high due to the serial execution of instructions. Instead, a neural network performs 

pattern recognition via associative memory in a massively-parallel manner. It maps a set of input 

patterns to a set of output patterns via synaptic weights, whereby an output pattern can be 

retrieved for a given initial pattern. Graphical applications would otherwise require numerous 

memory fetch operations and a processor that is executing a list of commands for optimization. 

Oscillatory neural networks (ONN) are one such example of phase-based neurocomputing, in 

which the state variable is represented by the phase of an oscillator. But each neuron requires a 

voltage or current controlled oscillator and a means of programming the phase relationship 

among all neurons to represent the stored information. CMOS voltage-controlled oscillators 

(VCOs) are theoretically viable to represent oscillations, but completely impractical from an 

energy standpoint. Moreover, implementing the phase relationships among the VCOs is even 

more inefficient. This implies that there is a need to explore directly coupled ONNs as proposed 
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simulated in [78], but significant implementation challenges remain before such a system would 

be feasible, including the fabrication of holographic interconnect. 

A system with a more feasible implementation was proposed and simulated in [80]. This system 

uses MEMS-based oscillators as neurons and variable electronic connections between them. 

Although the technology exists to build these systems, there is no strong evidence that such a 

system will be able to scale in area and power due to limitations in the mechanical oscillators. 

An implementation using more traditional circuit elements was proposed and built in [81]. The 

neurons in this network are built around van der Pol oscillators, and the connectivity is achieved 

through a variable impedance. The example system in this paper is constructed from discrete 

components, and translating it to an efficient deeply-scaled CMOS circuit would be particularly 

challenging due to the inclusion of inductors in each oscillator and the need for active analog 

circuitry to provide the needed negative impedances. 

ONNs based around spin torque oscillators (STOs) have recently been proposed and built in 

[61], and these systems are capable of scaling well in terms of area and power. The only 

demonstrated systems thus far have not been reprogrammable, as the coupling strength is based 

on the physical distance between the oscillators. Additionally, STOs have a voltage swing in the 

mV range which makes the design of interface circuitry very difficult. 

The architecture and technology proposed in this paper is scalable and programmable. The 

neurons are represented by RRAM-based oscillators that can scale deeply in area and power 

while still operating at voltages easy to use with CMOS circuits. The synaptic connections use 

the same physical RRAM component, therefore they scale similarly in area and power. A single 
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the threshold voltage) applied to the device, the device may settle down to various low resistance 

states, or ON states. The ON state is completely volatile (corresponding to a volatile filament) 

and the device will revert back to the OFF state (filament dissolved) once the voltage is removed. 

The voltage and current associated with this reversal is designated as the “holding voltage” (Vh) 

and the “holding current” (Ih). However, if the triangular pulse is significantly faster (1 V/µs), a 

device in ON state does not return back to the OFF state. Figure 5.15(b) shows the persistence of 

ON state, as previously seen in transient ON-Characteristics (TONC) [71]. This behavior is a 

representative of an inductor as the device cannot change its resistance fast enough if the voltage 

ramp is faster than the relaxation time.  

For simulation purposes, the circuitry given on Fig. 5.14 (a) is created in SPICE. In order to 

import the DC I-V relationship into the simulation and create the S-NDR block, a Verilog-A 

model is developed in which the piece-wise linear fit is used. This simulation setup can 

effectively recreate the simulation behavior of S-NDR type oscillators when the correct 

component parameters are chosen. The ballast resistor and the DC supply voltage are already 

known. The parasitic capacitance, Cp, can be fitted based on the frequency of the oscillations. 

The inductor, L can be adjusted such that the amplitude of the oscillations matches the 

experimental data, as it is an indicative of the nature of TONC that the material exhibits. Fig. 

5.14 (b) shows an overlay of the oscillation waveforms of the simulation and the experimental 

results.  

The frequency of oscillations is predominantly determined by the parasitic capacitance, Cp. In 

previous chapters, oscillations at the frequency of 600 MHz were demonstrated when the ballast 

device was integrated on chip for reduced parasitics. In our simulation the values of Cp are used 
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Chapter 6 

S-NDR Oscillators: Network Applications 
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As traditional CMOS device scaling for von Neumann architectures is nearing limits with device 

behavior becoming increasingly stochastic, continued increases in the computational ability per 

unit area and power cannot be sustained. Hence researchers have started looking for alternative 

computational schemes. Neuromorphic computing, often simply rendered as neurocomputing is 

one such paradigm that tries to mimic the same level of superior error-resilient compute, power 

and area efficiency as the human brain. This is specifically targeted towards a class of problems 

associated with pattern recognition that existing architectures are inefficient in handing with the 

same level of speed and power as the brain. Moreover, CMOS implementations of such 

neuromorphic systems have failed to achieve level of parallelism and energy efficiency exhibited 

by the brain [85],[86]. Hence, there is an increasing interest in looking at emerging devices that 

can enable some of the analog functionality needed for neuromorphic systems. Several 

implementations of neural networks have been proposed such as cellular neural networks 

(CNNs) which use multi-level resistance states exhibited by resistive random access memory 

(RRAM) cells or phase change memory (PCM) cells, as the state variable [87]. Likewise, 

oscillatory neural networks (ONNs) use oscillator arrays that consist of coupled oscillators in 

order to implement the parallelism, with each node representing a vector element that will be 

coupled with their neighbors [88]-[89].  

Nikonov et al. [59] have reviewed and proposed several oscillatory neural network topologies 

that are broadly classified by the quantity that they use as a state variable namely, frequency and 

phase. The architectures that use frequency rely on frequency shifts or frequency shift keying 

(FSK) to match patterns. In FSK, each element oscillated at a frequency that is directly 

proportional to the vector distance between individual elements of the test vector and the 

memorized vector. All of the oscillators have the same coupling and an averaging block is used 
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to detect the closest match by averaging the distances between each vector element. In FSK-

based systems, there is a clear need for frequency tuning over a large spectrum. Prior work on 

some of these emerging oscillators has shown limited tuning range of ~10 kHz to ~2 MHz. This 

not only limits the resolution of image processing (due to small margins between distinguishable 

frequencies), but also performance limitations due to its low-frequency operation (2 MHz being 

the maximum reported [16]). 

A more common approach to implement ONNs is using phase as the state variable. In such 

coupled oscillator arrays [59], phase is the state variable that carries out the computation, 

encoding the information by phase shift keying (PSK). Furthermore, two distinct topologies of 

PSK-based systems have been proposed in prior work [59] – (1) an indirectly coupled ONN in 

which each oscillating node (neuron) is coupled to its neighbor using indirect coupling units 

(synapses); (2) star-coupled ONN in which each node is directly coupled to its neighbor through 

a coupling element with variable strength to control the phase between two oscillatory elements. 

Thus, a test vector has to compare the phase with all memorized vectors each with different set 

of coupling coefficients. Again, an average eventually activates the correct recognition of 

pattern. The star-coupled or directly coupled ONN offers distinctive advantages in terms of 

compactness, ease of integration in the back-end of the line (BEOL), and reduced circuit 

complexity. Moreover, CMOS-based indirectly-coupled ONNs use Phase-locked Loops to build 

oscillator arrays and tend to be power and area inefficient. This has led to investigation of 

compact oscillatory systems which can be used in ONNs. This makes the star-coupled ONNs a 

significantly more attractive implementation compared to indirectly coupled ONNs. 
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In the previous chapters, we developed an understanding to tune the oscillator parameters, 

making it amenable to scaled implementations. In this chapter, we will focus on: (1) Phase 

coupling and control of oscillator pair. This will help us gain a better understanding of the 

oscillator dynamics when loaded with another oscillator. (2) Injection locking of oscillators to 

enable variability tolerant phase initialization. (3) Application of S-NDR oscillators for edge 

detection (in collaboration with Yunus E. Kesim). (4) Stereo Vision using directly coupled 

networks. 

6.1. Phase Coupling and Control of S-NDR Oscillators 

To date, phase manipulation of compact electronic oscillators has proven to be a challenging 

problem. While gyromagnetic spin torque oscillators and VO2-based oscillators have shown 

promise, their applicability has been limited to a binary phase contrast when coupled. Most 

image processing applications rely on gray-scale processing (and by extension, color) [62], 

motivating a need for fine grain phase-control (i.e. gray-scale levels). To date, fine-grain 

frequency and phase control have not been achieved, motivating our work to explore this 

emerging class of oscillators with a goal of implementing them in the star-type directly coupled 

configuration.  

The desirable features of oscillators for oscillatory networks include: (1) phase and frequency 

coupling, (2) fine-grain control over these state variables, and (3) potential for dense, scalable 

arrays. In order to understand the mechanism of coupling, we first explore the coupling of two 

oscillators. The physics of coupling is expected to give us deep insights into a multi-oscillator 

coupled network. Moreover, such fine-grain control over both frequency and phase serve as the 
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holding current and thus the device ON state is stabilized. This is clearly shown in Fig. 6.3 (c) 

and (d). The voltage and current waveforms of the coupled pair with dissimilar voltages indicates 

the stabilization of one of the oscillators in the ON state at Vh, Ih while the other oscillator 

charges. At t = t1, B switches to the ON state (as the node voltage exceeds threshold voltage), the 

displacement current (iBA) through the capacitive branch reverses direction and reduces the 

current through A. This causes the stabilized ON state of A to become unstable and the device 

resistance reverts back to OFF state. As this process is occurring, the displacement current from 

the coupling stabilizes the ON state of B till A reaches its threshold voltage. This process keeps 

repeating itself, resulting in a full 180º out of phase coupling. 

It is thus predictable that the bandwidth of the coupling element plays an important role in 

stabilizing the filament during the coupling process. If the displacement currents do not last for 

long enough, we could get coupling ranging from 180º out of phase down to fully coupled (0º 

phase) oscillators. This is achieved by changing the frequency of one oscillator w.r.t. another. 

Once coupled, the oscillators would settle down to a unique frequency. This results in the 

oscillator pair to achieve a phase difference w.r.t. each other. If the frequency difference between 

the two oscillators is too large, they seem to not couple but rather just both threshold switch to an 

ON state. The coupling capacitance that would enable such coupling is a very strong function of 

the frequency at which it operates. We will refer to this method of phase control as differential 

gating. Such coupling of oscillators is ideal for ultra-low power ONNs during the decision stage 

when each of these units is programmed to be at a certain frequency and depending on the 

frequency of the oscillations and the coupling coefficient; the device can give settle down to a 

phase that represents the vector distance. In implementations involving star-like network of 

PSK’ed oscillators, as discussed by Nikonov et al., differential gating serves as a method of 
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6.2. Injection Locking 

Injection locking (frequency entrainment) is the phase and frequency locking of an oscillator to 

an external AC signal. This phenomenon arises due to the nonlinear nature of the oscillator and 

is observed only if the frequency of the external signal is close to the natural oscillation 

frequency of the oscillator (ωo). Such synchronization is widely observed in the field of biology, 

such as circadian rhythm of 24 hours, synchronizing fireflies etc [91]. 

When the frequency of the externally applied signals is higher, the oscillator can lock to the 

exact integer sub-multiples of the external frequency. For example, as shown in Fig 6.10 (a); if 

the external frequency (2ω) is around 2ωo, than the oscillation frequency becomes ω i.e. half of 

the frequency of the externally applied signal. This phenomenon is referred to as sub-harmonic 

injection locking (SHIL) and used in frequency synthesizers [92, 93]. In this section, we 

experimentally demonstrated SHIL for S-NDR type oscillators. Figure 6.10 (b) shows that when 

the oscillator is driven using a pump signal at 28 MHz, the output frequency becomes 14 MHz. 
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6.3. Edge Detection using Directly Coupled Networks 

With increasing exchange and processing of graphical data such as images, compression and 

classification of its features becomes very important. Thus, hardware implementation of these 

operations can significantly improve the overall performance. Directly coupled oscillator 

networks are known to exhibit the level of parallelism and efficiency that can significantly 

accelerate image segmentation through feature extraction. Typically, CMOS implementations of 

these systems are [84] inefficient in terms of power, area and performance (due to memory 

access), thus creating a need for dense networks that can be directly coupled for efficient feature 

extraction. In this work we explore the unique attributes of S-type negative differential resistance 

(S-NDR) based nano-oscillator network to enable efficient edge-detection, offering high 

performance and scalability beyond CMOS. Edge-detection is of immense importance for 

applications like character recognition, content-based image retrieval, 3D vision etc. These 

graphical applications require massive parallelism for efficient implementation, and directly-

coupled oscillator arrays lend themselves naturally for such parallel computation. Edge detection 

abilities of capacitively coupled single-electron tunneling-junction oscillators have been reported 

[94,95]. In this section, we will discuss the network settling properties of an edge detection 

network. The network has been designed and simulated in collaboration with Yunus Kesim. 
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6.15, the evaluation should take place before 20 ns, with the optimal window being the 5-15 ns 

range. 

6.4. Stereo Vision using Coupled Oscillator Networks 

Many computer vision applications, such as 3D stereo estimation, rely on inference computation 

on Markov Random Fields (MRFs) formulated as graphs, where computation is done through 

message passing over the nodes of the graph. These applications promise disruptive new 

capabilities for embedded systems. For example, smart phones, security cameras, and even 

glasses [108] that can view the world in 3D would open up new usage scenarios and market 

opportunities. 

Many computer vision applications involve assigning labels optimally to nodes in a graph that 

represent an image. For example, in stereo estimation, the nodes represent pixels from a pair of 

stereo images, and the labels denote the 3D depth inferred from the image pair. The optimal 

labeling problem is typically formulated as an energy minimization on Markov Random Field 

[109]. Among various MRF solving methods, TRW-S [113][114] is known to provide better 

convergence and energy than others [109]. 
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an inductor-like circuit element relates filament size to the oscillation frequency, which changes 

depending on the current that flows through it. Thus, the data cost (value of depth) is represented 

by the frequency and the smoothness cost (edge transitions) is controlled by coupling 

capacitance. We connect nearest 4 neighbors together using 10 fF – 50 fF capacitors (for the 

device capacitance of 20 fF – 50 fF). The oscillators were made to operate at 1 GHz. We use a 

128 x 128 pixel oscillator network for a 128 x 128 pixel image. Interestingly, we can also ‘tile’ 

an image if our oscillator network size is limited (example: our oscillator network is 128x128 but 

the image is 1k x 1k i.e. 1MP image) - we can send one part of image at a time, if network is 

smaller. The benchmark tested here is the standard Middlebury benchmark – Tsukuba. Fig. 6.19 

shows the convergence of a disparity image to form a stereo image once the oscillators have all 

coupled. Low-power devices enable large arrays that can overcome aliasing (limited memory 

access) and the array connectivity contribute to the co-design essential for stereo vision. 
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detection using such directly-coupled, sub-harmonic injection-locked S-NDR oscillator 

networks. The models and SHIL are based on experimental results.  Moreover, we analyzed the 

effect of the coupling element in the network dynamics and performance. We have shown that 

oscillation frequency can go as high as a few GHz and which reduces the time and power 

expense of the edge detection operation to a few ns and pJ level, respectively. Finally, we have 

also demonstrated a more focused implementation of stereo vision using coupled oscillator 

network that is uniquely positioned to solve energy minimization type algorithms. 
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Chapter 7 

Conclusion 
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Several emerging technologies have shown promise in augmenting modern computation. The 

key feature that these technologies must possess is multi-functionality and reconfigurability for 

the same footprint. In this work, we have focused on devices that exhibit S-type negative 

differential resistance (S-NDR). The fundamental operating principle of these devices 

participates during the forming process in RRAM devices (as also perhaps SET process) as well 

as in its operation as a compact relaxation oscillator. In this work, an attempt has been made to 

first understand the physics of the device and then use the tunable the parameters to engineer 

these devices for use as memory and oscillators. Finally we show system-level demonstrations of 

beyond-CMOS architectures that can be uniquely realized with these S-NDR devices. In this 

concluding chapter, we will revisit the primary learning from each chapter to generate a more 

holistic picture of S-NDR devices. 

While forming may be a one-time process needed to initialize MIM stack to function as memory 

cells, it is by far the most important procedure that the device needs for stable and reliable 

switching. Prior works have debated the physical origin and nature of forming process in RRAM 

devices in detail. The current understanding has been that this process is initiated by vacancy 

migration due to the presence of imperfections at one of the electrode-oxide interfaces. In our 

work, we have demonstrated that the forming process is a two-step process. This manifests itself 

in the form of negative differential resistivity in the material causes the device to go into a 

negative differential resistance regime which causes current constriction, prior to forming. 

Unless prevented by the circuit load, this process frequently occurs in the form of an 

uncontrolled runaway. We support these claims by analysis of the steady-state DC behavior and 

the dynamics of the instability. Both DC and dynamic measurements indicate the presence of an 

instability that is reversible and, hence, transient in nature as distinct from vacancy migration 
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initiated. The initiation of the constriction is temperature dependent and higher temperature is 

shown to cause the point of bifurcation to appear at a lower voltage. Hence, we propose the 

following mechanism of electroforming - with increasing bias, the device conducts uniformly 

throughout its area. At a well-defined point depending on source voltage, series resistance, 

temperature and time, the device enters into the I-V range of negative differential resistance 

which results in the electronic current filamentation. This current filamentation starts off with 

being thermally induced (due to the thermal non-linearities) before the effects of voltage non-

linearity set in. This final stage of current filamentation causes the device to change resistance to 

a value close to the post-forming value. We develop a novel pulsed thermometry to estimate the 

localized temperature in the current filament using a self-consistent electro-thermal 

measurements and simulation. Temperature excursions that exceed 500 K (over the ambient) 

were estimated in a localized sub-20 nm region on the onset of forming. This localized 

temperature excursion then triggers the physical changes in the structure to form the permanent 

filament. The constriction can be controlled with the use the external circuit loading thus 

affecting the permanent filament structure. In order to corroborate the results with temporal 

dynamics of filamentation, we observed and explained the three regimes of electroforming time 

dependencies on forming voltage. The observed 1/E field dependence of forming times is 

consistent with field-induced nucleation model from which we extracted material properties  

such as  the nucleation barrier height at zero bias (W0 ~ 0.65 eV) and voltage acceleration factor 

V0 of ~ 2.8 V (for 60 nm TaOx film) at intermediate voltages. A clear difference in the temporal 

dynamics was identified for low voltages with corresponding forming times longer than the 

thermal time constant and at high-fields where the film self-heating is important. Moreover, we 

were able to detect, and study the volatile filament that precedes formation of the non-volatile 
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filament. The forming process was analyzed in the framework of nucleation model which was 

extended to include the self-heating effects.  This yielded an estimate of the critical nucleation 

radius (R ~ 1 nm) below which filament is always volatile, in line with the prediction from the 

thermometry.  This implies that the filament-based RRAM technology can thus be scaled to a 

physical limit dictated by the critical nucleus size which could be as low as 1 nm in size. We also 

demonstrated that forming is a field accelerated phenomenon and that the forming can be sped-

up by nearly 6 orders of magnitude compared to DC forming typically used for RRAM. The 

thermometry is fairly general in its applicability and hence can be applied to switched RRAM 

devices in LRS.  

RRAM filament thermometry developed in this work has become a key for understanding the 

physics of RRAM devices due to the crucial role of the temperature in these devices. When the 

thermometry was applied to scaled 85 nm x 85 nm devices, we found that the devices can reach 

temperature in excess of 1000 K during the switching event. This was confirmed using TEM 

experiments that confirmed the temperatures due to the crystallization (indicating temperatures > 

850 K) of the initially amorphous oxide matrix. At low-biases, the filament size was extracted to 

be ~ 1.2 nm (for a compliance current of 50 A) and increased if the compliance current was 

increased. This is a direct continuation from the current constriction size that was found during 

the forming process. At high biases, the filament size appeared to increase. This was interpreted 

as an increase in the conducting volume due to the oxide in the proximity of the filament getting 

heated up and conducting. This was found to be consistent with a significantly wider 

crystallization zone when observed under a TEM. Such current spreading may be responsible for 

reducing the power-density in filamentary switching RRAMs, thus limiting the peak temperature 

and hence failure. Moreover, this was also used as a tool to understand the role of lateral thermo-
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diffusion due to the presence of strong thermal gradients and it was found that devices with 

larger filament diameters (for the same switching power) failed due to the presence of a gentler 

thermal gradient. More detailed studies can now be pursued to track the role of lateral and 

vertical thermal and concentration gradients on resistive switching process. Thus, the 

thermometry technique offers unique insights into: (1) Peak temperature in the filament, (2) 

Geometry of the filament (3) Filament growth. (4) Dynamics of the heated zone. One must point 

out that these thermometry tools can be applied, in principle, to any thin film having filamentary 

conduction. This experimental technique can serve as a tool to design materials and devices with 

optimized thermal and electrical characteristics.  

With the information about filament formation and the role of bias, temperature and 

microstructure clear from the thermometry, we revisited the S-NDR devices and found that 

certain compositions of TaOx and chalcogenides do not permanently change their resistance 

during the forming process. In other words, they have an indefinitely long lock-on time post 

resistance change. These materials have been referred to in the literature as threshold switches. 

We demonstrated a novel ultra-compact oscillator that is based on the same material, TaOx, 

displaying precise frequency control over more than four decades of frequency (20 kHz - 250 

MHz) with the potential for an even larger frequency range. This range was obtained by using 

two different ballasting techniques – (1) a linear resistor and (2) a PMOS transistor. We have 

presented evidence that depending on the operation mode, these oscillations can be regulated by 

controlling the dynamics of the current filamentation internal to the MIM structure or by the 

external parasitics. We have also shown that high-frequencies are obtained by lowering the peak 

current in the ON-state in regimes where the frequency is not RC dominated. In addition to its 
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CMOS compatibility and scalability, this oscillator provides large-signal oscillations and can be 

used for dense oscillator arrays. 

While the TaOx, oscillators had a performance metric that was significantly better than prior 

works, the voltages and power consumption were still unreasonably high. Thus, we engineered 

these devices for CMOS compatibility, based on the learning from the forming process. By 

engineering the electrode material, oxide thickness, minimization of parasitics loading the 

oscillator, this thesis demonstrated: (1) First ever 1T1R integrated structure, (2) Maximum 

frequency of ~500 MHz, > 2 orders of magnitude higher than any report, in this class of 

oscillators, (3) Lowest reported power down to < 200 µW, one order of magnitude lower than 

best reported, (4) Full-system simulation of an ONN-based associative memory. Thus, we can 

build a basic instruction set for engineering these oscillators: (1) Thin films result in a lower 

threshold voltage or forming voltage, as it is a field-mediated process, (2) Electrode work-

function creates a band-offset at the metal-oxide interface. Depending on the electron affinity 

and bandgap of the material, a high or lower work-function metal may be needed to ensure 

Ohmic conduction and hence a lower holding voltage. (3) Holding current determines the 

frequency tuning window and the peak power consumed during the oscillator operation and 

hence it must be minimized while keeping it above threshold current. (4) Presence of parasitics 

causes the devices to reach an ON-state that is more conductive due to the capacitive overshoot. 

To prevent this, a ballast device must be placed adjacent to the MIM stack to minimize 

capacitance. 
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Based on these recommendations, we explored the applicability of these oscillators for 

oscillatory neural networks, using these oscillators as oscillatory units. For this purpose, we used 

the van der Pol model to model these oscillators so that their properties can be studied in large 

network simulations. While the networks showed reasonable network characteristics as an 

associative memory but it was found that the CMOS surrounding the 1T1R oscillators (for 

connectivity) may be severely area inefficient. This problem could be exacerbated for very dense 

oscillator array implementations. Thus, we moved our focus to directly coupled oscillators for 

networks that require less CMOS related to coupling and to bring about system evolution. These 

networks relied on the circuit behavior at the device-circuit level, making it easy to engineer the 

network as a whole. 

To explore this application, we demonstrated as the first, coupling between two oscillators using 

capacitors and transistors. By coupling two oscillators using a capacitor, we were able to 

demonstrate phase coupling from 0° to 180°, by the means of differential gating of ballasts. 

Similarly, we were also able to show initialization of phase by coupling oscillators through 

transistors. In such configurations, we were able to achieve a phase control from 0° to 120° by 

the means to local-FSK in coupled oscillators. It was observed that these oscillators exhibit an 

initial phase related to the incubation time. This causes the oscillators to show slight variability 

in phase due to device to device process variation; moreover, such oscillators show a frequency 

drift (increase) before failure due to partial permanent crystallization/forming. To overcome 

these phenomena, we used injection locking and showed that the oscillators can be locked to a 

carrier at half the excitation frequency (this is also referred to as sub-harmonic injection locking). 

This made the response of the oscillators significantly more deterministic and immune to failure 

modes. 
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Such demonstrations of oscillatory response tuning uniquely positioned us to explore large 

directly coupled oscillator networks as feature extraction engines like robust simulated annealing 

type-problems. As an example, we have simulated edge detection using such directly-coupled, 

sub-harmonic injection-locked S-NDR oscillator networks. The models and SHIL are based on 

experimental results.  Moreover, we analyzed the effect of the coupling element in the network 

dynamics and performance of image feature extraction. Finally, we have shown that oscillation 

frequency can go as high as a few GHz and which reduces the time and power expense of the 

edge detection operation to a few ns and pJ level, respectively. 

This thesis attempts to bridge the gap between the attractive properties of an emerging 

technology and its applicability in real-world problems by understanding the circuit-device and 

system-device interactions. While S-NDR devices have been a subject of research for several 

decades, no attempts were made to understand this phenomenon in the light of its applications – 

physical processes in RRAM and oscillators. This work endeavors to create headway and open 

up new research area that can make these devices accessible and useful for augmenting next-

generation compute. 



143 
 

References 
 

[1] Burr, Geoffrey W., et al. "Overview of candidate device technologies for storage-class 

memory." IBM Journal of Research and Development 52.4.5 (2008): 449-464 

[2] Takefuji, Yoshiyasu. Neural network parallel computing. Springer, 1992. 

[3] Bez, Roberto, and Agostino Pirovano. "Non-volatile memory technologies: emerging concepts 

and new materials." Materials Science in Semiconductor Processing 7.4 (2004): 349-355. 

[4] Ielmini, D., et al. "Statistical modeling of reliability and scaling projections for flash 

memories." Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International. IEEE, 

2001. 

[5] Hsiao, Yi-Hsuan, et al. "A critical examination of 3D stackable NAND flash memory 

architectures by simulation study of the scaling capability." Memory Workshop (IMW), 2010 

IEEE International. IEEE, 2010. 

[6] Schöll, Eckehard. Nonlinear spatio-temporal dynamics and chaos in semiconductors. Vol. 10. 

Cambridge University Press, 2001. 

[7] Wong, H-S. Philip, et al. "Metal–oxide RRAM." Proceedings of the IEEE 100.6 (2012): 1951-

1970. 

[8] Rohde, Christina, et al. "Identification of a determining parameter for resistive switching of 

TiO 2 thin films." Applied Physics Letters 86.26 (2005): 262907-262907. 

[9] Govoreanu, B., et al. "10× 10nm 2 Hf/HfO x crossbar resistive RAM with excellent 

performance, reliability and low-energy operation." Electron Devices Meeting (IEDM), 2011 

IEEE International. IEEE, 2011. 



144 
 

[10] Lee, H. Y., et al. "Low power and high speed bipolar switching with a thin reactive Ti buffer 

layer in robust HfO2 based RRAM." Electron Devices Meeting, 2008. IEDM 2008. IEEE 

International. IEEE, 2008. 

[11] Tz-yi Liu et al.,  "A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology," 

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International , 

vol., no., pp.210,211, 17-21 Feb. 2013 

[12] Ielmini, Daniele. "Modeling the universal set/reset characteristics of bipolar RRAM by field-

and temperature-driven filament growth." Electron Devices, IEEE Transactions on 58.12 (2011): 

4309-4317.  

[13] Yu, Shimeng, and H-SP Wong. "A phenomenological model for the reset mechanism of 

metal oxide RRAM." Electron Device Letters, IEEE 31.12 (2010): 1455-1457. 

[14] Degraeve, Robin, et al. "Dynamic ‘hour glass’ model for SET and RESET in HfO 2 RRAM." 

VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012. 

[15] Gao, Bin, et al. "Unified physical model of bipolar oxide-based resistive switching memory." 

Electron Device Letters, IEEE 30.12 (2009): 1326-1328. 

[16] Pickett, Matthew D., and R. Stanley Williams. "Sub-100 fJ and sub-nanosecond thermally 

driven threshold switching in niobium oxide crosspoint nanodevices." Nanotechnology 23.21 

(2012): 215202. 

[17] Lee, Jong Ho, et al. "Threshold switching in Si-As-Te thin film for the selector device of 

crossbar resistive memory." Applied Physics Letters 100.12 (2012): 123505. 

[18] Nishi, Y., "Challenges and opportunities for future non-volatile memory technology." 

Current Applied Physics 11 (2011): e101-e103. 



145 
 

[19] Kwon, D. H., Kim, K. M., Jang, J. H., Jeon, J. M., Lee, M. H., et al., "Atomic structure of 

conducting nanofilaments in TiO2 resistive switching memory." Nature nanotechnology 5 (2010): 

148-153. 

[20] Miao, F., Yi, W., Goldfarb, I., Yang, J. J., Zhang, M. X., Pickett, M. D., Strachan, J.P., 

Rebeiro, G.M. & Williams, R. S. "Continuous electrical tuning of the chemical composition of 

TaOx-based memristors." ACS nano 6 (2012): 2312-2318. 

[21] Goux, L., Fantini, A., Degraeve, R., Raghavan, N., Nigon, R., Strangio, S., et al. 

"Understanding of the intrinsic characteristics and memory trade-offs of sub-μA filamentary 

RRAM operation." VLSI Technology (VLSIT), 2013 Symposium on. IEEE, 2013. 

[22] Gilmer, D. C., Bersuker, G., Park, H. Y., Park, C., Butcher, B., Wang, W., et al. "Effects of 

RRAM stack configuration on forming voltage and current overshoot." Integrated Memory 

Workshop (IMW), IEEE Proceedings on, 2011. 

[23] Ielmini, D., C. Cagli, and F. Nardi. "Resistance transition in metal oxides induced by 

electronic threshold switching." Applied Physics Letters 94.6 (2009): 063511. 

[24] Sharma, A. A., Noman, M., Abdelmoula, M., Skowronski, M., Bain, J.A., "Electronic 

Instabilities Leading to Electroformation of Binary Metal Oxide-based Resistive Switches." 

Advanced Functional Materials 24 (2014): 5522-5529. 

[25] Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A., Stewart, D. R., Lau, C. N., & Williams, 

R. S., “The mechanism of electroforming of metal oxide switches”, Nanotechnology 20, 215201 

(2009) 

[26] Noman, M., Sharma, A. A., Lu, Y. M., Skowronski, M., Salvador, P. A., & Bain, J. A., 

"Transient characterization of the electroforming process in TiO2 based resistive switching 

devices." Applied Physics Letters 102.2 (2013): 023507. 



146 
 

[27] Bernard, Y., P. Gonon, and V. Jousseaume. "Resistance switching of Cu/SiO2 memory cells 

studied under voltage and current-driven modes." Applied Physics Letters 96.19 (2010): 193502-

193502. 

[28] Simon, M., Nardone, M., Karpov, V. G., & Karpov, I. V. "Conductive path formation in 

glasses of phase change memory." Journal of Applied Physics 108 (2010): 064514. 

[29] Ovshinsky, Stanford R. "Reversible electrical switching phenomena in disordered 

structures." Physical Review Letters 21 (1968): 1450. 

[30] Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., & Karpov, V. G., "Evidence 

of field induced nucleation in phase change memory." Applied Physics Letters 92 (2008): 173501. 

[31] Zeldovich, J.B., “On the theory of new phase formation: cavitation”, Acta Physicochimica 

USSR 18, 1 (1943) 

[32] Bernard, Y., Gonon, P., and Jousseaume, V., “Resistance switching of Cu/SiO2 memory cells 

studied under voltage and current-driven modes”, Applied Physics Letters 96, 193502 (2010).. 

[33] Chakraverty, B.K., “Metal-insulator transition; nucleation of a conducting phase in 

amorphous semiconductors”, Journal  of Non-crystalline Solids 3 (1970) 317-326. 

[34] Pevtsov, A. B., Medvedev, A. V., Kurdyukov, D. A., Il'Inskaya, N. D., Golubev, V. G., & 

Karpov, V. G, “Evidence of field-induced nucleation switching in opal: VO2 composites and VO2 

films”, Physical Review B 85, 024110 (2012). 

[35] Strickland, James A., and Gordon Lang. “Time-domain reflectometry measurements” 

Tektronix, 1970. 

[36] Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature. Mater. 6, 

833–840 (2007) 



147 
 

[37] Strachan, J. P. et al., Direct identification of the conducting channels in a functioning 

memristive device. Adv. Mat., 22(32), 3573-3577, (2010). 

[38] Tsendin, K. D. "Physics of Switching and Memory Effects in Chalcogenides." (2014). 

[39] Hickmott, T. W., Impurity Conduction and Negative Resistance in Thin Oxide Films, J. 

Appl. Phys. 35, 2118 (1964) 

[40] Chopra, K. L., Avalanche‐Induced Negative Resistance in Thin Oxide Films, J. Appl. Phys. 

36, 184 (1965) 

[41] Argall, F., Switching phenomena in titanium oxide thin films, Solid State Electronics, 11, 

535 (1968) 

[42] A. S. Alexandrov et al., Current-controlled negative differential resistance due to Joule 

heating in TiO2, Appl. Phys. Lett. 99, 202104 (2011) 

[43] Blonkowski, S., Regache, M., and Halimaoui, A., Investigation and modeling of the 

electrical properties of metal–oxide–metal structures formed from chemical vapor deposited 

Ta2O5 films, J. Appl. Phys. 90, 1501 (2001) 

[44] Zeng, W. et al., CVD of Tantalum Oxide Dielectric Thin Films for Nanoscale Device 

Applications, J. Electrochem. Soc. 151, F172 (2004) 

[45] Chaneliere, C., Autran, J. L., and Devine, R. A. B., Conduction mechanisms in Ta2O5/SiO2 

and Ta2O5/Si3N4 stacked structures on Si, J. Appl. Phys. 86, 480 (1999) 

[46] Choi, W. K. and Ling, C. H., Analysis of the variation in the field‐dependent behavior of 

thermally oxidized tantalum oxide films, J. Appl. Phys. 75, 3987 (1994) 

[47] Devine, R. A. B., Vallier, L., Autran, J. L., Paillet, P., and Leray, J. L., Electrical properties 

of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source, 

Appl. Phys. Lett. 68, 1775 (1996) 



148 
 

[48] Fleming, R. M. et al., Defect dominated charge transport in amorphous Ta2O5 thin films, J. 

Appl. Phys. 88, 850 (2000) 

[49] Ielmini, Daniele. "Modeling the universal set/reset characteristics of bipolar RRAM by field-

and temperature-driven filament growth." Electron Devices, IEEE Transactions on 58.12 (2011): 

4309-4317. 

[50] Russo, Ugo, et al. "Filament conduction and reset mechanism in NiO-based resistive-

switching memory (RRAM) devices." Electron Devices, IEEE Transactions on 56.2 (2009): 186-

192. 

[51] Larentis, S., et al. "Filament diffusion model for simulating reset and retention processes in 

RRAM." Microelectronic Engineering 88.7 (2011): 1119-1123. 

[52] Yalon, E., et al. "Evaluation of the local temperature of conductive filaments in resistive 

switching materials." Nanotechnology 23.46 (2012): 465201. 

[53] Lu, Yi Meng, et al. "Thermographic analysis of localized conductive channels in bipolar 

resistive switching devices." Journal of Physics D: Applied Physics44.18 (2011): 185103. 

[54] Yalon, Eilam, et al. "Thermometry of filamentary RRAM devices." (2015). 

[55] D. Strukov et al., Appl. Phys. A 107.3 (2012): 509-518. 

[56] B. Govoreanu et al., Electron Devices, IEEE Transactions on , vol.60, no.8, pp.2471,2478, 

Aug. 2013. 

[57] R. Degraeve et al., 14-5, Symp. on VLSI-T 2015 

[58] C.-S. Poon et al., Front. Neurosci, vol. 5, no. 108, pp. 1-3, 2011 

[59] Nikonov, Dmitri E., et al. "Coupled-oscillator associative memory array operation." arXiv 

preprint arXiv:1304.6125 (2013). 



149 
 

[60] Hoppensteadt, Frank C., and Eugene M. Izhikevich. "Oscillatory neurocomputers with 

dynamic connectivity." Physical Review Letters 82.14 (1999): 2983. 

[61] Kaka, Shehzaad, et al. "Mutual phase-locking of microwave spin torque nano-

oscillators." Nature 437.7057 (2005): 389-392. 

[62] Parihar, Abhinav, et al. "Synchronization of pairwise-coupled, identical, relaxation 

oscillators based on metal-insulator phase transition devices: A model study." Journal of Applied 

Physics 117.5 (2015): 054902. 

[63] Driscoll, T. et al, “Current oscillations in vanadium dioxide: Evidence for electrically 

triggered percolation”, Phys. Rev. B, vol. 86-9, pp. 094203, 2012 

[64] Nardone, M. et al., “Relaxation oscillations in chalcogenide phase change memory”, Jour. 

App. Phys., vol.107, no.5, Mar 2010 

[65] M. D. Pickett and R. S. Williams, “Sub-100fJ and sub-nanosecond thermally driven 

threshold switching in niobium oxide crosspoint nanodevices,” Nanotechnology, vol. `, number 

21, 215202 

[66] Sakai, Joe, “High-efficiency voltage oscillation in VO2 planer-type junctions with infinite 

negative differential resistance”, Journal of Applied Physics, 103, 103708 (2008) 

[67] Schmidt, Pierre E., and Roberto C. Callarotti. "The operation of thin film chalcogenide glass 

threshold switches in the relaxation oscillation mode." Thin Solid Films 42.3 (1977): 277-282. 

[68] Karpov, V. G., M. Nardone, and M. Simon. "Thermodynamics of second phase conductive 

filaments." Journal of Applied Physics 109.11 (2011): 114507. 

[69] Lee, M.-J. et al., “A fast, high-endurance and scalable non-volatile memory device made 

from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nature Materials 10, 625–630 (2011) 



150 
 

[70] Adler, David, Heinz K. Henisch, and Nevill Mott. "The mechanism of threshold switching in 

amorphous alloys." Reviews of Modern Physics 50.2 (1978): 209. 

[71] Pryor, R. W., and H. K. Henisch. "Nature of the on-state in chalcogenide glass threshold 

switches." Journal of Non-Crystalline Solids 7.2 (1972): 181-191. 

[72] Adler, D., et al. "Threshold switching in chalcogenide‐glass thin films." Journal of Applied 

Physics 51.6 (1980): 3289-3309. 

[73] Jackson, T.C., Sharma, A. A., Bain, J.A., Weldon, J.A., Pileggi, L., “An RRAM-Based 

Oscillatory Neural Network”, 2015 IEEE 6th Latin American Symposium on Circuits and 

Systems (LASCAS), 2015 

[74] M. P. Shaw and I. J. Gastman  "Circuit controlled current instabilities in s-shaped negative 

differential conductivity elements",  Appl. Phys. Lett.,  vol. 19,  no. 7,  pp.243 -245 1971 

[74] Sharma, Abhishek A., Mohammad Noman, Marek Skowronski, and James A. Bain. 

"Comparison of electric field dependent activation energy for electroformation in TaO x and TiO 

x based RRAMs." In Integrated Reliability Workshop Final Report (IRW), 2013 IEEE 

International, pp. 146-149. IEEE, 2013. 

[75] Kostylev, S. A., and V. A. Shkut. "Electronic switching in amorphous semiconductors." Kiev 

Izdatel Naukova Dumka 1 (1978). 

[76] Ielmini, Daniele, and Yuegang Zhang. "Analytical model for subthreshold conduction and 

threshold switching in chalcogenide-based memory devices." Journal of Applied Physics 102.5 

(2007): 054517. 

[77] Sharma A. A., Karpov, I.V., Kotlyar, R., Skowronski, M., Bain, J.A., “Temporal Dynamics 

of Electroforming in Binary Metal Oxide-based Resistive Switching Memory”, Jour. Appl. Phys. 

2015 



151 
 

[78] Hoppensteadt, Frank C., and Eugene M. Izhikevich “Synchronization of laser oscillators, 

associative memory, and optical neurocomputing,” Physical Review E, vol. 62, no. 3, pp. 4010–

4013, 2000. 

[79] Kwon, Jonghan, Abhishek A. Sharma, James A. Bain, Yoosuf N. Picard, and Marek 

Skowronski. "Oxygen Vacancy Creation, Drift, and Aggregation in TiO2‐Based Resistive 

Switches at Low Temperature and Voltage." Advanced Functional Materials 24.35 (2015): 1616-

3028. 

[80] Hoppensteadt, Frank C., and Eugene M. Izhikevich , “Synchronization of MEMS resonators 

and mechanical neurocomputing,” Circuits and Systems I: Fundamental Theory and Applications, 

IEEE Transactions on, vol. 48, no. 2, pp. 133–138, 2001 

[81] R. Hölzel and K. Krischer, “Pattern recognition with simple oscillating circuits,” New 

Journal of Physics, vol. 13, no. 7, p. 073031, 2011. 

[82] Van der Pol, Balth. "LXXXVIII. On “relaxation-oscillations”." The London, Edinburgh, and 

Dublin Philosophical Magazine and Journal of Science 2, no. 11 (1926): 978-992. 

[83] Shaw, M. P., H. L. Grubin, and I. J. Gastman. "Analysis of an inhomogeneous bulk" S-

shaped" negative differential conductivity element in a circuit containing reactive elements." 

Electron Devices, IEEE Transactions on 20, no. 2 (1973): 169-178. 

[84] Jackson, Thomas C., et al. "Oscillatory Neural Networks Based on TMO Nano-Oscillators 

and Multi-Level RRAM Cells." (2015). 

[85] Hammarlund, Per, and Örjan Ekeberg. "Large neural network simulations on multiple 

hardware platforms." Journal of computational neuroscience 5.4 (1998): 443-459.  



152 
 

[86] Widrow, Bernard, David E. Rumelhart, and Michael A. Lehr. "Neural networks: 

Applications in industry, business and science." Communications of the ACM 37.3 (1994): 93-

105. 

[87] Kuzum, D., Jeyasingh, R. G., Lee, B., & Wong, H. S. P. (2011). Nanoelectronic 

programmable synapses based on phase change materials for brain-inspired computing. Nano 

letters, 12(5), 2179-2186.  

[88] Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., & Wong, H. S. (2012, December). A 

neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to 

variability: experimental characterization and large-scale modeling. In Electron Devices Meeting 

(IEDM), 2012 IEEE International (pp. 10-4). IEEE.  

[89] Shibata, Tadashi, Renyuan Zhang, Steven P. Levitan, Dmitri E. Nikonov, and George I. 

Bourianoff. "CMOS supporting circuitries for nano-oscillator-based associative memories." In 

Cellular Nanoscale Networks and Their Applications (CNNA), 2012 13th International Workshop 

on, pp. 1-5. IEEE, 2012.  

[90] Neogy, Arkosnato, and Jaijeet Roychowdhury. "Analysis and design of sub-harmonically 

injection locked oscillators." In Proceedings of the Conference on Design, Automation and Test in 

Europe, pp. 1209-1214. EDA Consortium, 2012. 

[91] Strogatz, Steven H. "From Kuramoto to Crawford: exploring the onset of synchronization in 

populations of coupled oscillators." Physica D: Nonlinear Phenomena 143, no. 1 (2000): 1-20. 

[92] Dal Toso, Stefano, Andrea Bevilacqua, Marc Tiebout, Stefano Marsili, Christoph Sandner, 

Andrea Gerosa, and Andrea Neviani. "UWB fast-hopping frequency generation based on sub-

harmonic injection locking." Solid-State Circuits, IEEE Journal of 43, no. 12 (2008): 2844-2852 



153 
 

[93] Acar, Mustafa, Domine Leenaerts, and Bram Nauta. "A wide-band CMOS injection-locked 

frequency divider." In Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of 

Papers. 2004 IEEE, pp. 211-214. IEEE, 2004. 

[94] Yang, Tao, Richard A. Kiehl, and Leon O. Chua. "Tunneling phase logic cellular nonlinear 

networks." International Journal of Bifurcation and chaos 11, no. 12 (2001): 2895-2911. 

[95] Lai, Xiaolue, and Jaijeet Roychowdhury. "Fast simulation of large networks of 

nanotechnological and biochemical oscillators for investigating self-organization phenomena." In 

Design Automation, 2006. Asia and South Pacific Conference on, pp. 6-pp. IEEE, 2006. 

[96] Bersuker, G., et al. "Metal oxide resistive memory switching mechanism based on 

conductive filament properties." Journal of Applied Physics 110.12 (2011): 124518. 

[97] Chang, S. H., et al. "Occurrence of both unipolar memory and threshold resistance switching 

in a NiO film." Physical review letters 102.2 (2009): 026801. 

[98] Peng, Hai Yang, et al. "Deterministic conversion between memory and threshold resistive 

switching via tuning the strong electron correlation." Scientific reports 2 (2012). 

[99] Bae, Jieun, et al. "Coexistence of bi-stable memory and mono-stable threshold resistance 

switching phenomena in amorphous NbOx films." Applied Physics Letters 100.6 (2012): 062902. 

[100] Stefanovich, G., A. Pergament, and D. Stefanovich. "Electrical switching and Mott 

transition in VO2." Journal of Physics: Condensed Matter 12.41 (2000): 8837. 

[101] Sharma, Abhishek A., et al. "Electronic Instabilities Leading to Electroformation of Binary 

Metal Oxide‐based Resistive Switches." Advanced Functional Materials (2014). 

[102] Guan, Ximeng, Shimeng Yu, and H-SP Wong. "On the switching parameter variation of 

metal-oxide RRAM—Part I: Physical modeling and simulation methodology." Electron Devices, 

IEEE Transactions on 59.4 (2012): 1172-1182. 



154 
 

[103] K. Kardell, C. Radehaus, R. Dohmen, and H.-G. Purwins, “Stable multifilament structures 

in semiconductor materials based on a kinetic model,” Journal of Applied Physics, vol. 64, no. 11, 

pp. 6336–6338, 1988. 

[104] V. Kratyuk, P. K. Hanumolu, U.-K. Moon, and K. Mayaram, “A design procedure for all-

digital phase-locked loops based on a charge-pump phase-locked-loop analogy,” IEEE 

TRANSACTIONS ON CIRCUITS AND SYSTEMS PART 2 EXPRESS BRIEFS, vol. 54, no. 3, p. 

247, 2007. 

[105] J. J. Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W.-D. Li, W. Yi, D. A. 

Ohlberg, B. J. Choi, W. Wu et al., “Engineering nonlinearity into memristors for passive crossbar 

applications,” Applied Physics Letters, vol. 100, no. 11, p. 113501, 2012. 

[106] F. Chudnovskii, L. Odynets, A. Pergament, and G. Stefanovich, “Electroforming and 

switching in oxides of transition metals: The role of metal–insulator transition in the switching 

mechanism,” Journal of Solid State Chemistry, vol. 122, no. 1, pp. 95–99, 1996. 

[107] L. Goux, A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, 

G. Lorenzo, G. Pourtois et al., “Ultralow sub-500na operating current high-performance tinal 2 o 

3 hfo 2 hftin bipolar rram achieved through understanding-based stack-engineering,” in VLSI 

Technology (VLSIT), 2012 Symposium on. plus 0.5em minus 0.4emIEEE, 2012, pp. 159–160. 

[108] Google Glass, URL: https://plus.google.com/+projectglass 

[109] R. Szeliski, et al., "A comparative study of energy minimization methods for markov 

random fields with smoothness-based priors," IEEE Trans. on Pattern Analysis and Machine 

Intelligence, 2008. 

[110] J. Choi and R. Rutenbar, “Hardware implementation of MRF map inference on an FPGA 

platform,” Field Programmable Logic and Applications, 2012. 



155 
 

[111] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo 

correspondence algorithms,” International Journal of Computer Vision, 2002. 

[112] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. 

[113] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimization,” 

IEEE Transaction on Pattern Analysis and Machine Intelligence, 2006. 

[114] M. J. Wainwright, et al., “MAP estimation via agreement on trees: message-passing and 

linear-programming approaches,” IEEE Transactions on Information Theory, 2005. 

[115] Sharma, Abhishek A., et al. "Hardware-efficient stereo estimation using a residual-based 

approach." Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International 

Conference on. IEEE, 2013. 



155 
 

Appendix A: 

Review of thermometry & modeling parameters, 

and comparison with existing methodologies 

 

This supplementary material seeks to serve two main purposes – first, we try to extend the 

arguments made for Ta2O5-x to TiO2, in order to prove that the phenomena and proposed 

mechanisms are universal for all switching oxides; secondly, we explain the experimental details 

involved in sample preparation, characterization and, modeling and analysis needed for Chapters 

2 and 3. 

A.1. Presence of negative differential resistance in TiO2-x-based memristors 

We choose TiO2-x in order to explore the generality of observations of NDR and associated 

filamentation. Titania was long regarded as a prototypical memristive material with early 

demonstrations of relevant phenomena. As a control experiment, we test a canonical TiO2-x 

cross-bar device with a DC sweep from 0 to 17 V (at source), without electroforming it. Figure 

A.1 shows the DC I-V characteristics of a TiO2-x device with a source resistance of 13.5 k. 

Similar to Ta2O5-x samples, the device does show a clear CC-NDR behavior with thermal and 

electronic contributions. The SEM micrograph in the inset shows the state of the device after it 

has been subjected to the DC sweep. The vertical and horizontal rectangular traces represent the 

bottom and the top Pt electrodes respectively. The bright contrast on the left represents the grain 
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I-V data from long 5 s pulses was obtained in a similar way. Voltage and current through the 

device changes with temperature for the first 2.5 s (thermal time constant). We can discard the 

temporal data and map the voltage and current on an I-V plane to give the evolution from pulsed 

I-V to DC I-V (shown in Chapter 2).  
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transients. The two transients are very consistent with each other till 780 ns. After 780 ns, for the 

very same measured input power, the extraction and the simulated temperatures deviate from 

each other indicating that the original assumption about uniform conduction through the film is 

no longer valid. Also, it must be noted that this deviation occurs before permanent change 

(conducting filament) has taken place. This behaviour is also seen in other oxides like TiO2-x. 

A.4. Extraction of filament size and estimate of temperature during filamentation 

After filamentation onset, the temperature reached is a strong function of filament diameter, with 

greater current localization leading to higher temperature. Rather than simply postulating a 

filament size and then estimating the temperature based on that assumption, we have attempted 

to extract a filament size self-consistently from our data by reconciling temperature rise as 

estimated from thermal modeling and temperature rise estimated from conductivity change. 

The electronic filaments are usually thought of as a continuous high current domain extending 

from the top electrode to the bottom electrode. Since the current flow is primarily through this 

current filament, the power dissipation also occurs inside this temporary filament. The Rth 

discussed in the main text represents the thermal resistance that is connected between the 

filament as the heat source and the thermal ground, which can be easily calculated from material 

properties and finite element simulation. We use Comsol Multiphysics finite element method 

(FEM) solver for the calculation of the Rth as the ratio of the rise in temperature experienced with 

unit increase in the power dissipated in the filament, at steady state. Figure S4(a) shows the 

simulation setup used for the FEM solver. The thermal properties assumed for the simulation are 

summarized in Table 1. The results of the simulation are summarized in Fig. A.4(b). From this 
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Self-consistency is achieved by finding the single value of radius at each I, V point which 

simultaneously satisfies both of the above constructions. In the latter I-V-T curve it has been 

necessary to extrapolate from measured conductivities (room temperature to 200 °C) up to much 

higher temperatures (600 °C), but we believe the error introduced by this extrapolation is modest 

due to the very well-behaved dependence of conductivity on temperature in the measured range. 

In the uniform conduction region, we the device starts off with a value of Rth of ~0.025 K/W 

which corresponds to a filament radius of 2.5 m. By enforcing the above constraints, we find 

that in the thermal NDR regime, the Rth is rises by an order of magnigtude (~0.2 K/W) and the 

filament radius shrinks to 750 nm. As the device enters into the electronic NDR regime, the Rth 

increases by a factor of 10 again to a value > 2 K/W which corresponds to a sub-10 nm 

diameter filament. 

It must be noted that these calibrations (both experiment and modeling) have to be re-done for 

samples with different electrical and thermal properties. 

 

A.5. Comparison with MIS-BT –based thermometry 

Recently, two experimental temperature evaluation methods were reported that do not require 

assumptions on the filament properties. One method is based upon short pulse measurements 

(discussed in the thesis Chapters 2 and 3), and the other is based upon measurement of minority 

carrier thermionic emission current in a 3-terminal MIS structure [52]. It is the purpose of this 

section is to compare these two techniques and discuss their underlying physics. 
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Nonetheless, the filaments in the two devices may have different diameters due to the difference 

in structure (MIM vs MIS, pulsed measurement sample twice thicker) and different forming 

conditions. It is expected that the filament in the MIS sample would have a gap, and therefore its 

Rth is expected to be higher. As the region experiencing peak temperature participates in 

switching events, the temperatures detected by the MIS-BT structure serve as important data 

points. Similarly, the non-linear increase in temperature (vs. power) detected by the pulsed 

thermometry, sheds light on the self-limiting mechanisms responsible device functioning at 

biases close to switching voltages. 

Comparing between the two techniques, the temperatures extracted using the pulsed method are 

expected to be slightly lower. The reason is that the MIS-BT measures the local peak 

temperature at the filament tip, whereas the pulsed measurement averages the temperature across 

the device. Inspection of Fig. A.5 shows that for the same functional RRAM layer, measured 

under similar forming conditions the evaluated temperatures using the two techniques are quite 

comparable at low-biases, with the pulsed measurement showing a slightly lower temperature. It 

is evident that the two methods complement each other. The pulsed thermometry is particularly 

useful when the RRAM resistance (either LRS or HRS) is <10/G0 while the MIS-BT works well 

when RRAM resistance >10/G0. Moreover, the MIS-BT offers high-precision at low power 

regime, below ~10μW whereas the pulsed measurements can be carried out in a wider range of 

applied power. 

RRAM filament thermometry has become a key for understanding the physics of RRAM devices 

due to the crucial role of the temperature in these devices. We have reviewed here the two main 

experimental methods to measure the filament temperature in RRAM devices. The two methods 

were compared on the basis of measurements carried out on the same functional RRAM layer. 
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Comparison between our experimental results and thermal simulations indicate that at low 

current compliance (~10 μA) and under low power conditions (<10 μW) the filament dimensions 

are below 5 nm. For higher values of the power the thermal resistance is reduced by a factor of 

~100, perhaps, due to the expansion of heat generated zone around the filament (with an 

additional possibility of an increase in the thermal conductivity with temperature). We concluded 

that the two thermometry techniques are complementary; the MIS-BT method is useful when the 

resistance of the device is in the range ~100 kΩ - 100 MΩ, under operating power conditions 

relatively low (<10μW), whereas the pulsed thermometry is more suitable for devices having 

resistance <500 kΩ in the range of >1 μW applied power. These values of resistance can be 

either LRS or HRS of the RRAM device. 

In order to extend the extraction range of the MIS-BT technique in future work, small area 

devices may be used to apply high speed pulsed measurements. Bipolar transistors having similar 

structures were demonstrated that exhibit cut-off frequency in the range of ~100 GHz, though the 

high frequency operation of a transistor having a filament emitter is yet to be evaluated. 

The thermometry techniques offer insights into: (1) Peak temperature in the filament, (2) 

Geometry of the filament (3) Filament growth. (4) Dynamics of the heated zone. We point out 

that these thermometry tools can be applied, in principle, to any thin film having filamentary 

conduction. These experimental techniques are the tools to design materials and devices with 

optimized thermal and electrical characteristics. Furthermore, these methods can be used as 

characterization techniques to understand temperature-mediated physical processes during 

switching. 
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Appendix B: 

Low-temperature forming process 

 

In this appendix, we attempt to determine the lowest device temperature at which the 

electroformation can still occur. In order to accomplish this, we optimized the device structure 

and used the stage temperature of 10 K. The true device temperature, including self-heating, was 

determined using a novel thermometry approach.12,13 The results , allow us to comment on the 

nature of processes involved. This section has been created in collaboration with Darshil K. 

Gala. 

The devices used in this study were 5 ൈ 5 μm2 crossbars of 10 nm TiN/ 10 nm Ta/ TaOx/10 nm 

TiN with 88 nm thick amorphous TaOx functional layers. All layers have been deposited by 

sputtering, on a Si substrate with 1 µm thick thermal oxide. Details of the fabrication process 

have been discussed in our earlier publications.12,13 Figure 1 shows the quasi-DC electroforming 

characteristics for TaOx devices at stage temperatures from 10 K to 300 K. The circuit consisted 

of the voltage source, device under test and a load resistor of 25.5 kΩ connected in series. The 

direction of the voltage sweep is indicated by the arrows in the figure. Each test has been 

performed only once on different but nominally identical devices (< 1% variability in the 

threshold voltages across die, as fabricated) as the testing permanently changes the device 

characteristics. For example, the green curve in Fig. 1 represents the forming curve for a stage 

temperature of 200 K. I-V characteristics of the device shows four distinct regions. The first 
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‘snap’ to high conductivity state would occur at this point. However, in our circuit, as shown in 

Fig. B.1, the voltage at which the abrupt transition takes place is lower (6.5 V) than zero 

differential resistance point and ‘snap’ does not occur until the value of negative differential 

resistance exceeds the series resistance in the circuit.12 The ‘snap’ which is the third region in 

Fig. B.1 corresponds to the inclined load line of the series resistor. The fourth and last region of 

the characteristics is the nonlinear OFF state of the formed device.12,15 

I-V characteristics observed for 10 K, 100 K and 300 K were similar to that obtained at 200 K. 

Threshold voltages monotonically decrease from about 8.2 V to 4 V between 10 K and 300 K, 

while the current at threshold increases from 0.3 mA to 0.9 mA. I-V characteristics for 300 K 

(black curve), after entering the NDR region, show two snaps (the first one occurs at 4 V) 

marked with dotted lines. The filament formed at this stage is volatile and the device returns 

back to the pristine state after the bias is reduced.12 As the current is increased further, the device 

snaps again to the non-volatile OFF-state with permanently lowered resistance. After 

electroforming all devices exhibited stable switching.  

The important conclusion of the above observations is that TaOx devices undergo both threshold 

(volatile) and memory (permanent) switching at stage temperatures as low as 10 K. However, the 

true temperature of the filament where all important processes take place is considerably higher 

due to Joule heating. We have estimated this temperature using a thermometry approach 

discussed in detail in recent publications.12,13 The true I(V, T)  characteristics of the device have 

been obtained by measuring the voltage and current within the first 5 ns of a rectangular voltage 

pulse.  In order to avoid reflections that typically obscure fast transients, the devices have been 

designed to be a matched 50 Ω waveguide in a Ground-Signal-Ground configuration with the 

measurements performed by time domain transmissometry (TDT) method.  The measured and 
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conductivity increasing with device temperature. At some point close to the knee on the I-V 

curve, the current constricts, forming a filament. For the sake of this discussion, let us assume 

that the constriction occurs at the snap. Since the current at this point is uniform and the DC 

curve intersects the pulsed I-V at the stage temperature of 150 K, we can assign this temperature 

to the device at the moment of filament formation. If the constriction happens earlier at lower 

voltage and current, the corresponding temperature would clearly be lower. The 150 K then 

represents the upper bound of temperature at which the filament forms. Similar arguments can be 

used at other stage temperatures giving the temperature at the point of switching between 150 K 

and 350 K for stage temperatures between 10 K and 250 K. 

The temperature of the device right before threshold switching event was also simulated using 

the COMSOL Multiphysics finite element method solver for the range of stage temperatures. 

Simulation setup and the thermal parameters used have been discussed in our previous 

work12,13 with the dissipated power taken from the experiment. The results were very similar to 

the temperatures extracted using experimental procedure described above. 

The widely accepted mechanism for the formation of the conductive filament in TiOx, TaOx, and 

HfOx-based devices is the creation, drift, and accumulation of oxygen vacancies. These are the 

elementary processes leading to formation of a secondary oxygen-deficient phase in the 

functional layer.6-9 The drift velocity scales with the coefficient of diffusion, which has been 

extensively studied in oxides.  Nakamura et al.16 investigated the oxygen diffusion in amorphous 

oxides using pair distribution analysis by transmission electron microscopy and reported an 

activation energy ሺܧ஺ሻ of 1.2 ± 0.1 eV. Lowest EA calculated for orthorhombic Ta2O5 was 

approximately 0.7 eV, obtained by finding the minimum energy barrier from one lattice site to an 

adjacent one using the nudged elastic band method.17
 Also, most device modeling efforts 
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reproduced the device characteristics using values of EA ~ 1 eV.16, 18 The large value of the 

activation energy allows for the stability of the filament while still making it possible to switch in 

high electric fields and high temperatures. The equation describing the time between diffusion 

jumps of oxygen vacancy is: 

ଵ

ఛ
ൌ ଴ߥ expሺെ

ாಲ
௞ಳ்

ሻ  (1) 

where, ߥ଴ is the attempt frequency which is taken as 1013 s-1, ܧ஺ is the activation energy of 

diffusion and ݇஻ is the Boltzmann constant. The calculated value of ߬ at the extracted 

temperature of 150 K for an EA of 1 eV is 4ൈ1020 s. This time is many orders of magnitude 

longer than the age of the universe. This result in itself is a conclusive argument that the 

threshold switching in TaOx-based devices cannot rely on diffusion of oxygen ions.  

Additional information about the nature of the threshold switching during electroformation was 

obtained from the analysis of the switching dynamics. The process of threshold switching is not 

instantaneous and requires a certain incubation time before the device switches to the volatile 

ON-state (this corresponds to the non-volatile OFF state).13,19 Incubation time in our devices was 

measured using TDT where the device under test was subjected to a series of rectangular pulses 

and the device voltage was monitored as a function of time (Fig. B.3). At a certain pulse 

amplitude, the resistance of the device decreases abruptly during the pulse and the device voltage 

drops. The delay between the leading edge of the pulse and the voltage drop was recorded as the 

incubation time. This was repeated for different pulse widths and stage temperatures. What is 

interesting is that the incubation time corresponding to the same voltage is identical for 10 K and 

100 K. Inset shows the dependence of the incubation time on the inverse of applied voltage for 

stage temperatures from 10, 100 and 300 K. It is apparent that the incubation times strongly 
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Most results on threshold switching are available for devices based on amorphous chalcogenides 

such as Ge2Sb2Te5 with several different models proposed to explain this phenomenon. Adler et 

al.21 suggested the double injection model with narrow barriers forming at both electrodes. 

Ielmini et al.22 proposed a trap-hopping model in which the high electric fields lead to non-

equilibrium distribution of trapped electrons that causes a sudden increase in the conductivity. 

The model features a critical power-density at which threshold switching can initiate. It is to be 

applicable not just to chalcogenide glasses but to most amorphous semiconductors featuring 

NDR. Noman et al.13 presented the transient thermometry data, consistent with a model of 

filament formation based on charge trapping. They argued that the charge trapping can give rise 

to a local electric-field enhancement eventually causing a breakdown. Karpov et al.23 suggested 

the field-induced nucleation model in which the critical size of conducting phase nucleates in 

presence of field and shunts the electrodes leading to threshold switching. Pergament et al.24 

proposed a threshold switching mechanism for VO2 based on electronically induced Mott-

Hubbard metal-insulator transition, occurring in the conditions of non-equilibrium carrier density 

in the presence of an applied electric-field. Several of these processes could have low activation 

energies and provide an acceptable origin of the threshold switching in binary oxides. While 

more experiments are needed to select a comprehensive predictive model, our data-driven 

analysis attempts to prove that the onset of forming does not lie in vacancy migration, and that if 

structural changes are to occur, they must be preceded by a reversible threshold switching 

process that cannot be mediated by creation or motion of vacancies. 

In summary, quasi-DC measurements showed that TaOx-based devices exhibit the typical 

electroforming characteristics at stage temperatures as low as 10 K. The temperatures at the point 

of transition to volatile low resistance state during the quasi-DC electroforming were extracted 
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using transient thermometry technique. The lowest temperature at which threshold switching was 

initiated was 150 K these device. The jump frequency of the oxygen vacancies at this 

temperature is 2.5ൈ10-21 s-1. This observation excludes the oxygen vacancies as being involved 

in threshold switching in oxide devices. Moreover, the incubation time needed to initiate 

threshold switching showed no change from 10 K to 100 K with extracted activation energies 

much lower than those needed for oxygen vacancy diffusion. Possible alternative models of the 

threshold switching have been discussed to explain the initiation of threshold switching in 

absence of oxygen vacancy migration. 
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Appendix C: 

Verilog-A model of S-NDR devices 

 

In this appendix, we report a piece-wise linear fit based model that was developed in 

collaboration with Yunus Kesim. 

`include "constants.vams" 
`include "disciplines.vams" 
 
module cubic_NDR(Vtop,Vbot); 
 
inout Vtop,Vbot; 
 
parameter Ith = 1e-6; 
parameter Ih = 20e-6; 
parameter R_ON = 500; 
parameter R_OFF = 1000000; 
parameter NDR = -3.157894736842105e+04; 
parameter V1 = 1.031578947368421; 
parameter V2 = 0.390000000000000; 
 
electrical Vtop, Vbot; 
real Rtemp, en_state, iout; 
 
analog  
 begin 
   
  if (I(Vtop,Vbot) <= Ith)  
   V(Vtop,Vbot) <+ R_OFF*I(Vtop,Vbot); 
  if (Ith < I(Vtop,Vbot) && I(Vtop,Vbot) < Ih) 
   V(Vtop,Vbot) <+ NDR*I(Vtop,Vbot) + V1; 
  if (I(Vtop,Vbot) >= Ih)  
   V(Vtop,Vbot) <+ R_ON*I(Vtop,Vbot) + V2;    
 end 
 
endmodule 
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