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Abstract

The automatic localization of facial landmarks, also referred to as facial landmarking or facial

alignment, is a key pre-processing step that is of vital importance to the carrying out of tasks such

as facial recognition, the generation of 3D facial models, expression analysis, gender and ethnicity

classification, age estimation, segmentation of facial features, accurate head pose estimation, and

a variety of other facial analytic tasks. Progress in all these areas of research has heightened

the need for developing accurate facial alignment algorithms that can generalize well to handle

simultaneous variations in pose, illumination, expression, and high levels of facial occlusion in

real-world images.

This thesis proposes a facial alignment algorithm that is not only tolerant to the joint presence

of facial occlusions, pose variation, and varying expressions, but also provides feedback (misalign-

ment/occlusion labels for the detected landmarks) that could be of use to subsequent stages in a

facial analysis pipeline. Our approach proceeds from sparse to dense landmarking steps using a set

of pose and expression specific models trained to best account for the variations in facial shape and

texture manifested in real-world images. We also propose the use of a novel shape regularization

approach that sets up this task as an `1-regularized least squares problem. This avoids the genera-

tion of implausible facial shapes and results in higher landmark localization accuracies than those

obtained using prior shape models. Our approach is thoroughly evaluated on many challenging

real-world datasets and demonstrates higher landmark localization accuracies and more graceful

degradation than several state-of-the-art methods. We proceed to put the task of facial alignment

into better context by examining its role in two applications that require alignment results as in-

put: (1) a large-scale facial recognition scenario and (2) a project aimed at improving driver safety

by assessing facial cues. Finally, we also carry out a rigorous set of experiments to analyze the

performance of our approach when dealing with low-resolution images and provide some insights

gained from this study.
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Chapter 1

Introduction

The White Rabbit put on his spectacles. “Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said gravely, “and go on till you come to the end: then stop.”

Alice’s Adventures in Wonderland by Lewis Carroll

The automatic localization of facial landmarks, also referred to as facial landmarking or facial

alignment, is an active area of research whose importance has grown dramatically over the last few

years. Facial alignment is a key pre-processing step required in order to carry out face recognition

[18], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], the construction of 3D facial models

[23], [31], [32], [33], [34], [35], expression analysis [36], [37], [38], [39], gender and ethnicity

classification [40], [41], age estimation [42], [43], segmentation of facial features [44], [45], [46],

head pose estimation [47], [48], [49], [50], and a variety of other facial analytic tasks. All of these

tasks require precise knowledge of the locations of facial landmarks to extract regions of interest

for classification or regression or for initialization purposes. In an ideal scenario, the role of facial

alignment should be almost invisible and taken for granted. However, this is not the case at the

present time and even many state-of-the-art algorithms struggle to provide an acceptable level of

performance on real-world images that are now the focus of attention of all the previously men-
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Figure 1.1: Head pose coordinate system showing what yaw, pitch, and roll refer to.

tioned research problems. With the strides made in all of these areas over the past few years, there

has been a dramatic increase in research efforts aimed at developing facial alignment algorithms

that can generalize well to handle variations in pose, illumination, expression, and large levels

of facial occlusion in unseen test images. Many existing algorithms do not handle all of these

variations when they are simultaneously present and it is this challenge that our work aims at ad-

dressing. In addition, we also study the problem of dealing with low-resolution images that also

exhibit these variations.

1.1 Desirable Attributes in a Facial Alignment Algorithm

Facial landmark localization is never carried out in isolation. The results produced are usually

utilized for an additional purpose, such as the construction of 3D facial models, facial recognition,

or expression analysis. Thus, a question that arises is what list of desirable attributes or features

must it possess in order to be useful in each of these scenarios. We believe the following list of
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attributes is a superset of the most important ones that a facial alignment algorithm ought to have

in order for its output to be effectively used in a variety of applications.

(i) Ability to localize a dense set of landmarks: While some applications require only a sparse

set of landmarks to simply normalize out the effects of scale, translation, and rotation in order to

better align a face, many applications benefit from an alignment algorithm that is able to localize a

dense set of landmarks. Additionally, another desirable trait would be flexibility during the training

and testing stages to allow an algorithm to adapt to any landmarking scheme and output a different

number of landmarks, based on the manual annotations available for training.

(ii) Ability to handle a wide range of pose variation: Figure 1.1 shows the head pose coordi-

nate system and illustrates what the terms pitch, yaw, and roll refer to. Real-world images exhibit

a wide range of yaw (turning of the head with negative yaw for cases when the subject looks to

his/her right and positive yaw for cases when the subject looks to his/her left) and roll (in-plane

rotation of the head) variation. Thus, it is important that a facial alignment algorithm be adaptable

enough to automatically determine a suitable set of landmarks to output based on the yaw of the

face, with −90◦ to +90◦ being the general range of interest. Many algorithms do not yet handle

an absolute yaw in excess of 60◦ and are thus presently incapable of automatically landmarking

profile faces. It is to be noted that while pitch variation may also be present in real-world images,

its range is more constrained than those of yaw and roll and excessive pitch variation would result

in cases where the face is not visible, thus making the facial alignment results produced unsuitable

for further processing. Thus, in our work we focus on combating roll, and more particularly, yaw

variation. Thus, when describing our facial alignment algorithm in chapter 3 the word pose refers

specifically to the yaw (turning of the head), since it is this yaw variation that we explicitly account

for using different models. While it is possible for our approach to also deal with small variations

in pitch (nodding of the head), we do not explicitly train pitch models, and hence, in this context,

the use of the word “pose” and the phrase “pose-specific” are meant to be synonymous with ”yaw”

and “yaw-specific”, respectively.
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(iii) Ability to handle the presence of simultaneous variations or degradations (suitable

for dealing with unconstrained real-world images): The challenges that an effective facial align-

ment algorithm must overcome are the same ones that affect the performance of any facial analysis

based algorithm, such as recognition engines, 3D modeling techniques, etc.. These challenges in-

clude variations in pose, expression, and illumination, the presence of facial occlusions, such as

sunglasses, scarves, hair, hands, food, etc., and the presence of low-resolution artifacts. Real-world

images are unlikely to exhibit only one of these variations or degradations and they generally occur

simultaneously. Thus, it is a key requirement for a facial alignment algorithm to be equipped to

handle these variation and degradations irrespective of whether they occur individually or jointly

and without making any assumptions or requiring prior information regarding their presence.

(iv) Performance feedback capability: This is a very useful attribute for an alignment algo-

rithm to possess, again bearing in mind that that alignment is generally followed by a stage that

uses the outputs produced by it. If an alignment algorithm can not only localize landmarks but

also provide confidence scores that correlate to their goodness of fit, this could prove very useful

for subsequent stages in an application pipeline. For example, in a face recognition scenario, prior

knowledge of occluded regions on the face could prove very useful as such regions could now be

treated as untrustworthy and either reconstructed using a massive training dictionary before car-

rying out recognition [18], [28], [29], or omitted from the matching process with smaller regions,

such as the periocular (eyes and eyebrows) region, of the face used instead, as demonstrated in

[51], [52], [53], [54]. Similarly, when tracking facial landmarks across the frames of a video se-

quence, knowledge of the goodness of fit of landmarks on previous frames could allow for higher

accuracies and appropriate initialization on future frames and the easy determination of whether

a subject of interest has been lost entirely. Confidence scores for individual landmarks or a gen-

eral goodness of fit index for all of them considered together is also be a must for a situation in

which face detection and facial landmark localization are carried out together (rather than the latter

following the former) in a single step, as is the case in [6] and [16].
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Figure 1.2: Qualitative landmark localization results produced by our approach on some images
from the CMU Multi-PIE (MPIE) [1], [2], [3], Labeled Face Parts in the Wild (LFPW) [4], [5],
Annotated Faces in-the-Wild (AFW) [6], [7], ibug [8], [9], [10], and Caltech Occluded Faces in
the Wild (COFW) [11], [12] datasets from the top to bottom rows, respectively. In all facial images
with landmarks overlaid on them, yellow dots are used to indicate the locations of facial landmarks,
blue line segments indicate that the landmark at their center is accurately localized, and red line
segments indicate that the landmark at their center is misaligned or potentially occluded (goodness
of fit feedback). The results serve to demonstrate the pose, occlusion, and expression tolerance
of our approach on challenging real-world images that are quite dissimilar to the images it was
trained on (from the MPIE dataset) as well as its ability to provide performance feedback. This
figure appears in [13].

(v) Flexibility and scope for modification: This is an optional attribute, but one that could

prove useful as well. If a facial alignment algorithm could be easily modified to use different fea-

ture extraction techniques, classifiers or regressors, and a varying number/configuration of land-

marks, this could allow for greater ease of use in a variety of circumstances with appropriate design
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choices made to better suit the application. This kind of flexibility could also allow the algorithm

to not only localize landmarks on faces, but on other rigid objects as well, such as cars, bicycles,

tables, chairs, etc., using minimal changes. We demonstrate this adaptability feature of our algo-

rithm in section 7.1.8, in which we apply it to localize a set of landmarks that lie along the contours

of images of cars at various viewpoints.

The facial alignment approach we describe in this thesis was designed by keeping in mind all

of the previously described attributes. Figure 1.2, that shows some landmark localization results

produced using our approach on a variety of images ranging from constrained database images

to more unconstrained real-world ones, serves to illustrate this. As we will demonstrate in future

chapters, our approach also lends itself to easy modification and use in various applications, such

as face recognition, video based landmark localization, and head pose estimation.

1.2 Contributions of this Thesis

We present an approach to facial landmark localization that is not only robust to all the previ-

ously mentioned real-world challenges (pose, illumination, expression, and occlusions), but more

importantly, can handle all these real-world variations/degradations, even when they occur si-

multaneously. Since facial shape and the local texture around the landmarks that constitute them

vary dramatically with facial pose and expressions, it is beneficial to build not one, but multiple

models that can best account for these variations. In order to combat the problem of facial occlu-

sions, we account for them using landmark and pose-specific local texture based classifiers that

are trained to discriminate between the texture around a correctly localized landmark and an in-

correctly localized one. Thus, we factor in the presence of occlusions without actually requiring

training images with manual annotations denoting the presence of occlusions, as required by some

recent approaches in the area [11]. Many existing facial alignment algorithms also rely heavily

on consistent facial detection results, something that is seldom guaranteed when dealing with real-
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world images data as facial bounding box results produced by the same detector vary in size and

location even for a similar set of images and do not always account for in-plane rotation (roll) of

the face, as we learned from our initial work on using a Modified Active Shape Model (MASM)

for landmark localization in frontal faces, detailed in the following papers:

[55] Keshav Seshadri and Marios Savvides, “Robust Modified Active Shape Model for Au-

tomatic Facial Landmark Annotation of Frontal Faces,” IEEE 3rd International Conference on

Biometrics: Theory, Applications and Systems (BTAS), Sep. 2009.

[56] Keshav Seshadri and Marios Savvides, “An Analysis of the Sensitivity of Active Shape

Models to Initialization When Applied to Automatic Facial Landmarking,” IEEE Transactions on

Information Forensics and Security (TIFS), Vol. 7, Issue 4, Aug. 2012.

In order to enable accurate initialization of our shape models, our approach proceeds in a

stage wise fashion. In our first step, we use a sliding window approach to only localize a few

key landmarks, such as the centers of the eyes, the corners of the mouth, and the tip of the nose,

etc., that we refer to as seed landmarks. It is important to note that we do not require all of these

seed landmarks to be visible and only require that any combination of two of these landmarks be

reliably localized. Our next step involves aligning a denser set of landmarks (a canonical mean

facial shape specific to a particular yaw range that is obtained during our training stage) using just

two of the seed landmark candidates at a time and evaluating the goodness of fit of this dense set

of points. Thus, we are now able to generate the most accurately aligned initial shape for each

of our pose-specific models and also account for the in-plane rotation of the face (roll) and the

possible presence of occlusions. Well begun is half done in the field of facial alignment goes and

this step goes a long way towards ensuring this. The final stage involves the refinement of the top

ranked shapes and the selection of a single set of final landmarks that best model the shape and

texture of a given face. This stage involves the use of both a local texture guided search coupled

with a shape regularization stage in order to guide the search for the optimal locations for all the

landmarks. Our approach uses a shape dictionary built from the manually annotated ground truth
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training shapes coupled with an `1-regularized least squares approach in order to perform shape

regularization. The assumption here is that the varying shapes present in the training set contain

sufficient information to represent and regularize the shape produced by landmarks that lie along

the contours an unseen face, since human faces can be treated as rigid objects that deform in

similar fashion, for a specific pose. However, this assumption does not hold when expressions,

especially those that result in excessive movement of the lower jaw, such as surprises or screams,

are manifested. For this reason, we construct separate shape dictionaries (and local texture models)

to better model such open mouth expressions. Our shape regularization is carried out by using these

shape dictionaries and by constraining the shape coefficients (that are used to represent a new shape

as a linear combination of the shapes in the dictionary) using `1-regularization. This ensures that

an appropriate weight is placed on each shape in the dictionary when representing a new shape

and also results in higher landmark localization accuracies than those obtained using a widely used

linear subspace based shape model [57], [58], as we demonstrate in chapter 3. In addition, by

only using accurately localized landmarks (inliers) during the shape regularization stage, the effect

of occlusions is negated as poorly localized landmarks (outliers) do not play a role in the shape

regularization process and thus do not sway the results. The contributions described in this chapter

are detailed in the following paper:

[13] Keshav Seshadri and Marios Savvides, “Towards a Unified Framework for Pose, Expres-

sion, and Occlusion Tolerant Automatic Facial Alignment,” To appear in IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2016.

Chapter 4 provides some context for our work by demonstrating the applicability of our facial

alignment algorithm in a real-world face recognition experiment on the Labeled Faces in the Wild

(LFW) [59], [60] database. While it is an acknowledged fact that poor alignment results can

adversely affect the performance of many existing face recognition techniques [18], [28], [29],

this chapter serves to demonstrate this point by using landmark localization results produced by

different facial alignment algorithms as input to the same face recognition algorithm and assessing
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how the recognition performance is impacted. In chapter 5, we detail experiments and results that

were obtained using our algorithm in a few other allied applications. Our approach is modified to

enable the localization of facial landmarks across the frames of video sequences that were acquired

as part of naturalistic driving study and then utilized for head pose estimation and the determination

of whether the subjects in the videos were using a cell phone or not as part of our efforts to

assist with a Federal Highway Administration (FHWA) [61] project aimed at understanding driver

behavior in order to improve driver safety [62]. Initial findings from this work have been published

in the following paper:

[20] Keshav Seshadri, Felix Juefei-Xu, Dipan K. Pal, Marios Savvides and Craig P. Thor,

“Driver Cell Phone Usage Detection on Strategic Highway Research Program (SHRP2) Face View

Videos,” 6th International Workshop on Computer Vision in Vehicle Technology (CVVT) in con-

junction with the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Jun. 2015.

Finally, in chapter 6, we add an extra dimension to our work by using a rigorous set of ex-

periments to understand the challenge that low-resolution images pose to the alignment process.

We test our approach using resolution-specific texture models under various conditions in order to

understand how much simultaneous degradation (low-resolution images that also exhibit varying

pose, expressions, and levels of facial occlusion) it can handle.

Our key contributions in this thesis can thus be summarized as follows:

• The development of a flexible framework (pipeline) for dense facial landmark localization al-

gorithm that incorporates all of the previously mentioned desirable attributes to jointly deal

with the problems posed by facial pose variation (range of yaw variation from−90◦ to +90◦),

varying facial expressions, and partial occlusion of the face (chapter 3).

• The use of a novel method to constrain shape coefficients by setting up this task as an `1-

regularized least squares problem. This avoids the generation of implausible facial shapes

and results in higher landmark localization accuracies than those obtained using prior shape
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models (chapter 3).

• A thorough evaluation and benchmarking of our approach against many state-of-the-art ap-

proaches on several challenging real-world datasets (chapter 3).

• The carrying out of a real-world face recognition experiment using a recognition algorithm as

a black box and using varying inputs provided by different alignment algorithms to provide

some context for the role played by facial alignment in this key task (chapter 4).

• The application of our alignment algorithm to a large-scale experiment on facial landmark

localization in challenging naturalistic driving videos and the carrying out of allied tasks that

build on this in order to assess driver behavior using facial cues, such as head pose estimation

(chapter 5).

• The carrying out of a thorough set of experiments to understand the challenges posed by

low-resolution images to the alignment process and to determine how much simultaneous

degradation (low-resolution images that also exhibit varying pose, expressions, and levels of

facial occlusion) our approach can handle (chapter 6).
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Chapter 2

Background

“If I have seen further, it is by standing on the shoulders of giants.”

Sir Isaac Newton (translated into modern English)

Facial landmark localization has been well studied over the past few years and a variety of

different techniques have been proposed in order to deal with various aspects of the problem. A

detailed survey of all these approaches was carried out by Celiktutan et al. in [63]. We provide a

broad overview of some of these techniques and focus on a few state-of-the-art techniques against

which we benchmark our approach in future chapters of this thesis.

2.1 Active Appearance Models (AAMs), Active Shape Models

(ASMs), and Constrained Local Models (CLMs)

Traditionally facial landmarking has been carried using deformable template (parametric) based

models, such as Active Appearance Models (AAMs) [57], [64] and Active Shape Models (ASMs)

[58], [65], [66]. Both build shape models, also referred to as Point Distribution Models (PDMs),

that model the shape of a typical face (represented by a set of constituent landmarks), and texture
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Face detected and 
mean shape 

aligned over it 
Check texture reconstruction error 

Final landmark coordinates 
ready Multi-resolution search 

Iterate till 
convergence 

Update combined shape and texture 
parameters 

Figure 2.1: The typical sequence of steps followed by a multi-resolution Active Appearance Model
(AAM) for carrying out facial alignment. The facial image used to demonstrate the process is from
the Multi Biometric Grand Challenge (MBGC) database [14], [15].

models of what the region enclosed by these landmarks looks like. The difference between the

two is that ASMs build local texture models of what small 1D or 2D regions around each of

landmarks look like, while AAMs build global texture models of the entire convex hull bounded

by the landmarks. The AAM fitting process is governed by updates to a combined vector of shape

and appearance (texture) parameters based on the difference between the underlying facial texture

and the texture reconstructed using the parameters. Typically, a multi-resolution framework is also

used to ensure higher fitting accuracies and faster convergence rates, as shown in Figure 2.1.

ASMs belong to a class of methods that can be broadly referred to as Constrained Local Models

(CLMs) [67], [68], [69]. CLMs build local models of texture variation around landmarks (some-

times referred to as “local patch experts”) and allow landmarks to drift into the locations that best

match training data using these patch experts. The shape is then regularized using the shape model

to generate a final set of landmarks whose coordinates are in accordance with their typical loca-

tions for a human face. Again, a a multi-resolution framework is quite common. The typical steps

followed by an ASM to carry out facial alignment are depicted in Figure 2.2. Several improve-
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Figure 2.2: The typical sequence of steps followed by a multi-resolution Active Shape Model
(ASM) for carrying out facial alignment. The facial image used to demonstrate the process is from
the Multi Biometric Grand Challenge (MBGC) database [14], [15].

ments have been made to ASMs over the years, such as those proposed in [55], [70], that have

mainly focused on developing better local texture models. However, they still remain susceptible

to occlusions, the problem of local-minima, and are very dependent on accurate initialization being

provided, which is something we have previously investigated in [56]).

It has been demonstrated that ASMs are more suited to the task of precise facial landmark-

ing than AAMs [56], [66], [71] as AAMs are generative, global texture based approaches and are

more easily affected by variations in illumination, pose, and occlusions. AAMs also generalize

poorly when dealing with unseen faces (faces outside their training set) compared to ASMs. How-

ever, there has been a lot of prior work on improving the objective function and update rules that

AAMs use to deform the initial shape overlaying a face to better represent it [64], [72], [73], [74].

Recently, Tzimiropoulos and Pantic [75] proposed new optimizations for fast and accurate AAM

fitting and demonstrated better fitting results on unseen images with a large range of pose variation
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using a more unconstrained training set drawn from the Labeled Face Parts in the Wild (LFPW)

dataset [4], [5]. This is one of the approaches that we use in our evaluations in section 3.2.3, in

which the landmark localization accuracies of various facial alignment algorithms are compared,

and in section 4.2, in which the alignment results produced by the same algorithms are used in a

face recognition experiment.

Though it is possible to build separate AAMs or ASMs to handle pose variation using view-

based models, as carried out in [76] and [77], [78], and [79], respectively, the fact that they require

very accurate initialization decreases their effectiveness, especially when dealing with real-world

images. Thus, over the past few years, several efforts have been made to develop alternative shape

regularization techniques to better cope with pose variation and partial occlusion of the face. Zhou

et al. [80] proposed a Bayesian Tangent Shape Model (BTSM) to infer the shape parameters

through a maximum a posteriori (MAP) estimation in a tangent space and obtained more accu-

rate results than those obtained by the classic ASM algorithm. Gu and Kanade [81] proposed a

shape regularization model that incorporated a nonlinear shape prior and the likelihood of multiple

candidate landmarks in a three-layered generative model that demonstrated higher accuracy than

BTSM on images from the AR face database [82], [83] and the Multi-PIE (MPIE) database [1],

[2], [3]. Their method also demonstrated some tolerance to expression variations and occlusions in

real-world images. However, both these approaches were not developed to deal with a wide range

of yaw variation from −90◦ to +90◦.

2.2 State-of-the-art Work on Pose Tolerant Discriminative Fa-

cial Alignment

Over the last few years there has been a dramatic increase in work dealing with the automatic

localization of landmarks in non-frontal faces. Everingham et al. [84] developed an algorithm that

used a generative model of facial feature positions (modeled jointly using a mixture of Gaussian
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trees) and a discriminative model of feature appearance (modeled using a variant of AdaBoost

and “Haar-like” image features [85]) to localize a set of 9 facial landmarks in videos with faces

exhibiting slight pose variation. Dantone et al. [86] used conditional regression forests to learn

the relations between facial image patches and the location of feature points conditioned on global

facial pose. Their method also localized a sparse set of 10 landmarks in real-time and achieved

accurate results when trained and tested on images from the Labeled Faces in the Wild (LFW)

database [59], [60].

Belhumeur et al. [4] proposed a novel approach to localizing facial parts by combining the

output of local detectors with a consensus of nonparametric global models for part locations, com-

puted using training set exemplars in a Bayesian framework, that served as the surrogate for shape

regularization. Their approach was able to localize a set of 29 facial landmarks on faces that ex-

hibited a wider range of occlusion, pose, and expression variation than many previous approaches.

Their work inspired other nonparametric exemplar based approaches, such as those proposed Zhou

et al. [87] and Smith et al. [88]. Zhou et al. developed an Exemplar-based Graph Matching (EGM)

approach to obtain the optimal landmark configuration by solving a graph matching problem using

linear programming and improved on the localization accuracy that was obtained by Belhumeur et

al. on the same set of 29 landmarks. Recently, Smith et al. proposed a data-driven approach that

uses feature voting based landmark detection and nonparametric shape regularization to build an

in-plane rotation, pose, expression, and occlusion tolerant facial alignment algorithm.

All of these approaches are capable of providing accurate fitting results on some challenging

images but lack in a few areas (some of the desirable attributes in an alignment algorithm that we

previously described in section 1.1) that our approach aims at addressing. With the exception of

the nonparametric method proposed by Smith et al. , the other previously described approaches

only localize a sparse set of landmarks which is unsuitable for many real-world applications, such

as expression analysis or the building of 3D facial models, that require a slightly denser set of

landmarks in order to establish point correspondences. Also, none of the approaches demonstrate
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the ability to localize landmarks in faces with absolute yaw angles greater than 60◦ and are thus

incapable of automatically landmarking profile faces. Finally, even though a few of the previously

mentioned approaches, such as that of Smith et al. , demonstrate some tolerance to facial occlu-

sions, none of them provide a score or label that can be used to determine which landmarks are

potentially misaligned or occluded.

The approach proposed by Roh et al. [89] is one that satisfies most of the criteria we feel

are important for a facial alignment algorithm to be truly generalizable to any task. Their ap-

proach used local detectors to determine an initial set of plausible candidates for each facial point.

However, in order to combat occlusion, a RANdom SAmple Consensus (RANSAC) [90] based

hypothesize-and-test strategy was adopted to determine which set of landmarks to actually use,

i.e., which set of landmarks are potential inliers. Using the inliers, the full set of landmarks could

be hallucinated and feedback can also be provided on the remaining landmarks that can be clas-

sified as outliers (potentially occluded). This approach was used to demonstrate a tolerance to

fitting of purely frontal images with facial occlusions, however, a more general framework using

pose-specific shape models could also be developed to handle a larger range of yaw variation.

Another approach proposed by Yu et al. [91] also satisfies many of the previously mentioned

criteria and is similar to our approach in that positive (well aligned) and negative (occluded or

misaligned) texture patches around landmarks are modeled during the training stage. Using a

logistic regression framework to obtain shape coefficients, Yu et al. were able to demonstrate

a tolerance to occlusions in frontal images drawn from the AR and LFPW datasets and could

also predict the locations of the occlusions. However, their approach was only applied to purely

frontal images and not benchmarked against recent state-of-the-art approaches on more challenging

datasets containing non-frontal facial images.

In their recent seminal work, Zhu and Ramanan [6] proposed an elegant framework that built

on the previously developed idea of using mixtures of Deformable Part Models (DPMs) for ob-

ject detection [92] to simultaneously detect faces, localize a dense set of landmarks, and provide
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Figure 2.3: The mixture-of-trees model used in the work of Zhu and Ramanan [6]. Topological
changes due to viewpoint are encoded by the different mixtures. The red lines denote the con-
nections (springs) between the various parts (landmarks). Closed loops are not present in order to
maintain the tree property. A common shared set (pool) of templates are utilized by the trees, thus
making learning and inference quite efficient. This figure has been reproduced from [6].

a course estimate of facial pose (yaw) in challenging images. Their approach used a mixture of

trees with a shared pool of parts to model sets of facial landmarks at various views (yaw angles),

as depicted in Figure 2.3. Histogram of Oriented Gradients (HOG) [93] were used to model the

local texture around each facial landmark, global mixtures were used to capture changes in facial

shapes across pose (yaw), and the Tree-Structured Models (TSMs) were optimized quickly and

effectively using dynamic programming, i.e., inference was performed in an efficient manner to

determine the best possible configuration of parts for each mixture which maximized a scoring

function that took shape and appearance into account. The approach is quite effective and is tol-

erant to a range of yaw variation from −90◦ to +90◦, which is quite rarity in this field. However,

it is not extremely accurate when dealing with occluded faces or faces that exhibit large in-plane

rotation. Nevertheless, this groundbreaking facial alignment implementation is one against which

all current pose-tolerant facial alignment algorithms are being compared and has inspired several

other efforts aimed at pose and occlusion tolerant facial alignment, sometimes in a joint framework

with face detection.

Yu et al. [16] built on the work of Zhu and Ramanan to automatically select a sparse set of

salient landmarks to serve as initialization. They subsequently used a 3D facial model, mean-shift

with CLMs, and face component-wise active contour models to produce a refined set of facial

landmarks. An overview of their approach is provided in Figure 2.4. Recently, Ghiasi and Fowlkes

[94] also built on the work of Zhu and Ramanan and proposed a hierarchical deformable part
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Figure 2.4: An overview of the approach proposed by Yu et al. in [16]. This figure has been
reproduced from [16].

model for face detection and landmark localization to explicitly model the occlusion of parts and

hence achieved more accurate results on challenging occluded real-world images. However, their

approach modeled three clusters and handled a pose variation of only ±22.5◦. It is to be noted

however that none of these three methods provide misalignment/occlusion labels for the fitted

landmarks.

Asthana et al. [95] recently developed a discriminative regression based approach for the CLM

framework that they referred to as Discriminative Response Map Fitting (DRMF). DRMF repre-

sents the response maps around landmarks using a small set of parameters and uses regression

techniques to learn functions to obtain shape parameter updates from response maps. Their tech-

nique improves on the Regularized Landmark Mean-Shift (RLMS) approach in [69].

Xiong and De la Torre [96] recently formulated the Supervised Descent Method (SDM) and

applied it to the task of detecting interior facial landmarks (excluding landmarks that lie along

the facial boundary) to good effect. The SDM algorithm was formulated to minimize a Nonlinear

Least Squares (NLS) function using descent directions learned from training data and without com-

puting the Jacobian nor the Hessian. For the task of facial alignment, consider an image d ∈ Rm

consisting of m pixels with p facial landmarks and with d(x) ∈ Rp indexing these landmarks. Let

h represent a nonlinear feature extraction technique or function such that h(d(x)) ∈ Rnp, where n

is the dimensionality of the feature vector extracted around each facial landmark (128 dimensional

Scale-Invariant Feature Transform (SIFT) [97] features are used in this case). If the initial configu-

ration of facial landmarks (generally obtained using a mean shape) can be represented by x0, then
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the facial alignment problem is posed as the minimization of the function f , given by equation

(2.1), over the variable ∆x.

f(x0 + ∆x) = ‖h(d(x0 + ∆x))−Φ∗‖2
2 (2.1)

In equation (2.1), Φ∗ = h(d(x∗)) represents the features extracted from a manually labeled train-

ing image. Φ∗ and ∆x are known for all training images and hence the goal of SDM is to use this

information to learn a series of descent directions to produce a series of updates xk+1 = xk +∆xk,

starting from x0 and converging to x∗, and then applying these update rules to minimize f when

applied to a test image.

2.3 Regression Based Facial Alignment

Recently, a variety of approaches [11], [98], [99], [100], [101] that can be broadly grouped under

the category of regression based approaches have emerged. In such approaches, an initial shape

S0 is aligned roughly with the face in an image and is progressively refined by estimating a shape

increment ∆S using an iterative (stage-by-stage) framework. The shape increment at each iteration

t = 1, 2, . . . , T is determined using a regression function (or a set of regressors) computed using

the input image, the shape from the previous stage St−1, and the local texture features extracted

from a region around each landmark.

Cao et al. [98] proposed a novel regression based approach in which a regressor is trained to

explicitly minimize the alignment error over training data in a holistic manner, i.e., all all facial

landmarks are regressed jointly in a vectorial output. The shape constraints are encoded in non-

parametric form by using the constraint that the regressed shape is always a linear combination of

all the training set shapes. This approach provided accurate landmark localization results on the

LFW, LFPW, and BioID [102], [103] databases, however, it is not extremely effective at dealing
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with partially occluded faces and faces that exhibit large shape variations.

To explicitly deal with occluded faces and provide feedback on which landmarks were occluded

Burgos-Artizzu et al. [11] proposed the Robust Cascaded Pose Regression (RCPR) algorithm.

They incorporated occlusion modeling explicitly into the training stage using facial images that

were manually annotated to provide ground truth landmark coordinates as well as occlusion labels

for each of the landmarks. RCPR was trained on images from the LFPW dataset and the newly

annotated the Caltech Occluded Faces in the Wild (COFW) dataset [11], [12] in order to better

equip it to deal with the problem of facial occlusion in real-world images. However, it is to be

noted that the RCPR framework is extremely flexible and can be trained using any consistent

landmarking scheme, i.e., any set of images with the same number of landmarks, and can also be

trained on images that do not have occlusion labels for the landmarks. RCPR uses shape-indexed

features that are invariant to face scale and pose to enable robust shape estimation in real-world

images. The features are referenced by linear interpolation between two landmarks, which results

in improved shape fitting and faster computation. RCPR also incorporated a smart restart method to

obtain higher landmark localization accuracies, compared to the explicit shape regression approach

in [98], using different shape initializations. RCPR localized landmarks with high accuracy when

trained and tested on similar images, i.e., similar variations are manifested in the test images as

in the training images. However, it does not generalize well to unseen variations, requires facial

bounding boxes during the training stage to almost perfectly match those at the test stage, and can

not automatically be used to annotate profile faces, that require a different set of landmarks to be

localized compared to frontal faces.

To deal with the problem of sensitivity to initialization, Yan et al. [99] proposed a framework

that generates multiple hypotheses (using a cascade regression based approach) by randomly shift-

ing and re-scaling the bounding box provided by a face detector and then fuses these hypotheses to

produce a final output. Recently, Ren et al. [100] proposed the use of computationally cheap local

binary features and a linear regression framework to achieve fast and precise facial alignment on
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images from the LFPW, Helen [104], [105], and 300 Faces in-the-wild (300-W) challenge [8], [9]

datasets.

Regression based approaches have become quite popular in the recent past due to their high

fitting speed and the accuracies they achieve under the right conditions. However, many of these

approaches are sensitive to initialization. It is also to be noted that none of these approaches can

automatically (without a previous pose estimation step) deal with faces that exhibit absolute yaw

angles in excess than 60◦.

2.4 Deep Learning Approaches to Facial Alignment

With the recent surge in the application of deep learning and the use of Convolutional Neural

Networks (CNNs) for solving a variety of computer vision and machine learning problems, a few

new approaches to facial alignment have also emerged. Such approaches have the advantage of

using networks that are trained to localize all landmarks simultaneously thus implicitly modeling

the geometric constraints between them without the need for an explicit shape model.

Sun et al. [106] used three-level cascaded convolutional networks where at each level, the

outputs of multiple networks are fused for accurate localization of 5 facial landmarks. Zhou et

al. [107] developed a a four-level course-to-fine convolutional network cascade in which each

network level is trained to refine a subset of facial landmarks generated by previous network levels.

Recently Zhang et al. [108] formulated a tasks-constrained deep model to optimize facial landmark

detection along with correlated tasks such as head pose estimation, gender classification, etc..

All of these methods provide highly accurate landmark localization results on widely varying

real-world images. However, they too have focused on dealing with facial images that exhibit yaw

variation only in the range between −45◦ and +45◦. Additionally, the fact that these methods

require a large amount of training data has restricted them slightly. At the present time there

are no large-scale datasets available with manual annotations for a dense set of landmarks and a
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wide variety of faces exhibiting different poses and expressions. Thus, many of the current deep

learning based approaches tend to localize a sparse set of landmarks for which manual annotations

are available on a large corpus of images. However, this is likely to change in the near future and

such approaches are likely to be researched and used extensively, as discussed in section 7.1.4.

2.5 Synopsis

Many of the previously described facial alignment algorithms, such as those proposed in [84],

[86], and [106] only localize a sparse set of landmarks which is unsuitable for many applications,

such as expression analysis or the building of 3D facial models. Most of the approaches, with

the exception of [6] and [16], are not equipped to automatically localize landmarks in faces that

exhibit absolute yaw angles greater than 60◦ and are thus presently incapable of automatically

localizing landmarks in such profile faces. Finally, only a few of the approaches, such as [11],

provide feedback in the form of occlusion labels for the detected landmarks. Thus, there is still a

need for a facial alignment algorithm that can provide a dense set of facial landmarks, deal with the

full range of yaw variation from −90◦ to +90◦ and facial expressions, handle partial occlusion of

the face, and provide misalignment/occlusion labels. It is our intention to draw attention to the all

of these desirable attributes in a facial alignment algorithm, provide details on our own approach

to facial alignment that is able to incorporate them, and finally, demonstrate the effectiveness of

our approach over some of the more widely used state-of-the-art algorithms on challenging real-

world datasets. In addition to this, our facial alignment algorithm is also suitably modified to deal

with facial landmark tracking in video sequences, in chapter 5, and landmark localization on low-

resolution images, in chapter 6. An overview of prior work in these fields is provided in these

chapters for the sake of convenience.
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Chapter 3

Our Approach to Facial Alignment

“How often have I said to you that when you have eliminated the impossible, whatever remains,

however improbable, must be the truth?”

Sherlock Holmes in The Sign of the Four by Arthur Conan Doyle

This chapter provides details on our approach to pose, illumination, expression, and occlusion

tolerant facial alignment [13] in section 3.1 and validates the same claims using a through set of

experiments, in section 3.2, that demonstrate the effectiveness of our approach on many challeng-

ing datasets. It must be noted that illumination is dealt with by using models trained on images

acquired under varying illumination conditions and by our local texture features (that are tolerant

to illumination variations), and is also less focused on (and also less of a challenge to the facial

alignment process) in our work than the other mentioned variations/degradations.

3.1 Overview of Our Approach

Our approach proceeds in a stage wise fashion. After a face in an image is detected and a standard

sized crop of the face is generated, we first carry out a sparse landmarking step in which we use
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Figure 3.1: An overview of our approach showing how each stage in the process works on an image
from the test set partition of the Labeled Face Parts in the Wild (LFPW) dataset [4], [5]. In all facial
images with landmarks overlaid on them, yellow dots are used to indicate the locations of facial
landmarks, blue line segments indicate that the landmark at their center is accurately localized, and
red line segments indicate that the landmark at their center is misaligned or potentially occluded.
The same color scheme is maintained in all figures that show facial alignment results produced by
our approach in this chapter. This figure appears in [13].

a sliding window based approach to search for only a few key facial landmarks (that we refer

to as seed landmarks), such as the centers of the eyes, tip of the nose, tip of the chin, and the

corners of the mouth, using pose-specific local detectors. It is important to note that we do not

require all of these seed landmarks to be visible or accurately localized and only require that any

combination of two of these landmarks be reliably localized. In our next step, we exhaustively

evaluate denser pose-specific shapes that are obtained by taking all combinations (taken two at

a time) of these seed landmarks and by using a similarity transformation to align a pose-specific

mean shape of the full (dense) set of landmarks with them. These denser shapes are evaluated

using a goodness of fit criteria based on whether each landmark in the dense set of landmarks is

an inlier, i.e., potentially resembling well aligned patches extracted from around that landmark at a

24



1
2
3
456

7
8 9 10
111314

16
19 22
28
29
303132333435

36
37
38
39

(a)

1
2
3
4
5
6 7 8 9 1011

12
13
14
15
16
17

1820 22
23 2527

28
29
30
31

32 36

37 40 43 46

49
52 55
58

(b)

Figure 3.2: MPIE landmarking (markup) schemes for (a) profile faces (39 facial landmarks) and
(b) frontal faces (68 facial landmarks). The facial images in the figure are from the MPIE database.
(a) and (b) appear in [13].

specific yaw at the training stage, or an outlier, i.e., not resembling well aligned patches extracted

from around that landmark at a specific yaw at the training stage and thus misaligned or possibly

occluded. We are now able to retain a single (highest scoring) dense landmark based shape for

each of the M discrete facial yaw ranges and transition from a step in which we located a sparse

set of facial landmarks to a dense set of landmarks that best approximate the underlying textural

information. The last step involves refining the top scoring shapes from among the M initial

shapes and a ranking of the results to determine a single set of landmarks that are most likely

well aligned with the facial image. This step also simultaneously uses and provides labels that

indicate how many of the landmarks are localized with high confidence (inliers) or not (outliers).

For carrying out a key part of this stage, we propose the use of an `1-regularized least squares based

approach to regularize the deformed facial shapes using a dictionary of shapes. This technique is

able to generate a more accurate regularized facial shape than the corresponding technique that is

employed by ASMs. Figure 3.1 provides an overview of how our approach works and details on
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each of the stages in the algorithm follow.

3.1.1 Sparse Landmark Detection

As we have previously mentioned, our initial step in the alignment process is the detection of a

sparse set of key facial landmarks that we refer to as seed landmarks. We train our models (see

section 3.2.1 for details) using images with manual annotations available for 68 landmarks for for

frontal faces (frontal, in this context, implies a facial yaw between −45◦ and +45◦) and 39 land-

marks scheme for non-frontal (with an absolute yaw in excess of 45◦) faces. These landmarking

schemes are shown in Figure 3.2 and were used (and hence popularized) to manually annotate

some images in the MPIE database [1], [2], [3] by the database’s curators. For frontal faces, we

search for 8 seed landmarks, the centers of the two eyes, the tip of the nose, the corners of the

mouth, the tip of the chin, and two opposite points on the facial boundary close to the ears (land-

marks 2 and 16 in frontal faces and landmark 38 in profile faces in the landmarking schemes shown

in Figure 3.2). The same corresponding set of seed landmarks is searched for in profile faces (faces

that exhibit an absolute yaw angle greater than 45◦), however, the number of seed landmarks in

such cases is 5, as a portion of the face is hidden from view in such cases.

During our training stage we construct landmark, expression, and pose-specific local appear-

ance (texture) models for each landmark, including the seed landmarks. It is to be noted that we

build and use M = 10 models for the various yaw ranges used in our approach. We also build 6

models for frontal yaw cases with open mouth expressions (scream and surprise). However, we do

not use them at this stage, or our subsequent dense landmarking stage, to ensure a higher a fitting

speed and since we found that only our final refinement step demanded the use of expression spe-

cific models to obtain highly accurate results. Section 3.2.1 provides details on how these models

are built and the parameters used in their construction.

The first step in a model’s construction is to generate a crop of a fixed size around the ground

truth landmark locations. Following this step, a classifier is built for each landmark in every model
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Figure 3.3: Process by which our local texture classifiers and linear subspaces are constructed for a
specific landmark (mouth corner, marked with a green dot) and pose using a training set of various
annotated images. The facial images in this figure are from the MPIE database.

to distinguish the local texture around the landmark in a particular feature space from the local

texture of a different landmark or an occlusion. This is carried out by extracting features for

positive samples, at the exact locations of the ground truth coordinates and from a small region

around these locations, and negative samples, from random locations close to and far away from

the ground truths, using all images for a specific yaw range and expression. We also construct

separate linear subspaces (for the positive and negative classes using samples from the respective

classes) using Principal Component Analysis (PCA) [109], [110], [111] as our dimensionality

reduction technique. These subspaces are used in the next stage of our facial alignment pipeline
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(the dense landmark alignment stage). We use Histogram of Oriented Gradients (HOG) [93] as our

feature descriptors as they have been proven to be quite discriminative in prior facial alignment

algorithms, such as [6], [99], [112], [113], and are quite tolerant to illumination variation. As

previously mentioned, this provides our approach with a level of illumination tolerance and we do

not perform illumination compensation or further address the problem of illumination in a specific

fashion in our work as it poses less of a challenge to the facial alignment process than factors such

as pose and the presence of occlusions. This is because local texture based alignment approaches

are less susceptible to this problem than global texture based approaches. Figure 3.3 illustrates

how our local appearance models and subspaces are constructed for each landmark while section

3.2.1 provides exact details on how many such models are built and the parameters used in their

construction.

Our local texture classifiers are constructed using an ensemble of classifiers (decision stumps)

in a Real AdaBoost [114] framework. We chose the Real AdaBoost framework due to the minimal

parameters that need to be specified for such a classifier (only the number of boosting rounds

or number of classifiers in the ensemble need to be specified) and its resistance to overfitting

[115], [116]. It must be noted that while any classifier that provides a measure of confidence in

its classification output could be used in our approach, we determined that the Real AdaBoost

implementation that was used in our work edged out implementations of other classifiers, such

as Support Vector Machines (SVMs) [117], random forests [118], and random ferns [119] in the

accuracy vs speed and memory trade-off. Real AdaBoost has also been used quite frequently

and successfully in the past for carrying out facial alignment [113], [120], [121], [122]. The Real

AdaBoost framework not only allows for the classification of a feature vector as positive or negative

(misaligned or possibly occluded), but also returns a confidence score for the prediction. This

allows us to greedily retain the highest scoring locations in the response map for a particular seed

landmark when a search over the typical region where the landmark is likely to lie is performed

on a test face crop. The search is repeated for rotated versions of the crop (typically for rotation
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Figure 3.4: Process by which seed landmark candidates are retained by our approach when fitting
a facial image from the test set partition of the LFPW dataset. The process is shown only for one
of the pose models (for a yaw of 0◦ to +15◦) and is repeated to retain seed landmark candidates
specific to each pose model. This figure appears in [13].

angles between −30◦ and +30◦ in 15◦ increments) with clustering used to reduce the number of

candidates if a number of them are found to lie within a small bandwidth. Figure 3.4 shows how we

retain candidates for the various seed landmarks for a particular pose-specific model. An overview

of the Real AdaBoost algorithm can be found in Appendix A while a detailed explanation of the

method and related proofs can be found in [114].

3.1.2 Dense Landmark Alignment and Optimal Shape Initialization

Once we have pose-specific seed landmark candidates, the problem to be addressed is one of

selecting a single combination of candidates for two different seed landmarks that allows for the

optimal initialization of a pose-specific mean facial shape sm (m = 1, . . . ,M) consisting of the
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full set of facial landmarks for that pose model, i.e., alignment of a dense set of pose-specific

landmarks. By aligning each pose-specific mean shape with a combination of seed landmarks we

end up with a total set of Jm dense shapes sj,m (j = 1, . . . , Jm) that must be ranked using a

scoring function that numerically assesses their goodness of fit. This step is extremely important

to the alignment process because poor initialization is something a facial alignment algorithm can

seldom recover from [56]. Thus, our contribution in providing a framework to transition from a

set of sparse landmarks (possibly containing some spurious detections) to a dense set of initial

landmarks is quite important.

At this point, it is necessary to provide details on how shape models (also sometimes referred

to as Point Distribution Models (PDMs)) for CLMs work. Each facial shape s in the training set

is represented by its N x and y coordinates in vectorial form as s = [x1 x2 . . . xN y1 y2 . . . yN ]T.

These shapes are aligned using Generalized Procrustes Analysis (GPA) [123], [124], to normalize

for scale, rotation, and translation effects and bring them into a common reference frame. In

this reference frame, conventional PDMs are built by obtaining a mean facial shape s and by

constructing a PCA subspace Φ of facial shape variation. A facial shape can now be represented

using equation (3.1).

s = Ts,θ,xt,yt(s + Φb) (3.1)

In equation (3.1), T is a similarity transformation parametrized by a scaling factor s, a rotation

angle θ, and translation parameters xt and yt. The result obtained when the transformation T is

applied to a single point (x, y) is shown in equation (3.2).

Ts,θ,xt,yt

 x

y

 =

 scosθ −ssinθ

ssinθ scosθ


 x

y

+

 xt

yt

 (3.2)

The entire shape fitting process centers around the determination of the optimal vector shape co-

efficients b that best represents (and regularizes) the current set of landmarks whose locations are
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Figure 3.5: Samples of initially aligned shapes for theM = 10 pose models for a facial image from
the test set partition of the LFPW dataset. In all facial images with landmarks overlaid on them,
green dots are used to indicate the seed landmark candidates used to generate the aligned shapes,
yellow dots are used to indicate the locations of facial landmarks, blue line segments indicate
that the landmark at their center is accurately localized, and red line segments indicate that the
landmark at their center is either misaligned or occluded.

determined using local texture based methods.

Since facial shape varies dramatically with pose and expressions, we construct 16 pose and

expression specific PDMs in our approach. However, our approach to determine the shape coeffi-

cients is a novel method that does not use the conventional shape model equation in (3.1). Instead

of using PCA to determine our set of basis vectors, we retain the entire set of shapes in a pose and

expression specific dictionary that we later use in an `1-regularized least squares based approach

to determine the shape coefficients. However, we do retain the building of pose and expression
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specific mean canonical shapes in our approach as well. It is the M = 10 pose-specific mean

shapes sm (m = 1, . . . ,M) that we use to determine the best initialization that can be provided

for each pose range (the best fitting mean shape roughly aligned over the face for each pose range).

Figure 3.5 illustrates how each of 10 pose-specific mean shapes is aligned with every combi-

nation of seed landmark candidates for that pose and then scored using a scoring function. It is

to be noted that before the scoring is performed, the region around the shape is cropped and de-

rotated (since the angle of rotation required can be calculated using two fixed landmarks) in order

to match the crops generated during our training process. For profile poses, a fewer set of shapes

need to be evaluated as there are fewer seed landmarks. For example, in a frontal case with 8 seed

landmarks taken 2 at a time with 10 candidates for each of them, the number of shapes that would

need to be scored is J = 10 × 10 ×
(

8
2

)
= 2800, while for a profile case with 5 seed landmarks,

the corresponding number would only be J = 1000. All of these shapes sj,m (j = 1, . . . , Jm)

must be scored in a way that maximizes the joint probability of correct alignment of the landmark

coordinates xj,mn = [xj,mn yj,mn ]T (n = 1, . . . , Nm) in the shape. This joint probability of correct

alignment for the full set of Nm landmarks in shape sj,m for a particular pose model m is given

by equation (3.3), assuming the conditional independence of the individual probabilities of cor-

rect alignment for the landmarks. In equation (3.3), Ij,mn ∈ {−1,+1} (n = 1, . . . , Nm) denotes

whether landmark xj,mn is correctly aligned or not.

P (Ij,m1 = 1, Ij,m2 = 1, . . . , Ij,mNm
= 1|sj,m) =

Nm∏
n=1

P (Ij,mn = 1|xj,mn ) (3.3)

To use equation (3.3) as the objective function to maximize in order to find the highest scoring

aligned shape would require the modeling of the individual probabilities for each landmark. This

could be carried out by modeling the distributions of the texture features extracted around each

landmark using parametric or non-parametric methods. However, there are simpler scoring func-

tions that could be used as surrogates for this joint probability function that suit our purpose. The
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key point to take note of here is that only a finite set of shapes need to be evaluated and scored and

that this is a different problem from one that involves the optimization of a continuous function.

It is for this reason that we use a different scoring function in order to evaluate the set of shapes

sj,m (j = 1, . . . , Jm) on their goodness of fit, which is assessed by determining how well a land-

mark’s surrounding local texture matches pre-trained models of what this local texture looks like

in a particular feature space.

We first project the feature vector tj,mn (obtained using the local texture around a landmark xj,mn

in the shape) onto the positive subspace Ψpos
m
n (after subtracting the mean texture vector tpos

m

n for

the subspace) for that landmark and pose to obtain coefficients cpos
m
n , using equation (3.4).

cpos
m
n = (Ψpos

m
n )T(tj,mn − tpos

m

n ) (3.4)

These coefficients are used to generate a reconstruction t
′
pos

j,m

n
, using equation (3.5).

t
′

pos

j,m

n
= tpos

m

n + Ψpos
m
n cpos

m
n (3.5)

The reconstruction is in turn used to compute a reconstruction error vector whose norm rpos(x
j,m
n )

is given by equation (3.6).

rpos(x
j,m
n ) = ‖(t′

pos

j,m

n
− tj,mn )‖2 (3.6)

The same process is followed using the negative subspace for the specific landmark to obtain

rneg(xj,mn ). We then calculate the ratio of the reconstruction error norms rpos(x
j,m
n ) and rneg(xj,mn )

for a particular landmark using equation (3.7).

r(xj,mn ) =
rpos(x

j,m
n )

rneg(xj,mn )
(3.7)

Next, the average Rj,m of these ratios over all Nm landmarks in shape sj,m is calculated using
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Figure 3.6: The highest scoring aligned initial shapes for each of the M = 10 pose models for a
facial image from the test set partition of the LFPW dataset. This figure appears in [13].

equation (3.8).

Rj,m =
1

Nm

Nm∑
n=1

r(xj,mn ) (3.8)

Finally, we use this reconstruction error based metric in combination with knowledge of the num-

ber of inliers N j,m
inliers in shape sj,m, i.e., the number of landmarks in the shape that are classified

as accurately aligned by our local texture based classifier in our shape scoring function f(sj,m).

f(sj,m) is determined using equation (3.9) and is the final metric we use to determine the “best”

aligned initial shape from among the total set of Jm shapes for pose m.

f(sj,m) =
N j,m

inliers

Rj,m
(3.9)

The assumption here is that well aligned shape will contain more inliers than a poorly aligned

one and hence will end up with a high value for the numerator and a low value for the denominator

in equation (3.9). The highest scoring aligned shape sminit for each pose range from among the Jm

evaluated shapes can be determined using equations (3.10) and (3.11) and used as initialization for
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the final step in our alignment process.

j0 = arg max
j

f(sj,m) (3.10)

sminit = sj0,m (3.11)

Figure 3.6 shows the highest scoring aligned shapes for each pose range for a sample test image.

3.1.3 Shape Refinement

The last stage of our alignment algorithm involves the refining (deforming and regularizing of a

shape) of the highest scoring initial shapes that were obtained using the previous stage and the

selection of one of these refined shapes as the final locations of the facial landmarks. To carry this

out we use an iterative fitting process that has it roots in ASMs and CLMs. In practice, to allow

for a gain in fitting speed, only a few (M ′
< M ) of the highest scoring fitting M initial shapes

sminit (m = 1, . . . ,M) are selected for refinement to obtain shapes sm
′

ref (m
′

= 1, . . . ,M
′
). It is

also to be noted that during the refinement process we also score results produced using the open

mouth expression shape and texture models for the frontal pose ranges and the higher scoring of

the open mouth and closed mouth fitted shapes are retained for each pose m′ .

A window around each landmark’s current location is generated and the local texture around

each pixel in the window is scored and classified using our local texture classifiers. The landmarks

are independently moved into the highest scoring locations for them. The process is repeated for

a few iterations until the landmarks converge. However, between each iteration, the facial shape

produced as a result of landmark motion must be regularized in order to generate a shape that is

consistent with what a typical facial contour looks like. We carry out this regularization using a

novel technique that allows for a higher fitting accuracy compared to the regularization method

employed by ASMs. Figure 3.7 illustrates how one iteration of this process is carried out. Finally,
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Initial shape Deformed shape Regularized shape 

Iterate till convergence  

Figure 3.7: Iterative process used in our shape refinement step demonstrated on a facial image
from the test set partition of the LFPW dataset. This figure appears in [13].

the highest scoring shape from among the refined shapes is identified and returned.

`1-Regularized Least Squares Based Shape Coefficients Determination

Shape regularization involves the determining and updating of a vector of shape coefficients. Con-

sider an initial shape sm
′

init (we drop the superscript m′ in this section for the sake of simpler nota-

tion). After each of the landmarks in the shape have been allowed to independently move into the

optimal locations for them, the new shape obtained is denoted by sdef . In an ASM based approach,

the inverse of the similarity transformation T that best aligns the mean shape s with sdef is applied

to sdef (in the image space) to generate s
′
def (in the model space). The problem becomes one of de-

termining the optimal set of shape coefficients binit to minimize the objective function in equation

(3.12).

binit = arg min
b

‖Φb − (s
′

def − s)‖2
2 (3.12)

In equation (3.12), Φ is a previously trained orthonormal linear subspace of shape variation (all

shapes being aligned using Procrustes analysis before the building of the subspace) with dimen-

sions d × u (d > u) where d = 2N is the dimension of each shape vector, u is the number
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of eigenvectors retained in order to account for 95 − 97% of the shape variance (and also the

dimensionality of the shape coefficients vector), and s is the mean shape. The solution to the

overdetermined Least Squares Problem (LSP) in equation (3.12) is given by equation (3.13).

binit = Φ+(s
′

def − s) (3.13)

In equation (3.13) Φ+ denotes the left Moore-Penrose pseudoinverse of Φ. Since Φ is an orthonor-

mal basis, Φ+ = (ΦTΦ)−1ΦT = ΦT and equation (3.13) gets simplified to equation (3.14).

binit = ΦT(s
′

def − s) (3.14)

The values of binit are constrained to lie within three standard deviations of their zero mean values

(based on the assumption that these coefficient values are distributed according to a zero mean

Gaussian distribution) in order to generate plausible shapes (regularization) and this results in a

new vector of shape coefficients denoted by bmod. In practice, the shape coefficients and the

similarity transformation parameters are determined by first initializing the shape coefficients to

zero and iteratively determining a new set of values and transformation parameters simultaneously

[66]. The entire process of landmark displacement, shape coefficient vector determination, con-

straining of shape coefficients, and generation of a new regularized set of landmark coordinates

is repeated for a few iterations until the shape parameter values or the landmark coordinates do

not change by much between iterations. A regularized shape sreg is obtained when the final set of

shape coefficients are applied and the resulting shape is aligned back into the image space using

the transformation T, as shown in equation (3.15).

sreg = T(s + Φbmod) (3.15)

In our approach, rather than constructing a PCA subspace to model shape variation, we retain
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the entire dictionary of shapes for each pose model. Thus, the analogue to the previously defined

Φ is a dictionary of shape variation D of size d × v (d < v), where d = 2N is the dimension

of each shape vector in the dictionary and v is the number of such training shapes for a specific

yaw model and also the dimensionality of the shape coefficients vector. We recast the problem of

shape regularization using equation (3.16), in which λ is a regularization parameter, and generate

a regularized shape using equation (3.17).

b̂ = arg min
b

‖Db − s
′

def‖2
2 + λ‖b‖1 (3.16)

sreg = T(Db̂) (3.17)

What we achieve by formulating the problem in this fashion is that simultaneous determination

and regularization of shapes is now possible using a single objective function without the need

for the additional step involved in ASMs to modify the shape coefficients based on the Gaussian

assumption. Our formulation makes no assumptions about the distribution of the coefficients, is not

a linear function of s
′
def (as is the case in equation (3.12)), and allows for a data driven framework

to achieve regularization, which is a key area of focus in in [4] and [88] as well.

The problem in equation (3.16) is commonly called the `1-regularized LSP whose general form

is given by equation (3.18).

minimize
x

‖Ax− y‖2
2 + λ‖x‖1 (3.18)

In equation (3.18), A ∈ Rp×q is a data matrix, y ∈ Rp is a vector of observations, x ∈ Rq is a

vector of unknowns, and λ > 0 is the regularization parameter. The problem in equation (3.18)

is convex but not differentiable. It always has a solution, but there is no closed form equation

to obtain it. However, it is possible to compute a solution numerically. The problem has been

well studied and is also closely related to the problems of Basis Pursuit Denoising (BPDN) [125]

and least absolute shrinkage and selection operator (Lasso) [126]. An `1-Regularized LSP can be

38



transformed into a convex quadratic problem with linear inequality constraints and solved by stan-

dard convex quadratic methods, such as interior-point methods [127], [128], homotopy methods

and variants [129], [130], [131], and also by subgradient methods [132], [133]. However, some

of these solvers can be quite slow and also only efficient when the solution is very sparse. Pro-

viding details on each of of these solvers and analyzing their impact is beyond the scope of this

thesis, however, we determined that a custom interior point based method for solving large scale

`1-regularized LSPs that was developed by Kim et al. [134] was ideally suited for our purposes

and is the solver we use in our work. [134] also provides details on the limiting behavior of the

solution to the problem as λ → 0 and λ → ∞. A key result that is outlined in [134] that governs

the choice of the regularization parameter λ is that for λ ≥ λmax = ‖2ATy‖∞ (‖2DTs
′
def‖∞, in

our problem setup) an all zero vector becomes the optimal solution. A value of λ = 10−4λmax was

recommended by Kim et al. (when using an open source MATLAB [135] implementation of their

code [136]) and such a value was empirically found to be suitable for the purposes of our problem

as well. An overview of the solver is provided in Appendix B and the reader is referred to [134]

for further details that are not provided in the appendix.

Shape regularization can be carried out more accurately if only inliers are used in the process.

Since this is possible in our approach, using the results produced by local texture classifiers, we

exclude all outliers from participating in the shape regularization process and only use the rows

of D (Φ in the case of the previously described PCA based approach that is used by ASMs) that

correspond to these inlier landmarks. The shape coefficients obtained using this process can be

used to reconstruct a full set of landmarks and hallucinate the locations of the outliers.

An important set of results that we highlight in section 3.2.5 is that even when only the inliers

are used for shape regularization, our `1-regularized approach outperforms the previously outlined

approach used in ASMs to obtain more accurate landmark localization results on several datasets.

In addition, we also demonstrate that the `1-regularized approach provides a higher level of accu-

racy than using an `2-regularized (Tikhanov regularization) based approach (details on this problem
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can also be found in [134]), when the same value of λ is used. In such an `2-regularized approach,

a closed form solution to the problem in equation (3.19) is provided by x = (ATA + λI)−1ATy.

minimize
x

‖Ax− y‖2
2 + λ‖x‖2

2 (3.19)

Our intuition behind these results is that the `1-regularized approach results in a deformed shape

either being modeled using a smaller set of training shapes (in the training shapes dictionary) that

best approximate their locations or by using smaller weights for unsuitable training shapes in the

dictionary. This sparsity promotion results in a deformed shape being better approximated using

a set of coefficients that is not a linear function of the deformed shape itself, and thus in higher

landmark localization accuracies than those obtained using an `2-regularized approach.

Final Shape Scoring and Selection

The last step in our alignment process is the selection of a single shape from among the set of

M
′ (3 ≤ M

′ ≤ 5 in our work) refined shapes that best fits the underlying facial structure. The

shape sfin with the highest percentage of inliers expressed as a percentage of the total number of

landmarks in the shape, using the scoring function g(sm
′

ref ) in equation (3.20), is chosen to obtain a

final set of landmark coordinates using the following equations.

g(sm
′

ref ) =
N inliers
m′

Nm′
where m

′
= 1, . . . ,M

′
(3.20)

m
′

0 = arg max
m′

g(sm
′

ref ) (3.21)

sfin = s
m

′
0

ref (3.22)

The same scoring function is also used to determine the best fitting expression specific shape

for each pose m′ . Now that we have provided a detailed description of each of the steps in our
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Algorithm 1 Our facial alignment approach.
Input: Image I, face detection bounding box bb, pre-trained yaw and expression specific models
{Mm}16

m=1

Output: Final landmarks (shape) sfin, landmark misalignment/occlusion labels forN landmarks
{on}Nn=1

for m = 1, . . . ,M do
Retain top seed landmark candidates {pm1 ,pm2 , . . . ,pm10}

N l
m

i=1 for each of theN l
m = 5 orN l

m = 8
seed landmarks for pose m

end for

for m = 1, . . . ,M do
Score all dense shapes sj,m (j = 1, . . . , Jm) using equations (3.7) - (3.9)
Retain highest scoring initial shape sminit using equations (3.10) and (3.11)

end for

Retain top scoring M ′ pose-specific initial shapes
for m′

= 1, . . . ,M
′ do

Refine sm
′

init to obtain sm
′

ref using model {Mm
′}

end for

Retain highest scoring refined shape sfin using equations (3.20) - (3.22)
Output final landmarks (shape) sfin and landmark misalignment/occlusion labels for N land-
marks {on}Nn=1

approach, a summary of the steps is provided in Algorithm 1.

3.2 Experiments and Results

In this section we provide details on how our approach was trained and describe the experiments

that we carried out in order to demonstrate the effectiveness of our algorithm when it was tested

on challenging real-world datasets.
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3.2.1 Training our Algorithm

We trained a set of models using a subset of the CMU Multi-PIE (MPIE) database [1], [2], [3].

Our shape and texture models were trained using a total of 6, 495 images of almost all of the 337

subjects drawn from across all 4 sessions in the database. The images contained faces imaged un-

der differing illumination conditions, showing various expressions (neutral, disgust, smile, squint,

scream, and surprise), and acquired from 13 different viewpoints from −90◦ to +90◦ in steps of

15◦. Manually annotated ground truths for all these images were available to us as a small subset

of the MPIE database was annotated using 68 landmarks for frontal faces and 39 landmarks for

profile faces by the database’s curators. We clustered the data into M = 10 bins with overlapping

yaw ranges and the same number of facial landmarks for every image in the bin, i.e.,−90◦ to−75◦,

−75◦ to −60◦, −45◦ to −30◦, −30◦ to −15◦, −15◦ to 0◦, and 5 more similar bins for the positive

yaw cases. These 10 partitions were created using facial images with the mouth slightly open or

closed (neutral, disgust, smile, and squint expressions). A similar set of 6 partitions (for frontal

poses with a yaw range from −45◦ to +45◦ only) were created to model the shape and texture

of facial landmarks across pose in expressions when the mouth is completely open (scream and

surprise expressions).

Our models were built using the process described in section 3.2.1 with Real AdaBoost as our

choice of classifier. However, when we tested on a subset of the MPIE dataset, we only trained

on three-fourths of the training data with a test set drawn from the remaining images. Thus, we

always tested our algorithm on unseen images and subjects. We used an open source MATLAB

[135] toolbox [137] to extract the HOG features and implement the training and testing of the Real

AdaBoost framework. A standard facial crop size of 100 × 100 and a patch size of 15 × 15, that

were found to be optimal on a validation set, were used by us to extract HOG feature descriptors

and build the local texture models (classifiers).
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Table 3.1: Details on the datasets used in our experiments.

Dataset
Training Set Test Set Yaw Expression Facial Occlusion Number of

Size Size Variation Variation Level Landmarks
MPIE 850 −90◦ to +90◦ Yes Not Present 39/68
LFPW 811 224 −45◦ to +45◦ Yes Low 68
Helen 2, 000 330 −45◦ to +45◦ Yes Low 68
AFW 337 −45◦ to +45◦ Yes Medium 68
ibug 135 −45◦ to +45◦ Yes Medium 68

COFW 507 500 −45◦ to +30◦ Yes High 29

3.2.2 Datasets Used in Our Experiments

Details on the various datasets which were used in our experiments (for benchmarking our ap-

proach, understanding what each stage of our approach contributed, etc.) are provided below and

summarized in Table 3.1.

(1) MPIE: A set of 850 images were held back from our training set and served as a test set.

These images contained faces with varying expressions and with yaw angles in the range from

−90◦ to +90◦. This test set was created to demonstrate that our algorithm could deal with such

variations in unseen images from outside its training set and was also used to benchmark our

approach against the TSMs algorithm, which could also handle this range of yaw variation.

(2) LFPW: The Labeled Face Parts in the Wild (LFPW) dataset [4], [5] originally consisted of

1132 training images and 300 test images of various people (mainly celebrities) that were collected

from the Internet and manually annotated with 29 landmarks. Many of the URLs for the images in

the dataset have expired, however, a set of 811 training images and 224 test images were recently

made available along with landmark annotations [138], [139] for the 68 landmarks in the MPIE

markup as part of the the 300 Faces in-the-wild (300-W 2013) challenge [8], [9]. All algorithms

were tested on the 224 images in the test set partition of the dataset. The faces in the images exhibit

slight pose variation (absolute yaw of up to 45◦ and slight in-plane rotation), varying expressions,

and low levels of occlusion.

(3) Helen: The Helen dataset [104], [105] consists of 2000 training images and 330 test images
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of various people that were collected from the Internet and manually annotated with 194 landmarks.

Landmark annotations [138], [139] for the 68 landmarks in the MPIE markup for all images were

recently made available as part of the the 300-W 2013 challenge. All algorithms were tested on

the 330 images in the test set partition of the dataset. The faces in the images exhibit slight pose

variation (absolute yaw of up to 45◦ and slight in-plane rotation), varying expressions, and low

levels of occlusion.

(4) AFW: The Annotated Faces in-the-Wild (AFW) dataset [6], [7] consists of 205 images

with 468 faces (some images contain multiple faces) drawn from Flickr images. Facial bounding

boxes, manual annotations for 6 landmarks (the centers of the eyes, the tip of the nose, and the two

corners and center of the mouth), and discretized pose information were originally made available

along with the images. As part of the 300-W 2013 challenge, 68 point annotations for 337 faces in

the images were made available [138], [139], which served as a test set. The faces in the images

exhibit pose variation (absolute yaw of up to 45◦ and slight in-plane rotation), varying expressions,

and facial occlusions.

(5) ibug: The Intelligent Behavior Understanding Group (ibug) dataset [8], [9], [10] consists

of 135 facial images with annotations for 68 landmarks for each of the faces. The dataset was

made publicly available as part of the 300-W 2013 challenge. The images in this dataset are very

challenging due to the high pose variation exhibited (both in pitch and yaw), as well as the presence

of varying expressions and facial occlusions.

(6) COFW: The Caltech Occluded Faces in the Wild dataset [11], [12] consists of 500 training

and 507 test images that were downloaded from the Internet. All images were manually annotated

with the same 29 landmarks that were used in the exemplar based facial alignment method pro-

posed by Belhumeur et al. [4]. The faces in the images exhibit slight pose variation (yaw between

−45◦ and +30◦ and sometimes severe in-plane rotation), varying expressions, and high levels of

occlusion (the average level of occlusion, i.e., the number of landmarks labeled as occluded as a

percentage of the total number of landmarks, of faces, due to hats, sunglasses, food, etc., in the
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dataset is 23%). The dataset was mainly proposed to push the boundaries of occlusion tolerance

by facial alignment algorithms and thus also provides occlusion labels for each landmark. All

algorithms were evaluated on the 507 images in the test set partition of the dataset.

3.2.3 Benchmarking our Approach

We compared the fitting accuracy of our approach against that of various existing state-of-the-

art methods (an overview of these methods has been provided in section 2) on the previously

mentioned datasets. The approaches we compared our approach (denoted/abbreviated as Ours in

figures and tables in this thesis) against were those proposed by Tzimiropoulos and Pantic [75]

(denoted/abbreviated as AAM-Wild in this thesis), Zhu and Ramanan [6] (denoted/abbreviated as

TSMs in this thesis) using their pre-trained and best performing Independent-1050 model, Yu et

al. [16] (denoted/abbreviated as CDSM in this thesis), Asthana et al. [95] (denoted/abbreviated as

DRMF in this thesis), Xiong and De la Torre [96], (denoted/abbreviated as SDM in this thesis), and

Burgos-Artizzu et al. [11] (denoted/abbreviated as RCPR in this thesis). These approaches were

chosen because of their wide use in literature for benchmarking purposes, use of similar training

data and landmark annotation schemes to ours, and availability of open source code implementa-

tions - AAM-Wild [140], TSMs [7], CDSM [141], DRMF [142], SDM [143], and RCRPR [12].

In addition to this, the algorithms each use different approaches to facial alignment that covered

some of the broad categories of approaches that we described in chapter 2, such as AAMs, CLMs,

regression based approaches, etc..

It is to be noted that while some of the approaches (TSMs, DRMF, and CDSM) were trained

on MPIE database images, similar to the images our approach was trained on, some of the other

approaches were at an advantage as they were trained on more unconstrained real-world data. For

example, the AAM-Wild approach was trained on the training set partition of the LFPW dataset,

RCPR was trained on the training set partitions of the LFPW and COFW datasets (to ensure the

best results on the challenging test set partition of the COFW dataset), and the SDM implementa-
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Figure 3.8: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the MPIE dataset.

Figure 3.9: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the LFPW dataset.
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Figure 3.10: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the Helen dataset.

Figure 3.11: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the AFW dataset.
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Figure 3.12: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the ibug dataset.

Figure 3.13: Qualitative landmark localization results produced by our approach (trained on images
from the MPIE dataset) on some images from the COFW dataset.

48



tion we used was trained on images from the MPIE and the Labeled Faces in the Wild (LFW) [59],

[60] databases. Thus, in order to perform a fair comparison and to demonstrate the importance

of training data when dealing with real-world images, we report results obtained by our approach

when it was trained using the MPIE images we previously mentioned, the 811 images in the train-

ing set partition of the LFPW dataset (when fitting test images from the LFPW, Helen, AFW, and

ibug datasets), and the 845 LFPW and 500 COFW training set images with the 29 landmarks and

occlusion labels that RCPR was trained on (when testing on the COFW test set images). Our

models were built in the same fashion as previously described (using clustering of images into

appropriate pose and expression groups) with appropriate changes to account for a different set

of landmarks and a lack of images to model absolute yaw variation in excess of 45◦. We also re-

port results obtained by training the RCPR algorithm (trained using the optimal parameter values

specified by the authors for training on un-occluded images) on the same set of MPIE images (im-

ages with yaw variation between−45◦ and +45◦ and 68 ground truth annotations) as our approach

and using the 68 point landmarking scheme. As we will show, our approach performs admirably

when trained on only MPIE images and provides much higher accuracy levels than all the other

approaches when trained on the real-world LFPW and COFW training set images. Some results

obtained using our approach (when trained on MPIE images only) on images from the various

datasets are shown in Figures 3.8 - 3.13. As can be seen, our approach is able to generalize well to

accurately localize facial landmarks in these unseen images and is quite tolerant to the challenging

pose, occlusion, and expression variations in the images in spite of being trained on images that do

not contain these variations.

The other key aspect to consider when reporting a fair performance comparison of facial align-

ment algorithms is initialization (facial bounding boxes provided as input). The DRMF and SDM

algorithms are extremely sensitive to these inputs and it was observed that they produced extremely

poor results when we used the bounding box initializations for the LFPW, Helen, AFW, and ibug

datasets [9] provided by the organizers of the 300-W 2013 challenge that were obtained using what
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was referred to as their “in-house face detector.” Thus, for these approaches we used an OpenCV

implementation of the Viola-Jones [144] face detection algorithm to provide bounding box initial-

izations for these datasets whenever the face detection results produced were in close agreement

with the provided bounding boxes and by reverting to suitably modified versions (square bound-

ing boxes) of the provided bounding boxes whenever spurious/no detections were made by the

OpenCV face detector. For initializing the RCPR algorithm (trained on MPIE images), that is also

sensitive to bounding boxes provided, on these three datasets, we used the same process as during

training and provided bounding boxes that were crops around then ground truth landmark locations

grown by 15%. For the AAM-Wild algorithm, our approach, CDSM, and the TSMs approach, we

used the used the bounding box initializations provided by the organizers of the 300-W 2013 chal-

lenge with the crop grown by a factor of 1.5 to enclose the facial region in the latter three cases.

This was carried out because though the CDSM and TSMs approach function as face detectors,

a fair comparison based on landmark localization accuracy demands that an appropriate region of

interest be provided. Our approach does not detect faces and can fail in the event of extremely poor

face detection results, however we did not train our approach by assuming specific details about the

bounding boxes available during testing. Thus, specifying a large region of interest for our initial

seed landmark detection stage is sufficient to deal with slight scale and translation differences in

face detection bounding boxes and we were thus in a position to use bounding boxes that we had

no information about during our training stage.

For the COFW test set we observed that the facial bounding boxes provided along with the

ground truth landmarks were generally not optimal for many of the alignment algorithms (DRMF,

AAM-Wild, and SDM) as they only partially enclosed the facial region in many cases. In order

to ensure better initialization, a square crop was generated to enclose the ground truth landmark

locations and then grown by 15% before being provided as initialization (for the DRMF and SDM

algorithms, these bounding boxes were only used when OpenCV implementation of the Viola-

Jones face detection algorithm could not provide accurate bounding boxes). For CDSM, TSMs,
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Figure 3.14: (a) The 29 point landmarking scheme for the COFW dataset and (b) The 25 landmarks
common to both the 68 point MPIE landmarking scheme and the ground truth annotations available
for the COFW dataset. The facial image in the figure is from the training set partition of the COFW
dataset. (a) and (b) appear in [13].

and our approach, this crop region was further expanded by a factor of 1.5 to enclose the facial

region and yet not provide any initialization advantage. The same initialization protocol that was

used when testing RCPR (trained on MPIE images) on the other test sets was used when it was

run on the COFW test set images. We also evaluated our approach (trained in identical fashion to

the RCPR approach on the same set of LFPW and COFW images with 29 landmarks) and RCPR

using the bounding boxes provided along with the COFW test set images for initialization. Finally,

for the MPIE dataset, a square crop around the convex hull of the ground truth landmark locations

was extracted and then grown by a factor of 1.5 before being provided as initialization to TSMs

and our approach.

Most of the approaches use the same 68 point landmarking scheme to annotate frontal facial

images, making a fair comparison possible on the LFPW, Helen, AFW, and ibug datasets. How-

ever, the SDM algorithm localizes 49 facial landmarks (does not localize landmarks 1− 17 (facial

boundary points) and landmarks 61 and 65 (interior points near the corners of the mouth) in Figure

3.2 (b). Thus, our results are reported for both these cases and by utilizing the maximum possible
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common landmarks localized by the various algorithms. For the COFW dataset, where only 29

manually annotated landmarks are available, we measured the landmark localization accuracy of

the algorithms using a set of 25 landmarks (and 24 for the SDM method) which are common to

both the 29 point and 68 point markups. This set of landmarks is shown in Figure 3.14 (b). How-

ever, we also provide results that compare our approach against the RCPR approach on the full set

of 29 landmarks, shown in 3.14 (a). The MPIE dataset is the only one that contains facial images

that exhibit an absolute yaw in excess of 45◦ and is hence used to only compare our algorithm

against the TSMs approach, as none of the other algorithms provide localization results using the

same 39 point landmarking scheme that are shown in Figure 3.2 (a) or handle such yaw variation.

To compare the landmark localization accuracies of the various algorithms, the fitting error (the

Euclidean distance between the automatically fitted landmarks and their corresponding manually

annotated ground truth locations) was normalized for each image using the distance between the

outer corners of the eyes (landmarks 37 and 46 for the frontal landmarking scheme in Figure 3.2 (b),

landmarks 9 and 10 in Figure 3.14 (a), and landmarks 7 and 8 in Figure 3.14 (b)) in the ground truth

annotations, as was carried out in the 300-W 2013 challenge, to enable a fair comparison across all

images (of varying resolution and facial sizes) in the datasets. For the MPIE dataset the average eye

center to mouth corner distance was used for normalization as this dataset contained images with

profile views. These distances were averaged over all landmarks to produce a normalized fitting

error for each image in the dataset. The Mean Normalized Fitting Error (MNFE) of these fitting

errors, calculated by averaging the normalized fitting error over all images in the test dataset and

expressed as a percentage, is the common metric commonly employed to determine the accuracy

of a facial alignment algorithm. Another metric that is used to compare the approaches is the

percentage of failures. This is computed as the percentage of the total images fitted that have a

normalized fitting error value of over 10%, a measure that was proposed in [86]. These same

metrics are used when reporting results for the various test sets in question in future sections of

this chapter and future chapters as well.

52



Table 3.2: Performance of various algorithms on various test sets with MNFE values computed
using 68 (or 39 for the MPIE test set) common landmarks, except in cases where an alternative
number of landmarks (indicated in brackets) were used.

Algorithm

Test Set
MPIE LFPW Helen AFW ibug COFW
MNFE MNFE MNFE MNFE MNFE MNFE

(%) (%) (%) (%) (%) (%)
Ours (Best Models) 4.98 5.46 7.10 9.95 6.00 (29)
Ours (MPIE Tr Set) 5.37 6.68 7.47 8.79 13.18 8.53 (25)

DRMF 6.77 8.97 11.81 19.40 10.32 (25)
CDSM 7.63 10.08 10.30 19.57 9.73 (25)
TSMs 6.68 8.99 8.47 10.72 25.46 9.58 (25)

RCPR (COFW + LFPW Tr Sets) 6.16 (29)
RCPR (MPIE Tr Set) 8.10 9.87 12.54 20.14 12.47 (25)

AAM-Wild 12.41 12.81 17.75 27.88 12.03 (25)

Table 3.3: Performance of various algorithms on various test sets with failure percentages com-
puted using 68 (or 39 for the MPIE test set) common landmarks, except in cases where an alterna-
tive number of landmarks (indicated in brackets) were used.

Algorithm

Test Set
MPIE LFPW Helen AFW ibug COFW
Failure Failure Failure Failure Failure Failure

(%) (%) (%) (%) (%) (%)
Ours (Best Models) 3.2 2.9 9.4 25.6 6.3 (29)
Ours (MPIE Tr Set) 2.9 5.9 11.2 19.2 51.2 20.9 (25)

DRMF 10.0 22.4 27.0 66.3 30.3 (25)
CDSM 13.2 27.4 34.1 81.5 23.8 (25)
TSMs 9.8 30.3 22.4 35.7 72.1 30.1 (25)

RCPR (COFW + LFPW Tr Sets) 9.3 (29)
RCPR (MPIE Tr Set) 18.6 23.3 34.7 70.9 36.6 (25)

AAM-Wild 40.3 48.2 60.7 87.2 53.6 (25)
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Table 3.4: Performance of various algorithms on test sets with MNFE values computed using 24
(for the COFW test set), 49 or 27 (for the MPIE test set), and 49 (for all other test sets) common
interior landmarks localized by the various algorithms.

Algorithm

Test Set
MPIE LFPW Helen AFW ibug COFW
MNFE MNFE MNFE MNFE MNFE MNFE

(%) (%) (%) (%) (%) (%)
Ours (Best Models) 4.19 4.59 6.00 8.34 5.90
Ours (MPIE Tr Set) 4.38 6.09 6.71 8.02 11.97 8.34

SDM 5.00 6.60 9.83 15.90 6.65
DRMF 5.92 7.71 10.68 16.80 10.14
CDSM 6.10 8.22 8.40 16.78 9.49
TSMs 5.08 7.30 7.00 9.19 23.11 9.27

RCPR (COFW + LFPW Tr Sets) 6.00
RCPR (MPIE Tr Set) 7.79 9.77 12.67 20.11 12.33

AAM-Wild 12.07 12.36 17.80 28.42 11.57

Table 3.5: Performance of various algorithms on test sets with failure percentages computed using
24 (for the COFW test set), 49 or 27 (for the MPIE test set), and 49 (for all other test sets) common
interior landmarks localized by the various algorithms.

Algorithm

Test Set
MPIE LFPW Helen AFW ibug COFW
Failure Failure Failure Failure Failure Failure

(%) (%) (%) (%) (%) (%)
Ours (Best Models) 0.9 1.6 5.2 19.8 5.3
Ours (MPIE Tr Set) 1.3 3.6 7.3 14.9 36.1 19.9

SDM 4.1 12.1 15.3 36.1 11.9
DRMF 8.1 17.3 18.5 54.7 29.7
CDSM 6.4 16.6 19.0 54.3 22.3
TSMs 2.6 14.5 10.5 22.7 58.1 27.6

RCPR (COFW + LFPW Tr Sets) 8.7
RCPR (MPIE Tr Set) 16.3 18.9 31.2 65.1 36.0

AAM-Wild 39.9 44.7 58.1 83.7 50.8
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Figure 3.15: Cumulative Error Distribution (CED) curves for various algorithms obtained by av-
eraging the normalized fitting errors (%) over all common landmarks (29 or 25 for the COFW test
set, 68 or 39 for the MPIE test set, and 68 for all other test sets) on the (a) MPIE, (b) LFPW, (c)
Helen, (d) AFW, (e) ibug, and (f) COFW test sets.
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Figure 3.16: Cumulative Error Distribution (CED) curves for various algorithms obtained by av-
eraging the normalized fitting errors (%) over common interior landmarks (24 for the COFW test
set, 49 or 27 for the MPIE test set, and 49 for all other test sets) on the (a) MPIE, (b) LFPW, (c)
Helen, (d) AFW, (e) ibug, and (f) COFW test sets.
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Due to a lack of correspondence between landmarks in the 68 and 39 point landmarking

schemes, we report results over (average over) only those images where the TSMs method de-

termined a set of 68 landmarks. Table 3.2 and Table 3.3 respectively list the MNFE and failure

percentage values obtained by the various approaches on the different test sets over the largest

number (most commonly 68 landmarks) of common landmarks while Table 3.4 and Table 3.5 list

the same values when only interior facial landmarks (mostly commonly 49 landmarks) are consid-

ered and also has results obtained by the SDM algorithm implementation, which does not localize

landmarks along the facial boundary. For the COFW dataset case, this corresponded to the ex-

clusion of just the tip of the chin. Predictably, all methods demonstrated a higher accuracy when

localizing only the interior landmarks. As can be seen from the tables, our approach performed

quite well even when trained only on images from the MPIE database. However, the best per-

formance (indicated by Best Models) for our approach was achieved on the LFPW, Helen, AFW,

and ibug test sets when trained on the LFPW training set images and on the COFW test set when

trained on the LFPW and COFW training set images (in a similar fashion to the RCPR algorithm).

Our best performing models provided more accurate results than the other algorithms on all the

test sets and this serves to demonstrate the efficacy of our approach as well as the role the training

set plays when reporting such accuracy rates.

An alternative way of comparing the accuracy of the methods is using Cumulative Error Dis-

tribution (CED) curves that plot the fraction of facial images (plotted along the y-axis) found to

have a normalized fitting error (%) value lower than a certain value (plotted along the x-axis). CED

curves summarizing the performance of the various methods on the various datasets are shown in

Figure 3.15 and Figure 3.16 using the same number of landmarks as those in Table 3.2 and Table

3.4, respectively. From these figures it is again clear that our approach (best performing models)

localized landmarks more accurately than the other algorithms on all the test sets.

We also determined how pose, expression, and occlusion factors influenced the top performing

algorithms on each test set. Figure 3.17 shows how the normalized fitting error (%) values (with
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Figure 3.17: Normalized fitting errors (%) as a function of yaw for the top performing algorithms
calculated using a common set of landmarks (24 for the COFW test set, 68 or 39 for the MPIE test
set, and 49 for all other test sets) on the (a) MPIE, (b) LFPW, (c) Helen, (d) AFW, (e) ibug, and (f)
COFW test sets. (b), (d), (e), and (f) appear in [13].
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Figure 3.18: Normalized fitting errors (%) obtained (using a common set of 68 or 39 landmarks on
the MPIE test set and 24 landmarks on the COFW test set) using various algorithms on faces with
various expressions and occlusion levels on the (a) MPIE and (b) COFW test sets, respectively. (b)
appears in [13].

all images in the test sets considered) vary as a function of the facial yaw angle for the various

algorithms. The images in each test set were clustered into various bins (by comparing the ground

truth landmarks to those of images in the MPIE database) and the average of the normalized fitting

errors for all the images belonging to that yaw bin were calculated and plotted as a function of yaw.

In similar fashion, graphs were obtained to determine how the fitting errors varied by expression

on the MPIE test set (see Figure 3.18 (a)), for which expression labels were available, and as a

function of level of occlusion (% of landmarks labeled as occluded out of the full set of landmarks)

on the COFW test set (see Figure 3.18 (b)). As can be seen in Figure 3.17, our approach (best

models or models trained using MPIE images) provided a consistent level of performance across

the various yaw angles and demonstrated a higher tolerance to faces with an absolute yaw in excess

of 30◦ than SDM and DRMF. This tolerance to pose is particularly evident on the AFW and ibug

datasets that contain a larger number of images with high yaw compared to the LFPW, Helen, and

COFW test sets. Similarly, Figure 3.18 (a) shows how our approach provided consistent results on

the MPIE test set for varying expressions, while the same point is made by Figure 3.18 (b) for the
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Table 3.6: Occlusion prediction performance of RCPR and our algorithm (both trained using
COFW and LFPW training set images) when localizing 29 landmarks on the COFW test set. This
table appears in [13].

Algorithm
Accuracy True Positive False Positive

(%) Rate (%) Rate (%)
RCPR (thresh = 0.6100) 80.62 20.32 1.51
RCPR (thresh = 0.2445) 82.88 59.25 10.11

Ours 81.25 52.08 10.11

Table 3.7: Average time required by various algorithms to process a single face in an image. This
table appears in [13].

Algorithm
Avg. Fitting Time
Per Image (secs)

SDM ≈ 0.10
RCPR ≈ 1
DRMF ≈ 2

AAM-Wild ≈ 4
CDSM ≈ 5
TSMs ≈ 18
Ours ≈ 33

varying level of facial occlusion in the COFW test set.

We also provide details on the occlusion prediction performance (over 29 landmarks) of RCPR

and our approach (when both were trained on the same set of LFPW and COFW training set

images and provided real valued occlusion labels that had to be thresholded to produce binary

occlusion labels) on the COFW test set in Table 3.6. The metrics used in the table are the accuracy

((TP + TN)/(P + N), where TP is the number of true positive detections, TN is the number

of true negative detections, P is the total number of positive samples, N is the total number of

negative samples), true positive (TP/P ), and false positive (FP/N ) rates. As can be seen, our

approach provided a higher accuracy rate than RCPR when the default (precomputed using the

training data) occlusion detection threshold value of 0.61000 was used for RCPR. However, RCPR

provided marginally more accurate results for a different threshold value of 0.24445 (determined
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Table 3.8: MNFE (%) values obtained on test sets by each stage of our approach (MPIE training
set) by averaging over the maximum number of landmarks localized at that stage.

Test Set
Ours (MPIE Tr Set)

Stage 1 Stage 2 Stage 3 With Pose Estimation Best Result
MNFE (%) MNFE (%) MNFE (%) MNFE (%) MNFE (%)

MPIE 5.09 9.12 5.11 5.34 4.91
LFPW 7.32 9.17 6.60 6.89 6.06
Helen 7.37 9.77 7.56 7.54 6.77
AFW 9.70 11.57 8.86 9.50 7.80
ibug 13.33 14.92 12.08 11.80 10.04

COFW 10.38 9.83 8.32 8.15 7.07

from a Receiver Operating Characteristic (ROC) curve using the same false positive rate as our

approach).

Finally, to complete the benchmarking analysis, we also provide a timing analysis of the various

approaches in Table 3.7. The table lists the average time required by the various approaches to fit

an image on a desktop computer with an Intel Xeon X5680 processor with a clock rate of 3.33 GHz

running Windows 7. While our approach presently requires a larger amount of time to process an

image, it is to be noted that this our implementation is currently purely MATLAB [135] based and

is not heavily optimized for speed, which is something that we are in the process of addressing.

3.2.4 Stage-by-stage Breakdown of Our Approach

Tables 3.8 and 3.9 show a breakdown of the MNFE (%) values obtained at each stage of our ap-

proach across all datasets when fitting errors were averaged across all landmarks localized at each

respective stage. Stage 1 corresponds to the seed landmark localization stage (when only 8 land-

marks are localized for frontal images and 5 for profile images) and the best localized candidates

for each seed point were compared against their respective ground truth locations. Stage 2 corre-

sponds to the dense landmark alignment and optimal shape initialization stage, and finally Stage 3

is the refinement stage. The seed landmarks detection stage provided much higher accuracy rates
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Table 3.9: MNFE (%) values obtained on test sets by each stage of our approach (best models) by
averaging over the maximum number of landmarks localized at that stage.

Test Set
Ours (Best Models)

Stage 1 Stage 2 Stage 3 With Pose Estimation Best Result
MNFE (%) MNFE (%) MNFE (%) MNFE (%) MNFE (%)

MPIE
LFPW 5.00 7.16 4.84 5.09 4.44
Helen 5.21 7.88 5.31 5.64 4.97
AFW 6.78 9.50 6.55 7.20 6.00
ibug 10.24 13.64 10.03 12.44 8.70

COFW 8.16 7.50 5.83 6.68 5.69

on the test sets with low occlusion levels and was impacted most heavily on the COFW test set,

when high occlusion levels resulted in high fitting errors for the occluded seed landmarks. Stage

2 transitions from a sparse set to a dense set of landmarks. However, this stage only provides a

course alignment using two seed landmark candidates and is thus substantially improved upon by

the refinement stage, that provides the final landmark coordinates as output. The importance of the

role of Stage 2 in the alignment pipeline (that we alluded to in section 3.1.2) is easy to understand

using Tables 3.8 and 3.9, especially in cases with high levels of facial occlusion and when it is not

apparent which seed landmarks have been accurately localized.

Tables 3.8 and 3.9 also list the final stage landmark localization accuracies that were obtained

when a rough pose estimate value for the facial images was made available using a commercial

face detection algorithm (the Pittsburgh Pattern Recognition (PittPatt) face detection algorithm).

All numbers in the tables were obtained by averaging over the set of images in each test set for

which the appropriate face was detected and a pose estimate was available. This pose estimate

value was binned into one of our M bins and used to select the most appropriate initial dense

shape for the refinement stage. As the tables show, our scoring method to select the best final

refined shape from among a pool of M ′ shapes often provided lower MNFE values than those

obtained using a single refined shape that was pre-selected based on a pose estimate value. Thus,

though the speed of fitting dramatically decreases if such contextual pose information is available,
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(a) (b) (a) (b) 

Figure 3.19: Examples from the COFW dataset of where the highest scoring facial shape deter-
mined using our approach, shown in columns (a), was not the best fitting shape and could have
been replaced with a better fitting facial shape that was not as highly scored, shown in columns (b).

it can lead to a propagation of error if the estimate is inaccurate and incorrect shape and texture

models are used from the outset as a result of this estimate.

We have also provided MNFE values for the best case scenario that can be obtained using our

approach. These values were obtained by comparing all finally refined shapes (not just the finally

picked highest scoring one) against the ground truths and choosing the shape with the lowest fitting

error. This indicates that an issue that can arise in our approach is at the final step when a single

set of landmarks has to be chosen from among the M ′ refined shapes and is an area for possible

improvement. Figure 3.19 shows some examples where the top ranked shape picked by our method

was less accurate than a slightly lower ranked shape that could have been picked. However, it is

important to note that since facial alignment is never carried out in isolation and is generally used

as a stage in a pipeline for carrying out a subsequent task, such as face recognition, building of

3D facial models, etc., it could also prove advantageous to have multiple facial alignment results

available (especially in cases involving high levels of occlusion, where a certain amount of sub-

jectivity is involved in the determination of the “optimal” locations for the landmarks) that can all

be used in the subsequent stage so that the best possible result can be obtained using one of these
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Table 3.10: Comparison of MNFE (%) values obtained by averaging over 25 landmarks on the
COFW test set, 68 or 39 landmarks on the MPIE test set, and 68 landmarks on all other test sets
using various shape regularization techniques with models trained on MPIE images.

Test Set
Ours Ours ASM Method

(`1-Regularized) (`2-Regularized) (PCA Based)
MNFE (%) MNFE (%) MNFE (%)

MPIE 5.15 5.24 5.81
LFPW 6.36 6.92 7.24
Helen 6.80 7.46 7.69
AFW 7.06 7.70 8.01
ibug 8.03 8.20 8.64

COFW 6.69 7.33 7.50

alignment results or manually selected through visual inspection.

3.2.5 Impact of Shape Regularization

We have already discussed the importance of shape regularization at the final stage of our approach

in 3.1.3 and in this section we provide experimental justification for our addition to the shape reg-

ularization stage. For each of the previously used datasets, we selected all images with an MNFE

(%) lower than 10% (computed using 25 landmarks on the COFW test set, 68 or 39 landmarks on

the MPIE test set, and 68 landmarks on all other test sets) and re-fit these images at the final shape

refinement stage using the shape regularization technique that has been used in prior ASM imple-

mentations and described in section 3.1.3, as well as by using an `2-regularized approach to solve

the problem in equation (3.19), instead of the problem in equation (3.18). Table 3.10 summarizes

the results obtained using these different shape regularization techniques and it is evident from

the table that our `1-regularized approach consistently provides more accurate results, albeit at an

increased computational cost, than both these approaches and serves to justify why our `1 based

shape fitting approach is an important contribution to the facial landmark localization procedure.
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3.2.6 Impact of Initialization on the Performance of Our Approach

We have previously mentioned the importance of the role of initialization (facial bounding boxes

provided as input) in the facial alignment process. While our approach is not equipped to perform

simultaneous face detection and landmark localization as TSMs and CDSM are, it does exhibit a

certain amount of tolerance to differences in the kind of bounding boxes used as input. In order

to demonstrate this, we used our approach to localize facial landmarks on images in the previ-

ously described AFW and LFPW test sets using 4 different initialization techniques: (1) using a

square crop around the manually annotated ground truths, (2) using the bounding boxes provided

along with these datasets by the organizers of the 300-W 2013 challenge that were obtained using

what was referred to as their “in-house face detector” (the same results were used for benchmark-

ing purposes in section 3.2.3), (3) using the face detection results provided by the face detector

described in [17] for which an open source DPM-based implementation is available [145], and

finally (4) using the face detection results provided by the Pittsburgh Pattern Recognition (PittPatt)

face detection algorithm.

When the experiment was conducted, a large region around the face of interest in each image

was cropped using the ground truth landmark annotations prior to bounding box generation by

WBW FD and the PittPatt face detector to avoid any ambiguities during the face detection process

and to ensure that a bounding box was generated around the “correct” face in the image (the

images in the AFW and LFPW test sets often contain more than one face and this approach ). A

square region was generated using the appropriately translated bounding boxes and scaled by a

factor of 1.5 to approximately match the crop generation process during the training stage of our

approach. The bounding boxes generated by PittPatt mandated a slight change to the seed landmark

search regions used in our implementation. Making this minor change to our code enabled it to

deal with varying bounding box initializations. For many alignment algorithms that require face

bounding boxes as input, such as DRMF, SDM, and RCPR, a fairly precise transformation (scale

and translation parameters) to transform the provided bounding boxes in order to better match
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Table 3.11: Comparison of the MNFE (%) and failure % values obtained by our approach (with
models trained on MPIE images) by averaging over 68 landmarks on the AFW and LFPW test sets
using various initialization techniques (facial region bounding boxes).

Test Set
Initialization LFPW AFW

Method MNFE Failure MNFE Failure
(%) (%) (%) (%)

Crop around ground truth landmark locations 6.81 7.6 8.78 22.7
In-House face detector [8], [9], [138], [139] 6.70 5.8 9.07 20.2

Face detector in [17] 6.92 7.6 9.26 25.9
PittPatt face detector 7.25 9.0 9.09 22.7

those used at the training stage would need to be determined and applied at the testing stage in

order to ensure their effectiveness when dealing with alternative bounding boxes (compared to the

ones used at the training stage). This is accomplished more easily in our approach. While our

approach cannot cope with extremely poor initialization (a crop around the face where the face

is too small or too large in relation to the crop, resulting in texture signatures that are completely

different from those acquired during the training process), a certain amount of tolerance is built in

due to the sequence of stages in our approach that are structured to specifically not make too many

assumptions regarding the bounding boxes.

Table 3.11 summarizes the results that were obtained using our approach in conjunction with

the various initialization methods and CED curves obtained are shown in Figure 3.20. As can be

seen from the results, our approach provides fairly consistent results using these different initial-

ization techniques in spite of the fact that only one of them (the crop generation using the ground

truth landmark locations) results in crops that are extremely close to those used at the training

stage. Beyond a point of course, the problem of poor initialization starts to become the problem

of face detection itself and one that a joint framework for accurate face detection and alignment

would be best suited to deal with, as discussed in section 7.1.5.
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Figure 3.20: Cumulative Error Distribution (CED) curves obtained using our approach with vari-
ous different initializations (facial region bounding boxes) on the (a) LFPW and (b) AFW test sets,
respectively. The initialization schemes used are: (1) a square crop around the manually annotated
ground truths, (2) the bounding boxes provided along with these datasets by the organizers of the
300-W 2013 challenge that were obtained using what was referred to as their “in-house face detec-
tor”, (3) using the face detection results provided by the face detector described in [17] (denoted by
WBW FD), and (4) using the face detection results provided by the Pittsburgh Pattern Recognition
(PittPatt) face detection algorithm.

3.3 Summary of Results and Contributions

An understanding of the roles of initialization and shape regularization to the landmark localization

process was gained through our initial work on automatic facial landmark localization [55], [56].

This prior work aided in the evolution of the facial alignment approach that we have presented in

this chapter. The facial alignment framework we have described is able to jointly deal with the

problems posed by facial pose, illumination, and expression variations, and the presence occlu-

sions. We also proposed the use of a shape dictionary and an `1-regularized LSP based approach

for shape regularization that ensured higher accuracy rates than those achieved by previously used

shape regularization techniques. Our approach is capable of handling a larger range of pose varia-

tion than many existing alignment algorithms and also provides misalignment/occlusion labels for

each fitted facial landmark, which is a desirable attribute that is quite uncommon in prevalent work.
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We demonstrated the superiority of our approach over several existing state-of-the-art algorithms

on challenging real-world datasets and also provided proof of its consistent performance across

varying facial pose, expressions, and occlusion levels. Details on the facial alignment approach

that we have described in this chapter and the results obtained using it can be found in [13].

It is to be noted that our approach is modular in nature and is built using a few stages that follow

in sequence. While we have demonstrated the efficacy of using a specific feature extraction tech-

nique, a particular classifier, certain evaluation metrics, and a particular regularization technique,

it is quite possible to use substitutes for them within the same framework to achieve acceptable

performance.

We now go on to detail results obtained when our alignment approach was used in conjunction

with a facial recognition algorithm (in chapter 4), used to enable and aid in analysis of challeng-

ing naturalistic driving videos (in chapter 5), and finally, also used to deal with the challenge of

localizing landmarks on low-resolution faces (in chapter 6).
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Chapter 4

Role of Facial Alignment in Face

Recognition

“Who is this guy anyway? Should I pass him on to facial recognition?”

Arlo Glass on 24 - Day 8: 10 : 00 P.M. - 11 : 00 P.M. (Season 8 Episode 7), and a recurring theme

on the show

The field of facial alignment has become extremely important primarily because of its absolute

necessity as a pre-processing step for carrying out facial recognition in a completely automated

scenario. As the area of face recognition has advanced from dealing with constrained frontal im-

ages of subjects exhibiting neutral expressions and acquired under good lighting conditions, to

dealing with more unconstrained real-world images, the field of facial alignment has had to grow

simultaneously or at an even faster rate in order to lay the groundwork to be able to recognize such

faces. For example, most state-of-the-art facial recognition engines can not match profile images

of a person (with an absolute yaw in excess of 60◦) against a gallery of images with subjects ex-

hibiting a different pose, however, several facial alignment algorithms have already emerged that

can deal with such pose variation [6], [13], [16]. In this chapter we provide some context for our
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work on facial alignment by demonstrating how the results obtained by it are quite acceptable for

a face reconstruction and recognition algorithm to perform facial matching on a large database

consisting of real-world images. In addition, we also determine how the face recognition accu-

racies are affected when alignment results obtained by state-of-the-art alignment algorithms (that

we benchmarked our approach against in section 3.2.3) are used as input. This serves to demon-

strate the impact that facial alignment results can have on face recognition, given a constant facial

recognition algorithm that, for all intents and purposes, can be treated as a black box.

4.1 Overview of Facial Recognition Algorithm Used for Evalu-

ation

Before we describe the experimental setup used to evaluate facial alignment results in a face recog-

nition scenario, it is necessary to provide a brief overview of the recognition algorithm used in

this context. The facial recognition algorithm used in our experiment was recently developed by

Prabhu and Savvides [18] and focused on developing a suitable unified facial representation to

deal with factors such as pose variation, partial facial occlusion, varying illumination conditions,

and image resolution, rather than the actual face matching process, which it accomplished using

previously existing techniques. The central premise of the work was to treat the problem of deal-

ing with real-world face acquisition conditions/degradations (pose, illumination, expression, facial

occlusions, and image resolution) as a missing or corrupted data problem in a suitable weighted

representation of the face. In this representation, appropriate weights could be assigned to missing

or untrustworthy data and thus these portions of the face could either be reconstructed using a mas-

sive pre-trained dictionary and used in a texture based matching process, or the coefficients used

to obtain the reconstruction could instead be directly used in the matching process, thus negating

the need for a synthesized reconstruction. Thus, the three steps in the facial matching process are

facial representation, recovery, and matching. We provide a summary of each of these steps using
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Figure 4.1: (a) The 79 point landmarking scheme used by the face recognition algorithm in [18]
and (b) The 79 landmarks overlaid on a facial image from the MPIE database.

notation and some technical terms in [18].

4.1.1 Facial Representation

A high resolution 3D facial scan of a subject with a neutral expression exhibiting frontal pose and

no illumination artifacts or facial occlusions can be considered to be a complete facial representa-

tion with complete textural and structural information. Any image not acquired under these ideal

conditions can be considered to be missing certain information. Hence, the idea of addressing the

challenges posed by image acquisition conditions or degradations as a missing data problem.

The first assumption made in this representation process is that the coordinates of a specific set

(referred to as a sparse set in [18]) of facial landmarks are available (either as manual annotations or

through use of an alignment algorithm). The facial landmarking scheme used in [18] is a 79 point

scheme that is depicted in Figure 4.1. The same set of landmarks was used in previous publications

by us on Modified Active Shape Models (MASM) and their applications [25], [27], [30], [43],

[44], [45], [55], [56], [146]. [18] reports extensive results using both manually annotated data as
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Figure 4.2: The multi-resolution modeling framework used in [18]. The Inter-Pupillary Distance
(IPD) of the face determined the grid density to be used to obtain vertices. Vertices that were
not sampled were filled with dummy values and set to have a weight of 0. This figure has been
reproduced from [18].

well automatically aligned data. A denser set of facial landmark coordinates (mesh densification)

was obtained using a Thin-Plate Spline (TPS) [147], [148] based interpolation approach. This

TPS based mesh densification improves on the conventionally used Loop Subdivision [149] based

densification by allowing for a more uniform distribution of vertices on the face and by ensuring

that the coordinates of the initial sparse set of fiducial landmarks are not altered.

The facial representation consisted of a measurement vector m = [xT yT zT gT]T in which

x, y, and z denote column vectors containing the x, y, and z coordinates of the vertices in

the representation, respectively, and g is a column vector of the corresponding texture indices

(grayscale pixel values are directly used in the work in order to represent texture). A weight vector

w = [wT
x wT

y wT
z wT

g ]T of the same length as the measurement vector was also maintained and
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Table 4.1: Details on the databases used to train the reconstruction system in [18]. This table has
been reproduced from [18].

Database Size Type Resolution
USF HumanID 3D Face Database [150] 218 3D High
Texas 3D Face Recognition Database [151], [152], [153] 1, 149 3D High
FRGC v2.0 Database [154], [155] 34, 696 2D High
Online Mugshots Database [156] 1, 000 2D Medium

contained confidence values (that lie between 0 and 1) of the corresponding observations in m. If

a particular measurement was missing due to a degradation, its measurement vector value in m

was set to a dummy value and its confidence value in w was set to 0. Varying methods (depending

on the type, degree, and measurement of the degradation) were used to compute these confidence

values. Details on how this confidences were computed can be found in [18].

The final detail that needed to be addressed in the representation was the issue of handling

different facial resolutions. The Inter-Pupillary Distance (IPD), computed using the initial sparse

set of landmarks, was used to determine facial resolution. For low-resolution images, a pyramid

based approach was used to determine the appropriate level of the pyramid that best corresponded

to the calculated IPD for the data, which determined the maximum number of entries that could

be populated in the measurement vector and the corresponding weight vector. The set of vertices

present at a particular pyramid level was a superset of the set of vertices in the pyramid level

immediately above it. The entire multi-resolution representation framework used is depicted in

Figure 4.2.

4.1.2 Recovery

The powerful representation technique that was previously described was augmented using suit-

able algorithms that could deal with the weighted data problem to recover the missing measure-

ment vector elements while preserving the confidently measured values. Domain knowledge was

preserved in these algorithms by training them on a large set of complete and incomplete faces
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using unsupervised learning. The training set used in [18] consisted of approximately 37, 000 data

items obtained from the USF HumanID 3D Face Database [150], the Texas 3D Face Recognition

Database [151], [152], [153], the FRGC v2.0 Database [154], [155], and the Online Mugshots

Database [156]. Details on the data available in each database can be found in Table 4.1. All train-

ing data was manually annotated according to the 79 point landmark convention and the finally

trained representation had a dimensionality of 70, 772 (composed of the grayscale pixel values, x,

y, and z coordinates of 17, 693 unique vertices).

Since most of the training data used was incomplete 2D data, the problem that needed to be

solved was one of learning from a large amount of high dimensional data but with significant

missing data elements, i.e., the goal was to learn a linear basis model B from the incomplete

training data to enable an accurate computation of a set of coefficients C in order to approximate

a data matrix M ≈ BC, assuming a linear model. By improving on the family of techniques

referred to by the term Generalized Hebbian Algorithm (GHA) (a stochastic descent algorithm

that converges to the principal eigenvectors of unweighted data), [18] proposed a Weighted GHA

(GHA) algorithm in order to solve the Weighted Low-Rank Approximation (WLRA) problem at

hand. In addition to this approach, an alternative sparsity based recovery technique that built on

theory from the K-SVD [157] approach was also proposed. This technique was called the Weighted

K-SVD (W-KSVD) approach. The WGHA basis in [18] consisted of 5000 basis vectors while the

W-KSVD basis contained 1000 basis vectors. The reader is referred to [18] for further details on

the construction of basis vectors using the proposed WGHA and W-KSVD techniques. It must

be noted that the W-KSVD approach was the one finally used in computing the basis vectors for

reconstruction in our experiment in section 4.2.

4.1.3 Facial Recognition

The final step in the facial recognition pipeline was to obtain matching scores between the gallery

and probe images using their respective recovered coefficients. [18] computed these matching
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scores using three different schemes. The first such scheme used was the Normalized Cosine Dis-

tance (NCD) measure. This is a completely unsupervised distance technique that simply computes

the distance D(c1, c2) between 2 sets of coefficient vectors, c1 and c2, using equation (4.1).

D(c1, c2) = 1− cT
1 c2

‖c1‖‖c2‖
(4.1)

The other two techniques used to compute similarity scores were the Class-Dependent Feature

Analysis (CFA) [158] and Large Margin Nearest Neighbor (LMNN) [159], [160] approaches.

However, these two techniques are not unsupervised in nature and were trained using the same

training data used for the construction of the basis vectors. The NCD measure (between basis co-

efficient vectors of the probe and gallery images) was the one that was used in our experiment in

section 4.2.

4.2 Impact of Facial Alignment on a Large-Scale Face Recog-

nition Experiment

The previously described face recognition algorithm was used by us in a large-scale face recogni-

tion experiment to demonstrate the role that facial alignment plays in a face recognition scenario.

The database used in this evaluation was the Labeled Faces in the Wild (LFW) database [59],

[60]. The LFW database contains 13, 233 images of 5, 749 individuals (mainly celebrities, such

as actors, politicians, and sports personalities), with 1, 680 of these individuals appearing in more

than two images. The images are of size 250 × 250 and consist of roughly centered faces, with a

facial region (a tight crop around the facial landmarks) roughly of size 115× 115, acquired under

real-world conditions with pose (moderate roll variation, yaw variation from −60◦ to +60◦, and

some slight pitch variation), illumination, and expression variations as well some images with fa-

cial occlusions. The database has been extensively used over the last few years for benchmarking
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various facial recognition algorithms. There are aligned versions of the database as well, such as

the funneled version [161], the LFW-a version, which uses an unpublished approach for image

alignment, and the deep funneled version [162], that have been observed to produce superior face

verification results than the original images for many algorithms. However, for our experiment ,

we utilized the original database images as the purpose of our experiment was to obtain alignment

results using various techniques and then observe the impact that these results had when using a

fixed facial recognition algorithm.

Our alignment approach as well as the previously mentioned (see section 3.2.3) AAM-Wild

[75], TSMs [6] (using the pre-trained and best performing Independent-1050 model), CDSM [16],

DRMF [95], and RCPR [11] algorithms were again used to localize facial landmarks in all the

LFW database images. Our models were trained on images from the LFPW (811 images from the

training set partition), Helen (2000 and 330 images from the training set and testing set partitions,

respectively), AFW (337 images), and ibug (135 images) datasets in addition to the previously

used 6, 495 MPIE training images (see 3.2.1). The same set of images were also used to train the

RCPR algorithm (trained using the optimal parameter values specified by the authors for training

on un-occluded images), in order to perform a fair comparison against this approach. The other

approaches could not be re-trained using these images due to a lack of availability of training code

and were thus deployed using their best performing pre-trained models.

As we did in our experiments in section 3.2.3, we provided appropriate initialization to each

of these approaches to ensure that the most accurate alignment results could be obtained using

them. For CDSM, the TSMs approach, and our approach, a face detection result was not required

for initialization as the LFW images are square in aspect ratio and generally contain the subject

of interest roughly in the center. Thus, our alignment approach was actually run in an extremely

unconstrained fashion compared to some of the other approaches and was still able to localize

landmarks with high accuracy, as we will show. The AAM-Wild approach was initialized using

a bounding box that was obtained using the convex hull of the landmarks localized by our ap-
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Figure 4.3: Qualitative landmark localization results produced by our approach on images from
the LFW database. In all facial images with landmarks overlaid on them, yellow dots are used to
indicate the locations of facial landmarks, blue line segments indicate that the landmark at their
center is accurately localized, and red line segments indicate that the landmark at their center is
misaligned or potentially occluded.
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Figure 4.4: An image from the LFW database showing the locations of the 10 landmarks for which
manually annotated ground truths are available.

Table 4.2: Performance of various algorithms on the LFW database with MFE, MNFE (%), and
failure % values computed using 10 landmarks.

Algorithm
MFE MNFE Failure

(%) (%)
Ours 3.96 6.50 3.69
RCPR 4.59 7.56 5.15
DRMF 4.57 7.50 6.00
CDSM 5.23 8.61 17.53
TSMs 6.69 11.15 39.99

AAM-Wild 11.35 18.73 78.68

proach as a reference, DRMF was again initialized by using an OpenCV implementation of the

Viola-Jones [144] face detection algorithm to provide bounding box initializations, and RCPR was

initialized using a bounding box around the convex hull of the landmarks localized by our approach

that was grown by 15% to match the bounding boxes that were used during its training process.

Results produced by our landmark localization technique on some images from the LFW database

are shown in Figure 4.3.

Ground truth (manually annotated) landmark locations for all images in the LFW database

have been made available by Dantone et al. [163] as part of their recent work on facial landmark
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Figure 4.5: Cumulative Error Distribution (CED) curves for various algorithms on the LFW
database obtained by averaging normalized fitting errors (%) over 10 common landmarks.

localization [86], [164]. However, only a sparse set of 10 landmarks were manually annotated.

The landmarks for which manual annotations are available are shown in Figure 4.4. As in section

3.2.3, the fitting errors (the Euclidean distance between the automatically fitted landmarks and

their corresponding manually annotated ground truth locations) produced by each approach were

normalized for each image using the distance between the outer corners of the eyes in the ground

truth annotations in order to report easily interpretable results that could be compared with those

obtained in 3.2.3 and with prior work. However, we also report the un-normalized Mean Fitting

Error (MFE) values (averaged over all images and landmarks in each image) as well, since these

values can provide some context too, as all images have the same resolution. As was the case in

section 3.2.3, we report results over (average over) only those images where the TSMs method

determined a set of 68 landmarks. The Mean Normalized Fitting Error (MNFE) of these fitting

errors, calculated by averaging the normalized fitting errors over all these images was again em-

ployed by us to serve as a metric for comparing the approaches. We also determined the failure

percentage (the percentage of the images fitted that have a normalized fitting error value of over

10%) for all approaches. Table 4.2 summarizes the performance of all the alignment approaches

using these metrics while Figure 4.5 shows the Cumulative Error Distribution (CED) curves (a plot
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of the fraction of facial images (plotted along the y-axis) found to have a normalized fitting error

(%) value lower than a certain value (plotted along the x-axis)) obtained for the various approaches.

As can be seen, the landmark localization accuracy obtained by our approach again surpassed the

accuracies obtained by the other approaches. However, since the number of landmarks for which

ground truth annotations are available is quite small, these results are presented more to serve as a

reference than to evaluate the landmark fitting accuracies of the approaches, which we already car-

ried out in section 3.2.3 in a thorough fashion on datasets specifically created to evaluate landmark

localization accuracies.

In order to use these alignment results in conjunction with the previously described facial recog-

nition algorithm, the landmarks localized had to be used to obtain a standard set of 79 landmarks

prior to being used as input. A TPS based warping and interpolation algorithm was used to ac-

complish this transformation from one landmarking scheme to the other. We do not report results

obtained using the SDM algorithm because this interpolation technique would place it at a dis-

advantage compared to the other approaches as it only localizes 49 interior facial landmarks and

determining the locations of the landmarks along the facial boundary using these interior land-

marks is prone to error. In addition to this, the open source SDM implementation [143] used in

section 3.2.3 was trained on images from the LFW database, unlike the other approaches, which

were not trained on these images. The additional input that was required for the face recognition

algorithm was an estimate of the facial yaw in each image. While some approaches (ours, TSMs,

CDSM, and DRMF) can provide coarse or fine estimates of the yaw and roll of annotated faces,

some of the other approaches do not provide these estimates (AAM-Wild and RCPR). However,

an open source implementation of a pose estimation algorithm that uses a 3D facial shape model

that is aligned with the coordinates of 66 (all landmarks in Figure 3.2 (b) except for landmarks 61

and 65) 2D facial landmarks in order to compute an estimate of yaw, pitch, and roll, is available

[165]. This algorithm was incorporated into the DRMF facial alignment algorithm by its authors

in order to enable the approach to also provide more accurate pose estimates. The use of this algo-
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Figure 4.6: Receiver Operating Characteristic (ROC) curves obtained using (a) the Face Recogni-
tion Algorithm (FRA) proposed in [18] with alignment results produced by various facial align-
ment algorithms as input and (b) various face existing recognition algorithms.

rithm allowed for a standard evaluation of all alignment approaches when used along with the face

recognition algorithm. The appropriate resolution model for the face representation was chosen

using the Inter-Pupillary Distance (IPD).

The recognition algorithm was now operating in a completely automated manner and was deal-

ing with pose, illumination, and expression variations as well as the presence of facial occlusions

in a completely unsupervised setting (as as no labeled training data was used at any stage (facial

alignment, representation, recovery, or coefficient generation) in the recognition pipeline). Thus,

the LFW evaluation protocol used was the unsupervised one.

The averaged (over 10 different folds) Receiver Operating Characteristic (ROC) curves ob-

tained using the different facial alignment approaches and the same fixed face recognition algo-

rithm are shown in Figure 4.6 (a). As can be seen, there is a gap in the recognition performance

obtained using the better performing alignment algorithms (RCPR, DRMF, and ours) and those

obtained using the other facial alignment approaches (AAM-Wild, TSMs, and CDSM). While the

use of DRMF and RCPR resulted in marginally better ROCs than the one obtained using our align-
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Table 4.3: Performance of various face recognition algorithms on the LFW database using the
unsupervised protocol. The performance measure is the Area under the ROC Curve (AUC).

Algorithm AUC
SD-MATCHES (LFW Funneled) [166] 0.5407
GJD-BC-100 (LFW Funneled) [166] 0.7392

AAM-Wild + [18] 0.7462
H-XS-40 (LFW Funneled) [166] 0.7547

TSMs + [18] 0.7734
LARK (LFW-a) [167] 0.7830
LHS (LFW-a) [168] 0.8107

CDSM + [18] 0.8405
Our Facial Alignment + [18] 0.8585

DRMF + [18] 0.8772
RCPR + [18] 0.8880

MRF-MLBP [169] 0.8994
Spartans [54] 0.9228

Pose Adaptive Filter (PAF) [170] 0.9405

ment approach, the gap in performance between our approach and these two approaches lies in

a very narrow band (approximately 2%). While we have already demonstrated that the landmark

localization accuracy obtained by our approach is superior to the accuracies obtained by these ap-

proaches, the tolerance of the facial recognition algorithm to facial alignment results (see [18])

meant that gains made on the accuracy on this front did not translate to exactly proportional gains

in facial recognition rates. In addition to this, it must also be kept in mind that the LFW unsu-

pervised face recognition protocol does not result in all images in the database being used for

evaluation. Finally, it must also be mentioned that DRMF and RCPR were provided with an ini-

tialization advantage, while our approach was able run on the images without the requirement of a

face detection bounding box.

For reference, we also provide a plot of the average ROC curve obtained using our alignment

approach in conjunction with previously used face recognition algorithm along with the average

ROC curves obtained using the best performing unsupervised techniques (some of which use the

LFW funneled or LFW-a data) in literature in Figure 4.6 (b). As can be seen, the combination of
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using our facial alignment results and the face recognition algorithm in [18] is quite competitive

with state-of-the-art algorithms and is only outperformed by the Spartans [54], Pose Adaptive Fil-

ter (PAF) [170], and the MRF-MLBP [169] techniques, and this would not be the case if alignment

results obtained using TSMs or CDSM were used. For the unsupervised protocol, the Area Under

the ROC Curve (AUC) value, and not the mean classification accuracy, serves as a metric to mea-

sure performance as there is no legitimate way to select a threshold for the results without using

labels or label distributions. These AUC values obtained by the various state-of-the-art recogni-

tion algorithms as well as the face recognition algorithm in [18] in conjunction with the different

facial alignment algorithms can be found in Table 4.3. The values in the table again demonstrate

how much of an impact facial alignment results can have on a particular (fixed) face recognition

algorithm.

83



84



Chapter 5

Application of our Facial Alignment

Algorithm to Analysis of Naturalistic

Driving Videos

“My sensors indicate you’re somewhat disturbed, Michael.”

The Knight Industries 2000 (K.I.T.T) on Knight Rider - K.I.T.T the Cat (Season 2 Episode 7), and

a recurring theme on the show

In this chapter, we apply our facial alignment algorithm (described in chapter 3) to the problem

of landmark tracking across the frames of challenging videos that have been recently released. The

videos used for evaluation were acquired as part of a Naturalistic Driving Study (NDS) commis-

sioned by the Federal Highway Administration (FHWA) [61] in order to aid with research targeted

at assessing driver behavior and improving driver safety using computer and vision and machine

learning algorithms. As part of our efforts to assist with this goal, we carried out experiments to

demonstrate the efficacy of our facial alignment algorithm when applied to videos, the task of head

pose estimation, and the determination of whether a cell phone was being used or not by subjects
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in the various videos.

5.1 Introduction

The number of deaths due to distractions caused during driving are on the rise, not just in the US

but across the world. In 2013, 3, 154 people lost their lives and an estimated 424, 000 were injured

in the US due to a distracted driver [171]. Distraction due to cell phone usage constitutes a sizable

portion of the statistic with 18% of the incidents involving cell phone usage in 2009. In order to

study the more general problem of driver behavior, the Federal Highway Administration (FHWA)

recently recorded over 3, 100 videos of volunteer drivers under naturalistic driving scenarios [172]

over a period of 2 years under the Strategic Highway Research Program 2 (SHRP2) [173] program

using a custom Data Acquisition System (DAS) developed by the Virginia Tech Transportation

Institute [174], [175]. The database [176], [177] size exceeds 2 Petabytes and contains over one

million hours of footage that is unmatched in its size, scale, and real-world acquisition condi-

tions in the transport community. However, it poses several challenges to researchers in the field.

Firstly, the data suffers from low-resolution artifacts and widely varying illumination conditions.

Secondly, due to its size, manual analysis and the providing of ground truths for all frames in the

video footage is infeasible. To address both issues the FHWA commissioned an exploratory project

that challenged researchers in university and industry to develop computer vision and machine

learning based algorithms that were capable of processing such challenging naturalistic driving

videos and detecting signs of tiredness in drivers, cell phone usage by drivers, tracking head pose,

monitoring if the driver had both hands on the steering wheel, etc. [62]. The driver monitoring

algorithms developed could be useful in automating the process of annotating the videos that have

already been collected or collected during a future study or for deployment in a real-world scenario

for driver monitoring as part of a law enforcement effort or to automate

It is in this context that our work aims at addressing the specific problems of head pose esti-
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mation and of detecting whether a driver is holding a cell phone in one hand and using only one

hand to control the steering wheel of a vehicle. These tasks are both easily carried out if accurate

facial landmark localization is carried out on a frame by frame basis in such videos. This ties in

quite well with the work we have described in chapter 3, as we are able to easily extend our facial

alignment algorithm from annotating still images to localizing the same set of facial landmarks in

videos by using information from previous frames to aid the localization process in future frames.

The rest of this chapter is organized as follows. Section 5.2 provides details on the specific

database that was the focus of attention in our experiments and evaluations. Following this, sec-

tion 5.3 goes into details of how our facial alignment was suitably modified for localizing facial

landmarks in the frames extracted from the videos in the database. This section also reports the

facial landmark accuracies that were obtained using our approach and benchmarks them against

results obtained using a commercial face detection and landmark localization algorithm. Sections

5.4 and 5.5 respectively provide context for these results by using the landmark localization results

for the tasks of head pose estimation and the determination of whether the subjects in segments of

the various videos were using a cell phone, i.e., holding it up to one of their ears and thus keeping

only one hand on the steering wheel of a car, or not. Finally, section 5.6 provides a summary of

our contributions in this chapter, offers some concluding remarks, and highlights some possible

research directions to pursue in future work.

5.2 Details on the Data Used in Our Studies

Full sharing of the previously mentioned SHRP2 NDS data is difficult due to privacy constraints

regarding the possible identification of the subjects who participated in the data acquisition from

the GPS coordinates of the start and end of trips and the face view videos. However, an alternative

dataset is available at no charge to researchers under a less restrictive data sharing agreement. This

dataset, referred to as the Head Pose Validation (HPV) dataset, is similar to the SHRP2 NDS data
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Figure 5.1: The setup of the DAS head unit and cameras that was used for acquisition of the Head
Pose Validation (HPV) data. This image has been reproduced, with some minor changes, from a
document providing an overview of the head pose validation data that was obtained after signing
a data sharing agreement. Certain portions of the image have been covered with black patches in
order to prevent the dissemination of any information that is not to be made public under the terms
of the data sharing agreement.

and was recorded by VTTI to measure head pose in drivers and the evaluate different head pose

estimation techniques, such as VTTI’s mask system.

The platform for collecting the HPV data was a 2001 Saab 9 − 3 equipped with two propri-

etary Data Acquisition Systems (DAS). The collected data included digital video, GPS position

and heading, acceleration, rotation rates, and ambient lighting collected at rate that varied from

varied from 1Hz to 15Hz. The DAS units also collected data produced by the mask system. The

participant was seated in driver’s seat of the car and an experimenter (equipped with a laptop) was

present with the participant. The experimenter supervised data collection and provided guidance to

the participant. A hand-held trigger connected to one of the DAS units allowed the experimenter

to annotate the DAS data stream whenever an event of interest occurred. In order to collect the

participant’s face view videos, a camera was mounted below the rear view mirror, as shown in

Figure 5.1.
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Figure 5.2: A frame from one of the 720 × 480 “full face view” videos that is not a part of the
finally released HPV dataset and can be found on the InSight data access website [19]. This image
has been reproduced from a document providing an overview of the HPV data that was obtained
after signing a data sharing agreement.

Figure 5.3: A sample frame showing the standard SHRP2 video views recorded by the SHRP2
configured Data Acquisition System (DAS). The frame in this figure was taken from videos that
are not a part of the finally released HPV dataset. This image has been reproduced from a document
providing an overview of the HPV data that was obtained after signing a data sharing agreement.
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(a)

(b)

Figure 5.4: Sample SHRP2 face view video frames from videos acquired during the (a) daytime,
(b) night. The frames are from videos that are similar to, though not part of, the videos in the HPV
dataset and can be found on the InSight data access website [19]. The frames serve to illustrate the
challenging nature of the HPV videos.

One of the DAS units collected a single channel of minimally compressed (resolution of 720×

480), full face digital video at 15 frames per second. These videos are referred to as “full face

view” videos and a frame from one such video which is not a part of the finally released data

is shown in Figure 5.2. The other DAS unit collected standard SHRP2 videos. The two video

streams were aligned using GPS timestamps that were recorded. The SHRP2 videos comprise of

four channels of video, forward view, face view (resolution of 356 × 240 with the typical face

region (a square region enclosing the convex hull of the facial landmarks of interest) in the frame

of size 65 × 65), lap and hand view, and rearward view, recorded at 15 frames per second and

cropped and compressed into a single quad video, as shown in Figure 5.3. It is the SHRP2 face

view videos in the HPV dataset that we focused on in our work.

Some of the SHRP2 videos were acquired when the participant was seated in a stationary ve-

hicle (static trials), while others were acquired when the participant was driving (dynamic trials).

The environmental conditions (time of day) also varied in the videos and some were captured dur-

ing the day, others at night, and the remaining during a transition period from daylight conditions
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to nightfall. Sample SHRP2 frames from videos that are not part of the released HPV dataset but

are of the same resolution and acquired using a similar setup are shown in Figure 5.4. As can

be seen, the videos pose quite a challenge to face detection and landmark localization algorithms

due to the varying illumination conditions, presence of facial occlusions (hands covering the face,

presence of glasses and sunglasses, etc.), and the extreme pose variation (roll, yaw variation from

−90◦ to +90◦ and sometimes even beyond this range, and pitch variation during the performance

of certain tasks). While the videos acquired at night contain significantly less light, as illumination

is provided by infrared LEDs on the DAS in these videos, the daytime and transition videos pose a

significant challenges due to the sometimes harsh glare present due to sunlight. In the static trials,

the data was acquired in a research lot at VTTI with each of the 24 participants asked to perform

a series of glances to predefined locations (such as the left window or mirror, forward windshield,

center console, etc.) or to simulate a brief cell phone conversation. Each static trial participant was

asked to wear four pairs of eyeglasses (including a pair of sunglasses) and a baseball cap and com-

plete the glancing and cell phone simulation tasks under these varying conditions. The dynamic

trials were conducted on a predefined route that was approximately 15 miles long and included a

variety of road types around Blacksburg, Virginia. Over the course of the drive, each of the 24 par-

ticipants were asked to perform various tasks that included reporting the vehicle’s speed, turning

the radio on and off, locating a cell phone in the center console and completing a brief simulated

cell phone conversation, etc.. The prompted tasks were completed at roughly the same location on

the route for each of the participants and were completed only if the participant felt safe in carrying

them out.

This video data as well as additional data, such as kinematic data, static and dynamic vehicle

segments, details on the participants (sex, skin tone, presence of facial hair, etc.), manually labeled

ground truth locations for seven facial landmarks for the video frames in several trip segments,

head pose estimates for frames in some video segments, details on the tasks performed by the

participants during the static and dynamic trials (on certain segments of the videos), etc. is what
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constitutes the full HPV dataset. Out of the 48 videos, data for 2 of the static trials and 2 dynamic

trials are being withheld (to be possibly released at a future date), bringing the total number of full

face view videos (and associated data) in the released dataset to 44. However, the total number of

SHRP2 face view videos in the released data which we worked with, referred to as the “clipped”

data, is 41 with 20 videos (and associated data) acquired from static trials and 21 videos (and asso-

ciated data) acquired from dynamic trials. It is to be noted that only the data that does not contain

personally identifying information has been released publicly. Access to personally identifying

data, such as the SHRP2 videos, is governed by a data sharing agreement. For this reason, any

figure in this chapter containing the face of a subject who participated in the trials and whose video

appears in the full face view videos set or the set of SHPR2 videos in the HPV dataset has been

masked out using black patches. To illustrate our approach, we sometimes use frames from similar

(SHRP2 quality) videos obtained from the InSight data access website [19], which do not have

such restrictions governing use.

5.3 Facial Landmark Localization in Video Sequences

5.3.1 Related Work

Tracking of facial landmarks in video sequences has been carried out in the past alongside facial

alignment in still images using suitable extensions or modifications. The common tools used for

this were AAMs, ASMs and Kalman filters [178], [179], which have also been used in conjunction

for tracking of different objects in video sequences, most commonly, human contours. Baumberg

and Hogg [180] proposed a method for such an application by tracking the shape coefficients of

an ASM independently and attained a speed up in fitting due to this. Baumberg built on this work

and proposed a more efficient tracking method that utilized knowledge gained from the Kalman

filtering process in order to not only initialize an ASM but also improve the search direction when
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determining the most suitable location for a landmark [181]. Lee et al. [182] achieved real time

tracking of human contours using a hybrid algorithm that predicted the initial human outline using

Kalman filtering in combination with block matching and a hierarchical ASM to perform model

fitting.

In the field of tracking facial landmarks, Ahlberg [183] proposed a near real-time face tracking

method that used an AAM. Pu et al. [184] reported results obtained using an ASM in combination

with a mean shift based method [185] and a Kalman filter to obtain a bounding box around the

face and hence initialize the ASM in every frame. Prabhu et al. [146] built on some of these

ideas to perform tracking of individual facial landmarks, not just the face bounding box, using a

Modified Active Shape Model [55] and Kalman filters. They proposed two tracking approaches.

The first approach used a constant acceleration model, described in [179], to track the locations

and velocities of the individual facial landmarks, once MASM had localized them in the first

frame of the video sequence. The second approach tried to account for the correlated motion of

the landmarks and rather than rather than tracking the landmark locations themselves, aimed at

tracking parameters that affect these positions. These parameters consisted of the translation of the

mean of all landmarks in the image, the rotation angle of the face, the size of the face, and some of

the dominant PCA coefficients of the facial structure. Using estimates of the tracked components

and the remaining PCA coefficients, the coordinates of all landmarks were reconstructed.

In recent years, some of the state-of-the-art facial alignment algorithms that we have described

in chapter 2, such as SDM [96] and CDSM [16], have also demonstrated the capability to process

video feeds by simply using alignment results from the previous frame as initialization for subse-

quent frames. While this approach, and indeed all the previously mentioned approaches, can be

acceptable for constrained videos, there is a fundamental flaw that exposes them when dealing with

unconstrained videos in which a subject exhibits rampant pose variation or when facial occlusions

are present. This flaw is error propagation. Without a mechanism in place to determine when

initialization from the previous is poor, when a face has been completely lost or is not present
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in the frame at all, or when the limits of pose tolerance have been reached (SDM, for example,

does not handle absolute yaw in excess of 45◦), it is not possible to know when a re-initialization

(face detection followed by all steps in the respective facial alignment pipeline) is required. This

is something that our approach is able to address using the occlusion/misalignment labels that are

determined for each landmark in every frame. In addition to this, our approach is also equipped to

seamlessly shift between determining a particular set of landmarks (68 points) for frontal faces and

an alternative set of landmarks (39 points) for profile faces. This is quite a challenging problem for

most tracking approaches to deal with as the fundamental assumption made is that the number of

points being tracked is the same. Thus, our framework for video-based facial alignment is an ex-

tremely general one that make minimal assumptions regarding the presence of occlusions, changes

in scene or aspect ratio (zooming in or out), pose changes of the subject, etc.and is equipped to

deal with all of these factors because of the minimal assumptions it makes when dealing with still

images. Our approach is described in section 5.3.2 and we go on to detail results produced using it

in section 5.3.3.

5.3.2 Our Approach

We are able to extend our previously described facial alignment algorithm (described in chapter

3) to enable landmark localization in frames extracted from videos. The main feature that we take

advantage of to enable this is the fact that our approach provides confidence scores and misalign-

ment/occlusion labels for all localized landmarks. This allows us to ascertain the goodness of fit of

all landmarks on a particular frame and makes it easy to determine whether these landmarks can be

used as initialization for the face in the next frame or not. Consider a frame It in a video sequence

{It}Tt=1 with T frames. The goodness of fit gt−1 for the previous frame It−1 is calculated using

equation (5.1), in which N inliers
t is the number of inliers (accurately localized) landmarks among
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Algorithm 2 Facial alignment in video sequences using our approach.
Input: Video frames {It}Tt=1 and pre-trained yaw and expression specific models {Mm}16

m=1

Output: Final landmark locations for all frames {st}Tt=1 and associated misalignment/occlusion
labels {ot}Tt=1

for t = 1, . . . , T do
if (t == 1) then

Run face detector on frame It
Run all stages of alignment algorithm using all models

else
if (gt−1 > THRESH 1) then

Run refinement stage of alignment algorithm using modelsmt−1−1, mt−1, andmt−1 +1
else if ({gt′}tt′=t−5

> THRESH 2) then
Run face detector on frame It
Run all stages of alignment algorithm using models mt′ − 1, mt′ , and mt′ + 1

else
Run face detector on frame It
Run all stages of alignment algorithm using all models

end if
end if
Save landmark localization results st, misalignment/occlusion labels ot, pose index mt, and
goodness of fit gt (calculated using equation (5.1)) from best fitting model for frame It

end for
Output {st}Tt=1 and {ot}Tt=1

the set of landmarks Nt localized in frame It.

gt =
N inliers
t

Nt

(5.1)

If gt−1 for frame It−1 exceeds a certain threshold THRESH 1 (set to 0.55 in our work), then

the results from this frame can be used for shape initialization on frame It. This saves a lot of

computation time during the fitting process on this frame as only the shape refinement stage (and

not the sparse landmark determination step and dense shape evaluation steps) of our alignment

pipeline needs to be carried out. In addition, since information on the most suitable pose model

mt−1 is available for frame t − 1, only models mt−1 − 1, mt−1, and mt−1 + 1 need be evaluated

on frame It. In case the goodness of fit for frame It−1 falls below THRESH 1, then it is assumed
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Figure 5.5: An SHRP2 face view video frame from a video that is not a part of the released HPV
dataset and can be found on the InSight data access website [19] that shows the locations of the
7 landmarks for which manually annotated ground truths are available on some frames from the
HPV SHRP2 face view videos.

that the presence of facial occlusions have caused this or that misalignment has occurred for other

reasons. In such cases, a new shape initialization (using a face detection result) must be determined

for frame It. If a high confidence alignment (with a goodness of fit value that exceeds THRESH 2,

set to 0.60 in our work) can be found among the previous 5 to 10 frames, then the pose model mt′

from this frame t′ is saved and used on frame It with the the sparse landmark determination, dense

shape evaluation, and shape refinement stages of our approach carried out on frame It using only

models mt′ − 1, mt′ , and mt′ + 1. In the event that this too is not possible, the algorithm resets to

treating the current frame like it did the first frame, with no knowledge regarding facial bounding

box location or pose information, and a face detection step followed by all stages in our facial

alignment framework are carried out in order to localize the appropriate landmarks. Algorithm 2

summarizes this video fitting process.

5.3.3 Results

Our approach was tested on all 41 SHRP2 face view videos in the HPV dataset. In order to en-

sure better trained shape and texture models, our models were trained on images from the LFPW
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Figure 5.6: Qualitative landmark localization results produced by our approach on frames from
a video that is similar to, though not part of, the videos in HPV dataset and can be found on the
InSight data access website [19]. In all facial images with landmarks overlaid on them, yellow
dots are used to indicate the locations of facial landmarks, blue line segments indicate that the
landmark at their center is accurately localized, and red line segments indicate that the landmark
at their center is misaligned or potentially occluded (goodness of fit feedback). The same color
scheme is maintained in all figures that show facial alignment results produced by our approach in
this chapter. Zoom in to see details.
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Figure 5.7: Qualitative landmark localization results produced by our approach on frames from
a video that is similar to, though not part of, the videos in HPV dataset and can be found on the
InSight data access website [19]. Zoom in to see details.
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Figure 5.8: Qualitative landmark localization results produced by our approach on frames from
a video that is similar to, though not part of, the videos in HPV dataset and can be found on the
InSight data access website [19]. Zoom in to see details.
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Figure 5.9: Qualitative landmark localization results produced by our approach on frames from
a video that is similar to, though not part of, the videos in HPV dataset and can be found on the
InSight data access website [19]. Zoom in to see details.
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(811 images from the training set partition), Helen (2000 and 330 images from the training set and

testing set partitions, respectively), AFW (337 images), and ibug (135 images) datasets in addition

to the previously used 6, 495 MPIE training images (see section 3.2.1), as was the case in section

4.2, in which our alignment approach was used to localize landmarks that served as input to a

face recognition algorithm. We used the commercial Pittsburgh Pattern Recognition (PittPatt) face

detection algorithm for face detection on all frames where this was required for initialization. In

all, a total of 911, 018 frames were processed in an extremely large-scale experiment. Due to the

challenging illumination conditions (low light conditions, excessive glare, or transition from day-

light to night) in the videos, several frames could not be annotated as the face detection algorithm

failed to find a face in them and results from previous frames could not be used for initialization.

In addition to these frames, several frames did not contain a face as the subject in the videos had

stepped out of the car or had turned his/her head to an extent that no facial features were visible.

It must be noted that manually annotated ground truth landmark locations and head pose esti-

mates are available for only a small fraction of the total frames in the videos (approximately 7%)

that occur consecutively for short periods during the videos (usually when an event of interest oc-

curs). These ground truth coordinates were determined by video reviewers (reductionists) on the

high resolution 720× 480 full face view videos and transferred to the low-resolution SHRP2 face

view videos using appropriate post-processing. These frames were annotated by two reductionists

trained to follow a fixed protocol for consistency. Reliable guesses were used when a landmark was

not clearly visible (due to an occlusion or challenging illumination conditions) and the landmark

coordinates were recorded as missing when a best guess could not be made. Manual annotations

(ground truths) for only a maximum of 7 such landmarks, shown in Figure 5.5, were available for

all these frames.

Some results produced by our landmark localization technique on frames from videos that are

not part of the HPV SHRP2 face view videos set but are quite similar in resolution and acquisition

conditions are shown in Figures 5.6 - 5.9. As can be seen, our approach is quite robust to the

101



Table 5.1: Landmark localization performance of our approach and the baseline on frames from all
static trial videos in the HPV SHRP2 face view video set. MFE and MNFE values were computed
using the landmarks common to those localized by the approaches and the manually provided
ground truths over all frames for which coordinates of landmarks from both approaches and the
ground truth coordinates were available.

Algorithm
Time of Total Frames Ours Baseline

Day Frames Evaluated Frames MFE MNFE Frames MFE MNFE
Annotated (%) Annotated (%)

Day 150, 352 12, 121 131, 181 2.93 9.67 117, 510 3.45 11.46
Transition 109, 385 11, 177 100, 647 2.99 10.44 102, 422 2.86 9.95

Night 86, 959 8, 471 72, 927 3.78 12.47 74, 353 2.91 9.58

Table 5.2: Landmark localization performance of our approach and the baseline on frames from
all dynamic trial videos in the HPV SHRP2 face view video set. MFE and MNFE values were
computed using the landmarks common to those localized by the approaches and the manually
provided ground truths over all frames for which coordinates of landmarks from both approaches
and the ground truth coordinates were available.

Algorithm
Time of Total Frames Ours Baseline

Day Frames Evaluated Frames MFE MNFE Frames MFE MNFE
Annotated (%) Annotated (%)

Day 264, 735 7, 018 236, 866 2.92 10.06 225, 587 2.96 10.16
Transition 137, 175 3, 474 120, 547 3.08 10.75 123, 837 2.96 10.35

Night 162, 412 4, 121 140, 250 4.25 14.00 144, 804 3.37 11.24

changes in head pose and the presence of facial occlusions in these videos. In some cases, our

approach also demonstrated a tolerance to pitch variation, which is creditable considering that it

was not explicitly trained on many images with such variations. Such results could be explained

by the accurate initialization provided from previous frames and would be harder to obtain on still

images with no contextual information.

In addition to these qualitative results, we also provide quantitative results of the landmark lo-

calization accuracy obtained by our approach on a fraction of the video frames for which ground

truth annotations were available. We also provide results obtained using the PittPatt face tracking

and landmark localization software, that serve as a baseline. This algorithm was run in serial track-
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ing mode on the videos in order to improve face detection and landmark localization accuracies by

tracking the face in the frames over time. Results obtained using this approach [186] were made

available to us as we were involved with carrying out research for the previously mentioned FHWA

exploratory project. PittPatt localizes a maximum of 3 landmarks that are common to our approach

and the ground truths (the centers of the eyes, obtained by taking the mean of the respective eye

corner coordinates, and the tip of the nose) and does not always provide an output indicating their

locations for each frame. This posed a standardization problem to us when reporting results and

thus we report results obtained by averaging the Euclidean distances between the coordinates of

the landmarks common to those localized by the two algorithms and the ground truths over frames

where all three sets of coordinates were available (2 landmarks for profile faces and 3 for all other

cases). Our results are grouped into categories based on the circumstances under which the videos

were captured (static or dynamic trials and day, transition, and night conditions).

Tables 5.1 and 5.2 summarize all results of this experiment and report landmark localization

error values for the two algorithms on a subset of frames over which both algorithms localized

a set of common landmarks and for which ground truths were also available on the static and

dynamic trial videos, respectively. The results in both tables are also organized based on the time

of acquisition (day, transition, and night). As the tables show, the number of frames over which

the errors were computed (frames evaluated) is much smaller than the total number of frames

in the videos or the number of frames over which both algorithms successfully localized facial

landmarks (frames annotated) due to the limited number of manually annotated frames (frames

with ground truth coordinates for facial landmarks). The landmark localization error metrics used

in the tables are the Mean Fitting Error (MFE) values computed as the Euclidean distance between

the coordinates of the landmarks that were automatically localized and the ground truth coordinates

and averaged over all landmarks and frames and the Mean Normalized Fitting Error (MNFE) of

these fitting errors obtained by normalizing using the average eye center to mouth corner distance

(the same normalization distance that was used in section 3.2.3 when reporting results obtained on
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the MPIE test set).

The landmark localization error values (both MFE and MNFE) are quite similar for both ap-

proaches and is a reflection of the fact that they are reported by averaging over errors in localizing

only 2 or 3 landmarks and the low resolution of the video frames. A very small pixel error translates

to a large MNFE value as the normalization distance is quite small (typically around 30 pixels).

In addition, these values were computed only using frames where ground truth annotations were

available, which generally corresponded to cases when the subject’s face was not heavily occluded

and during events of interest, where excessive pose variation may not have been manifested. Thus,

the actual landmark localization values are less important than the trends that they help to establish

regarding the challenges posed by the time of acquisition of the videos (day, transition, or night)

and the nature of the trials (static or dynamic). The more relevant statistic is the number of frames

that were successfully annotated using our approach as compared to the baseline. In the static and

dynamic videos that were acquired during the day, which constitute a majority of the frames, our

approach was able to localize landmarks in far more frames than the PittPatt tracker. This is a

significant result as it demonstrates the robustness of our approach to the challenging illumination

changes, sudden changes in head pose, and the presence of facial occlusions (especially in the

static trial videos, when subjects wore baseball caps, sunglasses, etc. at different points during the

videos) that are frequently encountered in these videos. It must be kept in mind that the PittPatt al-

gorithm is only able to localize a sparse set of landmarks unlike our approach, and does not always

provide outputs indicating the locations of all of them, even if a face is detected in a frame. It must

also be noted that our approach used the PittPatt face detection algorithm for initialization and for

detecting faces in frames where the alignment result from the previous frame was not suitable for

initialization purposes on the following frame. Thus, the gains made by our approach on the num-

ber of annotated frames are primarily a result of its using the previous frame for initialization (thus

not requiring a face detection result) and its tolerance to excessive pose variation and the presence

of facial occlusions.
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Table 5.3: Landmark localization performance summary of our approach and the baseline on all
frames from the videos in the HPV SHRP2 face view video set. MFE and MNFE values were
computed using the landmarks common to those localized by the approaches and the manually
provided ground truths over all frames for which coordinates of landmarks from both approaches
and the ground truth coordinates were available.

Algorithm
Total Frames Ours Baseline

Frames Evaluated Frames MFE MNFE Frames MFE MNFE
Annotated (%) Annotated (%)

911, 018 46, 382 802, 418 3.23 10.89 788, 513 3.09 10.46

From Tables 5.1 and 5.2, it is clear that the videos acquired at night (under low light conditions)

and under transitional lighting (between day and night) posed quite a challenge to both face detec-

tion and landmark localization algorithms with a lower percentage of the total frames annotated for

these videos in both the static and dynamic trial cases compared to the videos acquired during the

day. Regardless of this, as Table 5.3, that summarizes the same landmark localization and frame

annotation results for the two approaches over all 911, 018 processed frames, demonstrates, our

approach was able to localize landmarks in a higher percentage of frames than the PittPatt tracker.

5.4 Head Pose Estimation

Monitoring driver head pose can be particularly useful as this information can be used to ascertain

driver state and where his/her attention is directed. For example, looking down while driving (either

due to drowsiness or distraction) could prove dangerous. For these reasons, research focused on

developing automated algorithms capable of estimating the head pose of drivers was deemed to be

quite important by the FHWA. In this section we provide details on the results that were obtained

when the landmarks localized by our approach (see section 5.3.3 for details on these alignment

results) were used to estimate the head pose of subjects in the various HPV SHPR2 face view

videos. The head pose coordinate system used in the study is shown in Figure 5.10
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Pitch 
Roll 

Yaw 

Figure 5.10: Head pose coordinate system used in the HPV dataset showing what yaw, pitch, and
roll refer to. A positive yaw is indicated when the driver in the video turns to his/her right, a
positive pitch is indicated when the driver looks down, and a positive roll is indicated when the
driver’s head tilts to his/her left. This image has been reproduced, with some minor changes, from
a document providing an overview of the HPV data that was obtained after signing a data sharing
agreement.

5.4.1 Results

As was the case with the facial landmark localization comparisons, ground truth head pose esti-

mates are available only for a small fraction of the total frames in the videos (only for frames in

which all 7 previously mentioned facial landmarks were visible and could be manually annotated).

These ground truths estimates were obtained by using the 7 manually annotated landmark coor-

dinates and facial feature measurements of participants in conjunction with landmark based pose

estimation algorithms. The method outlined by Gee and Cipolla in [47] was used to determine the

pitch, while the method outlined by Horprasert et al. in [48] was was used to determine yaw and

roll. The former uses the corners of the eyes, the tip of the nose, and the corners of the mouth,

106



in conjunction with predefined values for the ratios of distances between these points (based on

a typical human face), in order to produce estimates for the pitch and yaw of the face, while the

latter approach uses the coordinates of the corners of the eyes and the tip of the nose, along with

anthropometric data and the coarse structure of the face, to determine facial orientation relative to

the camera plane.

As described in section 5.3.3, facial landmark coordinates for most of the frames in the 41

SHRP2 face view videos in the HPV dataset were automatically determined using our approach

and a baseline was determined using the PittPatt algorithm. The PittPatt algorithm also provides

fairly precise head pose estimates for yaw and roll, with pitch always determined as 0◦. Our

facial alignment algorithm can only provide accurate estimates of the roll angle (which can be

trivially calculated as the angle between the corners of the eyes or by using two other landmarks

and determining the difference between this angle and its typical value for a roll of 0◦) and coarse

estimates of yaw, based on the index m (that corresponded to a particular range of yaw variation)

of the model that resulted in the most confident shape output (see section 3.1.3). However, the

landmarks localized by our approach can be used to determine more precise yaw and even pitch

estimates using previously developed approaches. The first approach we used in such a fashion

was the geometric based method described by Gee and Cipolla in [47]. The second approach we

used was one that has been incorporated into the previously described DRMF [95] facial alignment

algorithm by its authors and uses a 3D facial shape model that is aligned with the coordinates of 66

(all landmarks in Figure 3.2 (b) except for landmarks 61 and 65) 2D facial landmarks in order to

compute pitch, yaw, and roll estimates. An open source implementation of code to carry out pose

estimation using this algorithm is available [165]. We previously used this algorithm and code

to obtain more precise yaw estimates from the landmark localization results produced by various

alignment algorithms in order to provide this additional input to a face recognition algorithm in

section 4.2. Thus, three head pose estimates obtained directly (coarse yaw estimates provided by

our alignment algorithm with pitch determined as 0◦) or indirectly (using the previously described
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Table 5.4: Performance of various facial landmarks (obtained using our alignment approach) based
head pose estimation techniques and the baseline on frames from all static trial videos in the HPV
SHRP2 face view video set. Mean Absolute Error (MAE) values for pitch, yaw, and roll, separated
by commas and in this order in the table, were computed by considering all frames for which head
pose estimates from both approaches and the ground truth coordinates were available.

Algorithm
Time of Total Frames Ours (Coarse) Ours + [165] Ours + [47] Baseline

Day Frames Evaluated MAE MAE MAE MAE
(◦) (◦) (◦) (◦)

Day 150, 352 14, 572 9.04, 9.24, 2.64 9.54, 5.32, 4.13 10.72, 6.46, 2.64 9.04, 6.83, 2.93
Transition 109, 385 10, 319 13.03, 9.60, 3.45 12.38, 5.28, 5.91 12.85, 6.08, 3.45 13.03, 4.97, 2.14

Night 86, 959 6, 927 9.32, 11.68, 4.15 11.15, 6.49, 5.26 11.44, 7.26, 4.15 9.32, 5.80, 2.02

Table 5.5: Performance of various facial landmarks (obtained using our alignment approach) based
head pose estimation techniques and the baseline on frames from all dynamic trial videos in the
HPV SHRP2 face view video set. Mean Absolute Error (MAE) values for pitch, yaw, and roll,
separated by commas and in this order in the table, were computed by considering all frames for
which head pose estimates from both approaches and the ground truth coordinates were available.

Algorithm
Time of Total Frames Ours (Coarse) Ours + [165] Ours + [47] Baseline

Day Frames Evaluated MAE MAE MAE MAE
(◦) (◦) (◦) (◦)

Day 264, 735 7, 021 13.10, 9.437, 2.35 12.52, 5.79, 4.03 14.00, 6.89, 2.35 13.10, 7.31, 2.71
Transition 137, 175 3, 545 16.89, 9.01, 3.21 13.83, 6.98, 4.25 15.64, 7.40, 3.21 16.89, 5.16, 2.70

Night 162, 412 4, 052 22.56, 11.81, 4.36 18.84, 8.27, 5.47 20.28, 10.14, 4.36 22.56, 6.99, 3.19

geometric and 3D based pose estimation techniques) using our alignment algorithm were evaluated

by comparison against ground truth head pose estimates.

Tables 5.4, 5.5, and 5.6 summarize the results of our head pose estimation experiment and

report the Mean Absolute Errors (MAE) in the pitch, yaw, and roll estimates obtained by the

two algorithms when compared to the ground truth estimates for the same for a set of frames for

which these ground truth estimates were available on the static, dynamic, and all video frames,

respectively. As was the case with the results reported in section 5.3.3, the results in these tables

are also organized based on the time of acquisition (day, transition, and night). As can be seen

from the tables, the roll estimates obtained by our approach are very close to the roll estimates
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Table 5.6: Performance of various facial landmarks (obtained using our alignment approach) based
head pose estimation techniques and the baseline on all frames from the videos in the HPV SHRP2
face view video set. Mean Absolute Error (MAE) values for pitch, yaw, and roll, separated by
commas and in this order in the table, were computed by considering all frames for which head
pose estimates from both approaches and the ground truth coordinates were available.

Algorithm
Total Frames Ours (Coarse) Ours + [165] Ours + [47] Baseline

Frames Evaluated MAE MAE MAE MAE
(◦) (◦) (◦) (◦)

911, 018 46, 436 12.36, 9.92, 3.20 12.00, 5.94, 4.80 13.01, 6.95, 3.20 12.36, 6.22, 2.59

by the PittPatt algorithm, with the latter obtaining slightly closer estimates to the ground truth

estimates. The coarse yaw estimates obtained using our alignment approach (based on the index

m of the model that resulted in the most confident shape output) are not as accurate as the baseline

estimates. This was to be expected, however, when the dense set of landmarks localized by our

approach were used in combination with the landmark-based pose estimation algorithms in [47]

and [165], more accurate (closer to the ground truth estimates) yaw estimates were obtained. The

difficulty involved in pitch estimation is apparent as simply using a 0◦ estimate (a safe estimate

for most frames in the videos) for pitch (as was provided by our approach (coarse estimate) and

the PittPatt algorithm) often resulted similar or even lower MAE values than those obtained using

the pose estimation algorithms. It must be noted though that the ground truth values themselves

are slightly subjective as they too were obtained in an indirect manner using pose estimation based

on a sparse set of ground truth landmark coordinates and not in a calibrated environment with a

subject gazing at specified cues in order to measure head pose. Thus, the error values again are less

important than the demonstration of the fact that our facial alignment algorithm could be useful in

addressing with this problem. It must also be remembered that though our approach (with suitable

initialization from the previous frame) does exhibit the capability to deal with faces that exhibit

with more pitch variation than it was trained on (see Figure 5.6), this is still a difficult problem that

needs to be investigated in future work. Thus, we report the errors in pitch estimates more for the
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sake of completeness and as a proof of concept and stress that the actual error values must be taken

with a pinch of salt in this context.

5.5 Cell Phone Usage Detection

In this section we provide details on experiments that were carried out using the results from our

previously obtained facial alignment results in order to automatically determine of whether the

subjects in segments of various videos were using a cell phone or not.

5.5.1 Related Work

Studies in a simulated driving environment under controlled settings have shown that impairment

associated with using a cell phone while driving can be as profound as those associated with driving

while drunk [187]. Braking reactions were delayed when drivers were conversing on a cell phone,

leading to more traffic accidents [187], [188]. Therefore, it is becoming increasingly important to

accurately detect cell phone usage by drivers, both from the safety and law enforcement points of

view.

There has been a lot of recent work in the broad area of driver behavior monitoring and the

specific problem of driver cell phone usage detection. Artan et al. [189] used data captured by a

highway transportation imaging system, which was installed to manage High Occupancy Vehicle

(HOV) and High Occupancy Tolling (HOT) lanes, for detecting cell phone usage by drivers. The

cameras used were situated at an elevated position pointing towards the approaching traffic with

Near Infrared (NIR) capability to tackle night vision. After the images were acquired, the authors

adopted a series of computer vision and machine learning techniques for detection and classifica-

tion. They first used a Deformable Part Model (DPM) [92] to localize the windshield region within

the image and then used the TSMs algorithm [6] for simultaneous face detection, pose estimation,

and landmark localization to locate the facial region and crop out a region of interest around the
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face to check for the presence of a cell phone. Finally, image descriptors extracted from the crops

were aggregated to produce a vector representation which was classified using a Support Vector

Machine (SVM) [117] classifier to determine if the driver was using a cell phone or not.

Zhang et al. [190] also studied a similar problem. In their work however, the camera acquiring

the video footage was mounted above the dashboard of a car. They extracted features from the face,

mouth, and hand regions and then passed them passed on to a Hidden Conditional Random Fields

(HCRF) model for final cell phone usage classification. For face detection, they used a cascaded

AdaBoost [115] classifier with Haar-like features [85]. For mouth detection, a simple color-based

approach was found to be sufficient because the red component in the mouth region is stronger

than the rest of facial region, and the blue component is weaker. Therefore, they operated in the

Y CbCr color space and measured the ratio of Cr/Cb as their cue for mouth region detection. For

the detecting hand region, they incorporated both color and motion information.

There has also been some recent research on non-vision based approaches for detecting cell

phone usage by drivers. Bo et al. [191] leveraged various sensors integrated in today’s smart-

phones, such as accelerometers, gyroscopes, and magnetometer sensors, to distinguish between

whether a phone was being used by a driver or a passenger. Yang et al. [192] harnessed a car’s

stereo system and Bluetooth network in an acoustic based approach to estimate the distance of a

cell phone in use from the car’s center and were thus able to determine whether the user was the

driver or not. Breed et al. [193] monitored emissions from a cell phone by placing three direc-

tional antennas at various locations inside a car. A receiver was associated with each antenna and

included an amplifier and a rectifier module that converted radio frequency signals to DC signals

which were used to tell which antenna provided the strongest signal. A correlation could then be

made for finding the most likely location of a cell phone being used by an occupant in the car.
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(a) (b)

Figure 5.11: The process by which crops of the region of interest were generated to check for the
presence of a cell phone being held in the (a) right hand of the subject and (b) left hand of the
subject. The faces of the subjects have been covered with black patches as this information cannot
be made public under the terms of a data sharing agreement.

5.5.2 Our Approach

This section provides details on our approach for automated cell phone usage detection in frames

from the SHRP2 face view videos in the HPV dataset. For the purposes of this study, all training

and testing data consisted of frames where the subject’s absolute yaw did not exceed 45◦ (in the

positive or negative directions). Details on these our training and testing stages follow.

Training Stage

In order to build classifier models for the automatic detection of a cell phone in a supervised setting,

it is necessary to provide them with consistently labeled training data. Our training data for cases

when a cell phone was not in use (negative class data) consisted of frames from video segments

where the subject was either seated in a stationary car and performing tasks such as checking the

side view mirrors, looking forward, looking at center console, etc., or was driving and performing

tasks such as signaling a lane change, checking the speed of the car, turning the radio on or off,

looking forward, etc.. In similar fashion, we also used frames from video segments of the same
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(a) (b)

Figure 5.12: Sample crops of the region of interest generated to train various classifiers for cases
when (a) the subject did not have a cell phone in either hand and (b) the subject had a cell phone
in his/her right hand. (a) and (b) appear in [20].

subjects where the subjects were using a cell phone (with one hand pressed close to one of their

ears in order to hold it) in a stationary or moving car. In order to build more accurate models,

frames where the subject used their right hand to hold the cell phone were manually separated

from those in which in which the subject used their left hand to hold the phone. The same set of 68

facial landmarks that we have repeatedly used throughout this thesis were automatically localized

in this training data using our facial alignment algorithm for video annotation (see section 5.3.3 for

details on these alignment results).

The next step in our training stage involved the generation of crops of the region of interest

for both the positive and negative class cases using the facial alignment results. We used 50 × 80

rectangular crops with landmark 18 (see Figure 3.2 (b)) as the top right corner of the crop region

in order to generate positive and negative class crops for cases where subjects were holding (or

not holding) a cell phone in their right hand. In similar fashion, 50 × 80 rectangular crops with

landmark 23 (see Figure 3.2 (b)) as the top left corner of the crop region were generated for cases

where subjects were holding (or not holding) a cell phone in their left hand. Use of such crops

with reference provided by an interior facial landmark ensured more stability and less variance

than crops that would be obtained using a facial landmark along the facial boundary as a reference

point as these landmarks are usually localized with higher error and exhibit higher variance even

in manually clicked ground truth data [4]. Figure 5.11 shows how these crops were generated.

Sample crops generated for cases where a cell phone was not being held and cases when a cell
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Figure 5.13: The process followed by us to train a classifier that could distinguish between cases
when a cell phone was being held close to the right ear of a subject and cases when no cell phone
was being held up to the right ear. A similar process was used to train another classifier (using the
same corresponding algorithm) that could distinguish between cases when a cell phone was being
held close to the left ear of a subject and cases when no cell phone was being held up to the left
ear. The faces of the subjects have been covered with black patches as this information cannot be
made public under the terms of a data sharing agreement.

phone was being held in the right hand are shown in Figure 5.12.

The final stage in the training process was the extraction of features from the positive class

(holding a cell phone) and negative class (not holding a cell phone) cases and the building of

classifiers using these features. We utilized two different feature representations. When we used

raw pixels as features, the feature vectors were 4000 dimensional and were normalized to be unit

norm vectors. We also utilized Histogram of Oriented Gradients (HOG) [93] feature descriptors

that have been proven to be quite effective in object detection and recognition problems [92].

We utilized HOG descriptors generated with a spatial bin size of 10 and with 9 orientation bins
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Figure 5.14: The process followed by us to determine if the subject in a test frame was using a cell
phone (holding it close to his/her right/left ear) or not. The faces of the subjects have been covered
with black patches as this information cannot be made public under the terms of a data sharing
agreement.

resulting in a 1008 dimensional feature vector. We benchmarked the performance obtained using

these two feature descriptors in conjunction with different classifiers, the first of which is the Real

AdaBoost [114] framework of ensemble classifiers. We chose the Real AdaBoost classifier due to

the minimal parameters that need to be determined to utilize it (only the number of boosting rounds

or number of classifiers in the ensemble need to be specified) and its resistance to overfitting [115],

[116]. The Real AdaBoost framework not only allows for the classification of a feature vector

as positive or negative, but also returns a confidence score for the prediction. This allowed us to

construct Receiver Operating Characteristic (ROC) curves to summarize performance.

The other classifiers we used were a Support Vector Machine (SVM) [117] with a Radial Basis

Function (RBF) kernel and a random forest [118]. These classifiers can also be configured to return

a value that can be interpreted as a confidence score of their class prediction (a probability value

in the case of an SVM and the number of trees that vote for a class label in the case of the random

forest). We built two different sets of classifiers to better deal with the problem of the cell phone

being held in different hands. Figure 5.13 provides an overview of the training process.
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Testing Stage

During the test stage of our algorithm, a similar set of steps to those previously described in the

training stage were used to extract region of interests in an input frame to determine if a cell phone

was present in the extracted regions. Again, we utilized our facial alignment algorithm to localize

facial landmarks and generate two crops on the right and left sides of the face in order to check

for cell phone presence. Features extracted from these crops were classified using the appropriate

(right or left side) side classifiers and the frame was labeled as not having a cell phone present only

if both classifiers returned a negative result while in all other cases it was labeled as containing a

cell phone. Figure 5.14 illustrates the sequence of steps followed during the test stage in order to

determine if the subject in a test frame is using a cell phone or not.

5.5.3 Results

Our training data for cases when a cell phone was not in use (negative class data) consisted of

1, 479 frames obtained from 30 video segments of 11 subjects. We also used 489 frames obtained

from 20 video segments of the same 11 subjects where the subjects were using a cell phone. Only

one of the subjects (10 video segments and 137 frames) used his/her left hand to hold the cell phone

while in all other cases the right hand was used to hold the cell phone. This was reflection of the

skew in the data collected as only a few subjects used their left hand to hold a cell phone when

requested to do so. This data was used to extract normalized pixel and HOG feature descriptors

and build classifier models. Our Real AdaBoost ensemble was built using 100 weak decision trees

of depth 2 and implemented using an open source toolbox [137]. We used 100 trees in our random

forest classifier that was again implemented using open source code [194]. Finally, we used the

LIBSVM library to build an SVM classifier [195], [196].

Our test data consisted of 8, 824 video frames of 30 subjects in which the subjects were driving

a car or seated in a stationary one and not using a cell phone and a corresponding set of 2, 503
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Figure 5.15: Receiver Operating Characteristic (ROC) curves obtained using three classifiers and
(a) raw pixels as features, (b) HOG features, and (c) both raw pixels and HOG features.

frames in which the same subjects were using a cell phone. Thus, the total number of test frames

was 11, 327, making our study more comprehensive than the one carried out in [189]. Only two

subjects held a cell phone in their left hand in a total of 421 frames out of the 2, 503 frames in

which a cell phone was being used. It must be noted that there was no overlap of subjects, and

hence video frames, between the training and test data used in our study.

Figure 5.15 shows the ROCs obtained using the various classifiers and feature extraction tech-

niques and Table 5.7 summarizes the key results obtained as part of our study. As can be seen,
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Table 5.7: A summary of our cell phone detection results. The Verification Rates (VRs) at various
False Accept Rates (FARs), Equal Error Rates (EER), Area Under the ROC Curve (AUC), and the
classification accuracy rates obtained are listed for each feature extraction technique and classi-
fication algorithm combination. The best values for each evaluation metric are indicated in bold
text.

Approach VR @ VR @ VR @ EER AUC Accuracy
0.1% FAR (%) 1% FAR (%) 10% FAR (%) (%)

Pixels – Real AdaBoost 15.90 39.19 74.47 0.171 0.905 79.69
HOG – Real AdaBoost 38.87 70.83 86.90 0.119 0.931 91.23

Pixels – SVM 0.40 55.85 77.87 0.168 0.898 75.90
HOG – SVM 33.56 61.57 87.81 0.116 0.930 78.12

Pixels – Random Forest 26.61 45.31 74.51 0.190 0.906 72.16
HOG – Random Forest 37.63 62.21 81.30 0.168 0.906 90.09

HOG features provided a more robust representation and resulted in higher classification accuracy

rates, Area Under the Curve (AUC) values, and higher Verification Rates (VRs) at various False

Accept Rates (FARs) for all three classifiers with the combination of AdaBoost and HOG features

resulting in the highest classification accuracy of 91.20%. Thus, our results are promising and

competitive with those obtained in similar studies carried out by Artan et al. [189] (highest clas-

sification accuracy of 86.19%) and Zhang et al. [190] (highest classification accuracy of 91.20%),

although it must be noted that each study utilized different training and testing data. However, our

study is far more thorough than the previously mentioned ones in that our tests are carried out over

a much larger set of images and also in the choice of data used for evaluation, which was acquired

using strict protocols by a government agency for a specific purpose. It is our hope that presenting

our findings will be of use to the research community and further aid in the development of systems

aimed at addressing this problem.

5.6 Concluding Remarks

The hazards associated with driver distraction have been studied in great detail over the past few

years. This has motivated several research efforts aimed at developing algorithms and systems

capable of automatically detecting events associated with dangerous driving, such as the use of
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cell phone by a driver. We have described a framework that extends our facial alignment algo-

rithm to allow for accurate facial landmark localization in challenging low-resolution SHRP2 face

view videos from the recently released HPV dataset that was acquired for of a study on natural-

istic driving behavior. The data is relatively new and has been the focus of only recent studies,

such as in [186], making our work quite relevant. The key element in our approach is the fact

that our alignment algorithm provides feedback on the goodness of fit of each frame which al-

lows for appropriate initialization for the next frame. Our alignment algorithm was evaluated and

benchmarked against a commercial face detection and landmark localization algorithm (the PittPatt

algorithm), that served as a baseline, on the HPV SHRP2 face view videos.

Our facial alignment also provided a foundation for the gaining of information, such as head

pose estimates and region of interest determination for detection of cell phone usage, etc. Results

obtained on these closely allied tasks have also been presented in this chapter. A paper that provides

a preliminary version of our findings on cell phone usage detection has been published [20]. Future

work in this area could involve using the landmark localization results to also determine if a driver’s

seat belt is in use or to aid in the determination of the state of mind of a driver (distracted, drowsy,

etc.).

The facial landmark tracking algorithm we have presented in this chapter is one that made no

assumptions about the video sequences and could be used for more general videos that also involve

camera motion, scale changes (due to zooming in or out), or scene changes. More accurate results

could potentially be obtained if more information were known about the videos and if valid prior

assumptions could be made. For example, an on-line training mechanism to develop and update

person specific models using accurately processed frames could also be investigated. Additionally,

if the goal is only to annotate video sequences and not a system aimed at real-time video processing,

then multiple passes of the sequences could be made and previously poorly fitted frames or frames

where no landmarks could be localized could be corrected and higher accuracies obtained. Finally,

superior tracking performance could also be obtained by more tightly coupling a face detection
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and tracking process with the landmark localization step.

Another area for future work could include researching the improvements and optimizations

that could be made to the framework to better exploit the parallelization of intermediate steps using

GPUs. A suitably developed system could be of even greater use in automatically annotating video

data sets, as was the goal of our work, or for deployment in a real-world scenario to monitor drivers

and aid in decreasing the number of car crashes due to distracted driving.

120



Chapter 6

Facial Alignment on Low-Resolution Images

“Let’s run this through video enhancement and bring up the ridge detail, okay?”

CSI: Miami - Spring Break (Season 1 Episode 21), and a recurring theme on the show

So far our work has dealt with real-world images exhibiting pose, expression, and illumination

variations, and varying levels of facial occlusion. While the joint presence of these factors poses

a great problem to the face community, the challenge takes on an altogether different dimension

when image resolution is very low.

There has been some prior work on facial alignment of frontal low-resolution facial images.

Liu et al. [197] built a multi-resolution AAM at various scales of facial size and used the most

appropriate model (with a model resolution slightly higher than the facial resolution) to fit low-

resolution faces (of varying resolution) in a few video sequences. Dedeoǧlu et al. [198] proposed

a Resolution-Aware Formulation (RAF) that modified the original AAM fitting criterion in order to

better fit low-resolution images and used their method to fit 180 frames of a video sequence. Qu et

al. [199] extended a traditional CLM to a multi-resolution model consisting of a 4-level patch pyra-

mid and also used various feature descriptors to construct the patch experts. They compared their

approach (using various feature descriptors) against a baseline CLM approach on downsampled
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35× 35, 25× 25, and 15× 15 facial images from a few databases, such as the MPIE database, and

demonstrated acceptable landmark localization accuracies on the low-resolution faces. Recently,

Asthana et al. [200] (supplementary material) provided results on the performance of a few facial

alignment algorithms on the AFW, LFPW, and Helen datasets when downsampling factors of 2, 4,

6, and 8 were used on the test images. However, since the resolutions of the images and individual

faces in these datasets vary dramatically (images in the AFW and LFPW datasets of smaller size

than those in the Helen dataset), it is difficult to isolate key results from their findings. Thus, in

our work we adopt a more systematic approach and carry out a detailed study that also stress tests

facial alignment algorithms by examining their performance on low-resolution images exhibiting

yaw and expression variations and varying levels of facial occlusion.

In this chapter, we present an experiment-centric approach to understand the challenges that

the resolution problem poses to facial alignment, especially when multiple degradations occur in

a single image and no prior information is available regarding their presence. Such a situation

routinely arises in law enforcement and a reliable automated facial landmark localization is a key

pre-processing step that is required in such cases. We demonstrate how our algorithm can provide

acceptable alignment results on such images by using resolution-specific texture models. While

there is significant scope for carrying out future work aimed at dealing with such challenging

images, it is our aim to take a step in this direction by focusing on some of the the most difficult

scenarios and by providing insights gained from our experimental results that we hope may be of

use in the future to designing better and truly all-purpose facial alignment algorithms.

6.1 Facial Alignment on Low-Resolution Images using a Single

Resolution Model

As a preliminary step towards understanding the challenge posed by low-resolution images to the

facial alignment process, we carried out an experiment in which our facial alignment approach
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Table 6.1: Details on the test sets used in our experiment on facial alignment on low-resolution
images using a single resolution model. The facial region refers to a square region around the
convex hull of the ground truth facial landmark coordinates.

Test Set
Number of Original Image Facial Region Yaw Expression Facial

Images Resolution (Pixels) Size (Pixels) Variation Variation Occlusion
FERET 1, 800 256× 384 140× 140 −40◦ to +40◦ No No

AR 1, 340 768× 576 250× 250 −5◦ to +5◦ No Yes

and the RCPR algorithm [11], [12], which served as a baseline during benchmarking, were trained

on an identical set of images and then tested on progressively downsampled images from various

databases in order to provide an initial idea of accuracies that could be obtained when fitting low-

resolution images using a single model that was not trained on such images. In addition to this,

the experiment also provided some knowledge of the cross-resolution tolerance of such models

and an idea of the limit to which such models could be utilized to produce acceptable landmark

localization results, i.e., what resolution level could cause excessively large errors to occur. We

first provide details on the datasets used in this study in section 6.1.1 and then go on to describe

the experiment carried out and the results obtained in section 6.1.2.

6.1.1 Test Sets Used

Details on the various test sets which were used in our experiments are provided below and sum-

marized in Table 6.1.

(1) FERET: The Facial Recognition Technology (FERET) database [201], [202], [203], [204]

consists of 14, 051 eight-bit grayscale images of human heads with views ranging from frontal to

left and right profiles (yaw range from −90◦ to +90◦) and varying illuminations and expressions.

A set of 1, 800 images of 200 subjects with neutral expressions and yaw variation from −40◦ to

+40◦ with 79 manually annotated landmarks, using the annotation scheme shown in Figure 4.1,

were available to us [18], [28], [29] and were used in our experiments.

(2) AR: The AR database [82], [83] contains over 4, 000 color images of 136 subjects (76 men
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Figure 6.1: An image from the MPIE database showing the locations of the 64 landmarks that were
used in our quantitative evaluations in this chapter.

and 60 women) collected over 2 sessions (separated by 14 days) under varying illumination condi-

tions with the subjects showing varying expressions and sometimes wearing a scarf or sunglasses

(facial occlusions). It must be noted that out of the 136 subjects, only 116 were acquired par-

ticipated in both sessions, with 26 images acquired for these subjects and fewer images acquired

for the remaining subjects. All these images were purely frontal ones and contained very minor

yaw variation. In addition to these still images, a total of 30 sequences of images composed of

25 images each were acquired to test dynamic systems. These images contained pose variation

as well and were not a part of our study and are generally not focused on when dealing with the

AR database. A set of 1, 340 images of 134 subjects (75 men and 59 women) exhibiting neutral

expressions and wearing a scarf, sunglasses, or neither with 79 manually annotated landmarks,

using the annotation scheme shown in Figure 4.1, were available to us [18] and were used in our

experiments.

By testing the alignment algorithms on these downsampled versions of these images, we were

simulating extremely challenging conditions as multiple variations/degradations were now present

in the test images (yaw variation and low-resolution image artifacts for the FERET images and
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Table 6.2: Performance of our approach and RCPR using a single resolution model on the FERET
test set images with various downsampling factors.

Algorithm
Downsampling Facial Region Ours RCPR

Factor Size (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

1 140× 140 6.24 7.13 5.6 9.59 11.13 24.4
2 70× 70 3.12 7.14 5.8 4.64 10.71 23.4
4 35× 35 1.64 7.51 9.2 2.31 10.61 22.9
8 18× 18 1.02 9.39 27.9 1.48 13.59 46.4
16 9× 9 1.16 21.90 73.8 1.31 23.77 99.9

Table 6.3: Performance of our approach and RCPR using a single resolution model on the AR test
set images with various downsampling factors.

Algorithm
Downsampling Facial Region Ours RCPR

Factor Size (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

1 250× 250 11.87 7.48 16.9 16.81 10.59 29.5
2 125× 125 5.97 7.52 16.9 8.46 10.63 31.1
4 63× 63 3.02 7.62 17.9 4.30 10.81 31.9
8 32× 32 1.51 7.62 16.7 2.29 11.53 41.7
16 16× 16 1.11 11.21 48.1 1.53 15.40 73.1

occlusions and low-resolution image artifacts for the AR images).

6.1.2 Results

Our approach and the RCPR algorithm were trained on the same set of MPIE images previously

used to train our models in section 3.2.1. However, since, the facial images in the AR and FERET

test sets did not exhibit any expression variation, both RCPR and our approach were not trained

on images exhibiting an open mouth expression (scream or surprise). Also, since the images in

our test sets did not exhibit an absolute yaw in excess of 45◦, both approaches were configured to

always output a set of 68 landmarks that could be compared against ground truth coordinates of

a set of 64 landmarks that could be obtained from both the 68 point and the 79 point annotation
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Figure 6.2: Cumulative Error Distribution (CED) curves at various downsampling factors for our
approach and RCPR using a single resolution model on the (a) FERET and (b) AR test sets. The
downsampling factors and facial region sizes are indicated in brackets in the legends for (a) and
(b).

schemes. The locations of these 64 landmarks that were used in our quantitative evaluations are

shown in Figure 6.1.

The images in each of the test sets were progressively downsampled by a factor of 2 to synthe-

size low-resolution images that could now be tested on. The downsampling factors used were 1,

2, 4, 8, and 16. These low-resolution images were used as input to both alignment algorithms and

landmark localization proceeded in a similar fashion to when high-resolution images were used as

input (with changes made to a few of the search parameters in our approach to ensure the optimal

results for each downsampling factor). This involved providing the appropriate initialization using

crops that matched the training crops extracted from around the ground truth coordinates, and the

subsequent resizing of the region of interest by the algorithms in order to extract appropriate fea-

tures. For our alignment algorithm, this amounted to resizing of the low-resolution crop (obtained

by growing a crop around the ground truth coordinates by a factor of 1.5) to a standard 100× 100

region with all processing carried out on this resized crop before the final coordinates were scaled

back to correspond to the original low-resolution image. For RCPR, the low-resolution crop (ob-
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tained by growing a crop around the ground truth coordinates by a factor of 1.15 to match the

same process that was used at the training stage) was used as input to the implementation of the

algorithm.

The progressively lower resolutions posed a severe challenge to both facial alignment ap-

proaches that were trained on higher resolution images. Tables 6.2 and 6.3 summarize the landmark

localization error values that were obtained by both approaches on the FERET and AR test sets,

respectively, using the same metrics (Mean Fitting Error (MFE), Mean Normalized Fitting Error

(MNFE), and failure percentage) as in section 4.2, with normalized fitting errors computed by nor-

malizing using the distance between the corners of the eyes in the ground truth images, the same

normalization technique that was used in section 3.2.3 and section 4.2. Cumulative Error Distribu-

tion (CED) curves summarizing the performance of the approaches on the test sets can be found in

Figure 6.2.

From tables 6.2 and 6.3 it can be seen that both approaches exhibited high MNFE values at

extremely low resolutions. This was to be expected, however, both approaches also exhibited a

tolerance to resolution effects until a certain downsampling factor was used that resulted in the

texture models (constructed using MPIE images with a facial region, a square region around the

convex hull of the ground truth facial landmark coordinates, approximately of size 160 × 160)

being no longer able to model the texture signature manifested by the images. On the FERET

test set, a significant increase in the fitting error values was observed for a downsampling factor

of 8, while the corresponding increase occurred on the AR test set for a downsampling factor of

16. This is because the AR images have higher resolution than the FERET images to begin with.

However, the fitting error values on the AR test set for most downsampling factors were higher

than the corresponding fitting errors for the FERET test set due to the occlusions present in the AR

images that are not present in the FERET images.

Our approach consistently provided more accurate results than RCPR on both test sets and

for all downsampling factors. However, the results obtained when a downsampling factor of 16
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was used on the FERET test set were quite poor. This was due to the difficulty in establishing

the best fitting yaw specific model after the shape refinement step. We have already alluded to

this problem in section 3.2.4 and draw attention to it again at this point because the problem is

exacerbated when dealing with such low-resolution images. The local texture model classifiers

used by our approach produce unreliable results at such resolutions leading to large landmark

localization errors on certain images due to an error at the final stage of the alignment process. If

this is corrected for by choosing the refined shape closest to the ground truth coordinates instead of

relying on the metric based on the number of inliers, the fitting errors drop in all cases (see section

3.2.4 for details regarding this phenomenon). However, this problem can be alleviated to a certain

extent by using resolution-specific texture models, as we demonstrate in sections 6.2 and 6.3.

6.2 Facial Alignment on Low-Resolution Images using Resolution-

Specific Models

In this experiment, we aimed at determining how facial alignment on low-resolution images could

be addressed by using resolution-specific texture models. The setup for this experiment was identi-

cal to that of the previous experiment except for this aspect. Our approach and the RCPR algorithm

were trained on images (the same set of MPIE images, containing no faces with open mouth ex-

pressions, that were used for training in the previous experiment were used in this one as well) by

progressively downsampling them by factors of 1, 2, 4, 8, and 16, resulting in facial region crops

that were approximately of size 160× 160, 80× 80, 40× 40, 20× 20, and 10× 10, respectively.

These crops were resized to a standard 100 × 100 region for building the local texture models for

our approach. Thus, resolution-specific texture models were constructed to match the texture in the

test images that were generated using the same downsampling factors on the previously described

FERET and AR test sets. This ensured that there was a slightly better match between the texture

models constructed during the training stage and the texture in the synthesized low-resolution test
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Figure 6.3: Qualitative landmark localization results produced by our approach using resolution-
specific models on some images from the FERET test set. In each row the downsampling factors
used (from left to right) are: 1, 2, 4, 8, and 16. In all facial images with landmarks overlaid
on them, yellow dots are used to indicate the locations of facial landmarks, blue line segments
indicate that the landmark at their center is accurately localized, and red line segments indicate
that the landmark at their center is misaligned or potentially occluded. The same color scheme
is maintained in all figures that show facial alignment results produced by our approach in this
chapter.
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Figure 6.4: Qualitative landmark localization results produced by RCPR using resolution-specific
models on some images from the FERET test set. In each row the downsampling factors used
(from left to right) are: 1, 2, 4, 8, and 16. In all images with landmarks overlaid on them, yellow
dots are used to indicate the locations of facial landmarks and blue line segments connect them
(occlusion labels are not provided by RCPR in this case). The same color scheme is maintained in
all figures that show facial alignment results produced by RCPR in this chapter.
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Figure 6.5: Qualitative landmark localization results produced by our approach using resolution-
specific models on some images from the AR test set. In each row the downsampling factors used
(from left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.6: Qualitative landmark localization results produced by RCPR using resolution-specific
models on some images from the AR test set. In each row the downsampling factors used (from
left to right) are: 1, 2, 4, 8, and 16.
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Table 6.4: Performance of our approach and RCPR using resolution-specific models on the FERET
test set images with various downsampling factors.

Algorithm
Downsampling Facial Region Ours RCPR

Factor Size (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

1 140× 140 6.24 7.13 5.6 9.59 11.13 24.4
2 70× 70 3.11 7.11 5.5 5.27 12.23 26.7
4 35× 35 1.69 7.72 10.9 2.64 12.29 25.0
8 18× 18 0.99 9.05 25.0 1.29 11.94 30.2
16 9× 9 0.76 14.03 54.6 0.93 17.07 51.7

Table 6.5: Performance of our approach and RCPR using resolution-specific models on the AR
test set images with various downsampling factors.

Algorithm
Downsampling Facial Region Ours RCPR

Factor Size (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

1 250× 250 11.87 7.48 16.9 16.81 10.59 29.5
2 125× 125 6.02 7.59 18.4 8.82 11.11 29.8
4 63× 63 3.02 7.60 17.8 4.61 11.62 29.6
8 32× 32 1.48 7.47 14.6 2.35 11.83 35.0
16 16× 16 0.99 9.94 40.6 1.11 11.14 45.5

images generated using the various downsampling factors. Both approaches were again configured

to always output a set of 68 landmarks that could be compared against ground truth coordinates of

a set of 64 landmarks and the same initialization and cropping techniques were used at the train-

ing and testing stages for both approaches to provide consistent facial region crops that could be

resized and processed by the alignment algorithms. Qualitative results produced by our approach

and RCPR on some images from the FERET test set using the various downsampling factors are

shown in Figures 6.3 and 6.4, respectively. Similarly, qualitative results produced by our approach

and RCPR on the AR test set are shown in Figures 6.5 and 6.6, respectively.

Tables 6.4 and 6.5 summarize the performance of our approach and RCPR on the FERET and

AR test sets, respectively, and Figure 6.7 shows the CED curves obtained for both approaches and
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Figure 6.7: Cumulative Error Distribution (CED) curves at various downsampling factors for our
approach and RCPR using resolution-specific models on the (a) FERET and (b) AR test sets. The
downsampling factors and facial region sizes are indicated in brackets in the legends for (a) and
(b).

the two test sets. As can be seen from the results, the landmark localization accuracies obtained

for both approaches were higher for downsampling factors of 8 and 16 than those obtained using

a single resolution based model. The accuracies obtained for a downsampling factor of 16 though

still indicate that the extremely low-resolution of such images poses a great challenge to obtaining

low MNFE values as the normalization distance is so small (in terms of pixels) that MNFE values of

over 10% become common. However, it must be noted that the ground truth landmark coordinates

at these resolutions were not actually obtained by annotating the low-resolution images themselves

and that it is extremely hard, even for a human, to consistently annotate such low-resolution images

with high accuracy and low variance.

A key point to note in this experiment was that the facial region sizes used during the training

stage did not exactly match the sizes of the same regions on the test images. This mimicked real-

world conditions when the nearest resolution-specific model would have to be used to annotate a

test face of a certain size. The region of interest mismatch was not severe for the FEERT images

but was higher for the AR images where the downsampling factors resulted in resolutions that fell
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approximately midway between one pre-trained resolution-specific model and the next. However,

as we demonstrated in section 6.1.2, a certain amount of cross-resolution tolerance was exhibited

by the texture models and this was borne out again in this experiment.

The determination of the optimal shape based on a particular yaw specific model after the

shape refinement step was again a challenge for our approach on the FERET test set, especially for

downsampling factors of 8 and 16. As we have repeatedly mentioned, this step can be the Achilles

heal of our approach and is extremely difficult to deal with at low image resolutions. However,

in a semi-automated scenario, such as those that routinely arise in law enforcement, where only

a limited number of images need to be processed and manual intervention is possible, this could

actually be an advantage as an operator could choose from a few alignment result possibilities

and pick the most appropriate one, rather than just relying on a single alignment result produced

automatically.

The key result to take note of from this experiment and the previous one that we carried out

(using a single resolution model) is that reliable facial alignment is possible using our approach for

faces approximately of size 16× 16 or higher. For reliable facial alignment to be possible at lower

resolutions, more assumptions and more accurate initialization would be required and it must also

be kept in mind that automatic face detection at such resolutions is not a solved problem either.

6.3 Occlusion Tolerance of Facial Alignment Algorithms on Low-

Resolution Images

To simulate the worst case scenario, we carried out an experiment on a set of images with four

variations/degradations (pose, expression, facial occlusions, and low-resolution artifacts) simulta-

neously present. Our approach and RCPR were trained on three-fourths of the full set of MPIE

training images (resolution-specific models were constructed for the various downsampling fac-

tors) and a test set of 800 images of unseen subjects was drawn from the remaining images. This
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Figure 6.8: Qualitative landmark localization results produced by our approach using resolution-
specific models on some images from the MPIE test set. In each row the downsampling factors
used (from left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.9: Qualitative landmark localization results produced by RCPR using resolution-specific
models on some images from the MPIE test set. In each row the downsampling factors used (from
left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.10: Qualitative landmark localization results produced by our approach using resolution-
specific models on some images from the MPIE test set with an occlusion level of 25%. In each
row the downsampling factors used (from left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.11: Qualitative landmark localization results produced by RCPR using resolution-specific
models on some images from the MPIE test set with an occlusion level of 25%. In each row the
downsampling factors used (from left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.12: Qualitative landmark localization results produced by our approach using resolution-
specific models on some images from the MPIE test set with an occlusion level of 50%. In each
row the downsampling factors used (from left to right) are: 1, 2, 4, 8, and 16.
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Figure 6.13: Qualitative landmark localization results produced by RCPR using resolution-specific
models on some images from the MPIE test set with an occlusion level of 50%. In each row the
downsampling factors used (from left to right) are: 1, 2, 4, 8, and 16.
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set of images exhibited yaw variation from −90◦ to +90◦ as well as expression variation and were

also downsampled to create a low-resolution test set. We also went one step further and artificially

added occlusions to this set of images by cropping a patch of a scarf region from an AR database

image and introducing this at a random location in the facial region of these MPIE images. The

occlusion patches were also varied in size to create test sets that covered 10%, 25%, 40%, and 50%

of the total facial area in each occluded test set version. This allowed us to evaluate our approach

and RCPR on extremely challenging low-resolution images while also determining the effect that

the varying occlusion level had on the performance both approaches at various resolutions.

Our approach and RCPR were tested on this set of low-resolution images for the various down-

sampling factors and occlusion levels using resolution-specific models and the same initialization

process that was used in our previous experiments. Ground truth annotations for 39 or 68 land-

marks were available for all 800 test set images enabling a straightforward comparison against

the automatically localized landmark coordinates. It must be noted that RCPR is not capable of

automatically determining whether to annotate a face with 39 or 68 landmarks, i.e., it is not ca-

pable of automatic pose estimation for faces exhibiting an absolute yaw in excess of 45◦, unlike

our approach. Thus, to ensure a fair comparison and a comparison over all test images, both our

approach and RCPR were provided with information regarding the approximate pose range of the

subject in each image, i.e., left profile (39 landmarks visible), right profile (39 landmarks visible),

and frontal (all 68 landmarks visible and yaw in the range from −45◦ to +45◦). Qualitative results

produced by our approach on some images from the MPIE test set using the various downsampling

factors and occlusion levels are shown in Figures 6.8, 6.10, and 6.12. Corresponding qualitative

results produced by RCPR on the same images for the same occlusion levels are shown in Figures

6.9, 6.11, and 6.13.

The results obtained by our approach and RCPR for the various occlusion levels and resolu-

tion levels are summarized by Table 6.6 and Figure 6.14, which shows the CED curves obtained

for both approaches for the various downsampling factors and synthesized occlusion levels. It
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Figure 6.14: Cumulative Error Distribution (CED) curves at various downsampling factors for our
approach and RCPR using resolution-specific models on the MPIE test set with (a) no added oc-
clusions (0% occlusion level), (b) 10% occlusion level, (c) 25% occlusion level, (d) 40% occlusion
level, and (e) 50% occlusion level. The legend in (a) is common to (b), (c), (d), and (e). The
downsampling factors and facial region sizes are indicated in brackets in the legend for (a).
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Table 6.6: Performance of our approach and RCPR using resolution-specific models on the MPIE
test set images with various downsampling factors and artificial occlusion levels.

Algorithm
Occlusion Downsampling Facial Region Ours RCPR

Level Factor Size (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

0%

1 160× 160 4.05 5.22 1.3 3.07 3.96 0.6
2 80× 80 2.02 5.19 1.6 1.55 3.99 0.8
4 40× 40 1.02 5.25 1.4 0.81 4.15 0.6
8 20× 20 0.56 5.75 4.0 0.45 4.66 1.0
16 10× 10 0.36 7.31 10.4 0.31 6.36 6.1

10%

1 160× 160 4.98 6.40 7.6 7.38 9.43 32.4
2 80× 80 2.49 6.41 8.5 3.70 9.44 32.0
4 40× 40 1.26 6.50 9.3 1.90 9.73 35.3
8 20× 20 0.66 6.85 9.6 1.02 10.50 41.2
16 10× 10 0.47 9.74 28.5 0.65 13.31 57.3

25%

1 160× 160 6.37 8.16 19.9 11.47 14.62 62.7
2 80× 80 3.15 8.08 19.9 5.85 14.90 64.8
4 40× 40 1.67 8.59 23.3 3.04 15.48 67.1
8 20× 20 0.86 8.83 22.5 1.55 15.80 71.3
16 10× 10 0.64 13.08 57.1 0.94 19.32 83.7

40%

1 160× 160 8.41 10.68 39.6 14.36 18.38 86.1
2 80× 80 4.13 10.56 39.4 7.13 18.22 86.5
4 40× 40 2.22 11.32 45.4 3.66 18.71 85.2
8 20× 20 1.16 11.91 45.9 1.95 19.89 89.9
16 10× 10 0.94 19.24 78.5 1.11 22.69 96.3

50%

1 160× 160 9.92 12.69 56.1 16.13 20.57 92.0
2 80× 80 5.10 13.07 58.6 8.01 20.44 91.1
4 40× 40 2.67 13.69 61.5 4.07 20.79 92.2
8 20× 20 1.36 13.96 61.0 2.18 22.26 94.6
16 10× 10 1.14 23.06 87.9 1.20 24.52 97.1

must be noted that as has been our convention throughout this thesis when reporting results for

test sets containing faces with an absolute yaw in excess of 45◦, the normalization distance used

when reporting the MNFE values was the average eye center to mouth corner distance. RCPR

obtains higher MNFE accuracies than our approach on the un-occluded test set. However, as the

occlusion level increases, our approach outperforms RCPR, which is very accurate when tested on

images similar to those in its training set but does not exhibit an ability to generalize to dissimilar

test images. As was expected, increased occlusion levels caused a drop in performance for both
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approaches and all resolutions, however, our approach was able to provide acceptable accuracies

until an occlusion level of 40% was reached at most resolutions and downsampling factors. This is

quite an important result and again serves to demonstrate the occlusion tolerance of our approach.

It must also be kept in mind that the ground truths for the occluded images were actually obtained

using the un-occluded images and that a larger variance could creep in if humans were asked to

annotate the occluded images. This is an important fact as it means that a wider berth should be

provided to alignment approaches when dealing with occluded images that are not synthetically

occluded, such as those in the COFW dataset, because of this subjectivity. As was the case with the

results obtained on the FERET and AR datasets using resolution-specific models, a downsampling

factor of 16, resulting in faces of size 10 × 10, posed a great challenge to both approaches and

caused a significant increase in MNFE values for all occlusion levels from those obtained using a

downsampling factor of 8. However, as we have already pointed out, more assumptions regarding

initialization could help in alleviating this problem.

6.4 Facial Alignment on Real-World Low-Resolution Images

In this section we describe results that were obtained when RCPR and our approach were tested

on real-world low-resolution images that were not synthetically generated using downsampling.

6.4.1 Dataset Used

The dataset used in this experiment was a small in-house one consisting of 15 images of 7 subjects.

The images were captured from approximately 325m away on the Carnegie Mellon University

(CMU) campus using a Canon EOS60D camera mounted on a tripod and configured with a Canon

800mm telephoto lens with a 1.4x focal length extender. The cropped images with the face roughly

centered were approximately of size 500×600 with a facial region of size 180×180 approximately.

The images were manually annotated by us with the same previously described 79 landmarks. The
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Figure 6.15: Qualitative landmark localization results produced by our approach (models trained
on MPIE images using a downsampling factor of 8) on real-world low-resolution images.

images posed quite a challenge to the facial alignment process due to the imaging distance used, the

shadows that were sometimes present, and the blurred nature of the images. Thus, the purpose of

this experiment was to demonstrate that real-world low-resolution (blurred or out of focus) images

could still be effectively dealt with by our facial alignment algorithm, albeit on a small dataset.

6.4.2 Results

RCPR and our alignment algorithm were run on the previously described dataset of real-world

images using the same initialization process that was used in our previous experiments in this

chapter and were both again configured to always output a set of 68 landmarks that could be

compared against ground truth coordinates of a set of 64 landmarks. Downsampling of the images

was not required in this case. Qualitative results produced by our approach and RCPR are shown

in Figure 6.15 and Figure 6.16, respectively.

Table 6.7 summarizes the performance of our approach and RCPR on this test set using all 5
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Figure 6.16: Qualitative landmark localization results produced by RCPR (models trained on MPIE
images using a downsampling factor of 1) on real-world low-resolution images.

resolution-specific models. While in a practical scenario, it would only be the resolution-specific

model that was the closest match to the facial size of the test image that would be used (in this

case, the model trained on images with a facial region of size 160 × 160 on the MPIE images,

corresponding to a downsampling factor of 1), we provide these values to again demonstrate the

cross-resolution tolerance of the resolution-specific models. As can be seen from the results, the

models trained using a downsampling factor of 16 were poorly suited for the task of landmark

localization at a higher resolution, however, the fitting error values obtained using the other models

are quite close to each other. It must be noted that though the pixel count in the facial region of

the test images is misleading in this case due to blurred nature of the images. While the test set

used in this experiment was a fairly small one, we carried it out more as a proof of concept and in

order to demonstrate the ability of our approach to deal with low-resolution images acquired under

real-world conditions.
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Table 6.7: Performance of our approach and RCPR using resolution-specific models on the test set
of real-world images.

Algorithm
Downsampling Facial Region Size Ours RCPR

Factor in Models in Models (Pixels) MFE MNFE Failure MFE MNFE Failure
(%) (%) (%) (%)

1 160× 160 9.64 7.71 13 12.17 9.85 13
2 80× 80 9.27 7.44 20 15.50 12.62 13
4 40× 40 9.42 7.58 13 13.42 11.16 20
8 20× 20 8.65 6.97 7 16.33 13.78 20
16 10× 10 11.59 9.27 27 14.41 11.56 60

6.5 Concluding Remarks

We explored the challenge posed to the facial alignment process by low-resolution images that

also exhibited other variations and degradations, such as pose and expression variations and the

presence of occlusions. Our approach was benchmarked against the RCPR algorithm on several

test sets by using both single (all-purpose) resolution texture models as well as using resolution-

specific texture models. In addition to this, we also stress tested both approaches on a set of images

with four variations/degradations (pose, expression, facial occlusions, and low-resolution artifacts)

simultaneously present and assessed their performance at various resolutions and occlusion levels.

Finally, our approach was also tested on a set of real-world images acquired using a very large

capture distance, thus resulting in image artifacts (due to blurring, etc.). The key observation that

was made after carrying out our various experiments was that relatively reliable facial alignment

is possible using our approach for a minimum facial size of approximately 16× 16. More accurate

initialization or assumptions regarding this could aid in lowering the landmark localization errors

at lower resolutions than this. There is a lot of scope for future work in this particular area, and

some of the work that could be carried out is discussed in further detail in section 7.1.7, in chapter

7.
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Chapter 7

Conclusion

“I’ve started so I’ll finish.”

Magnus Magnusson on Mastermind and Siddhartha Basu on Mastermind India

The problem of designing an all-purpose facial alignment algorithm is not a trivial one. Face

detection and alignment occur at the earliest stages in face recognition, expression analysis, or

soft biometric system. Poor alignment results are extremely hard to recover from (as we have

demonstrated in chapter 4) and thus the need for an algorithm that is able to reliably deal with real-

world images and degrade gracefully, with the ability to provide performance feedback to allow

for error handling, in the face of extremely challenging cases is crucial.

We have presented a framework for an alignment algorithm that is more accurate than several

state-of-the-art approaches, is capable of seamlessly handling a range of yaw variation from −90◦

to +90◦, and provides performance feedback in the form of misalignment/occlusion labels despite

not being trained on data with occlusion labels. Additionally, we cast the problem of shape regular-

ization as an `1-regularized least squares problem and demonstrated an improvement in accuracy

that was obtained as a result of using this shape modeling and regularization technique over the

widely used PCA based shape modeling technique used in ASMs, AAMs, and CLMs. Our ap-
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proach was thoroughly evaluated on several challenging real-world datasets and compared against

several widely used state-of-the-art facial alignment algorithms (in chapter 3). We then provided

context for our work on facial alignment by applying it in a real-world face recognition scenario

(in chapter 4) and in a large-scale analysis of challenging naturalistic driving videos (in chapter

5). Finally, we extended our approach using resolution-specific models in order to handle the even

more complex task of facial landmark localization on low-resolution images (chapter 6). By test-

ing our approach on a large number of different datasets, we have accounted for the individual

and joint presence of variations such as pose, illumination, expression, and occlusions, as well as

degradation caused due to low-resolution artifacts. Thus, our study is an extremely thorough one

that has truly demonstrated the applicability of our approach to real-world scenarios.

7.1 Future Work

While we have made an effort to deal with various aspects of the facial alignment problem, there

are several more that could be investigated in the future and we now enumerate some of these

possible research directions.

7.1.1 Speedups using Parallel Processing and GPUs

Our approach presently requires a larger amount of time to process an image. However, it is to

be noted that this our implementation is currently purely MATLAB [135] based and is not heavily

optimized for speed, which is something that we are in the process of addressing. Our approach

also contains many steps that lend themselves to parallelization that we haven’t taken advantage of

yet. GPUs and GPU programming could be used to obtain massive speedups to our implementation

and is an area of work that could be explored in the near future.
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7.1.2 Better Occlusion Modeling

Presently our local texture classifiers are only trained on texture obtained from around correctly

localized landmarks (positive samples) and from displaced landmarks (negative samples). Thus,

we do not explicitly train on occluded texture, but group occlusions and misaligned landmarks

under the same broad umbrella. This could be modified to treat the problem as a three-class one

instead of a two-class one. Even though the texture space spanned by occlusions is extremely large

and it is difficult to span this space even with large amounts of training data, it could still prove

beneficial to treat this space as a distinct one. Our experiments on the COFW dataset in chapter 3

did show that our approach benefited from training on the training partition of this dataset and that

it demonstrated higher landmark localizations on the test partition images after this training. While

it is hard to determine if this is only due to the incorporation of the occlusion information at the

training stage or due to the diverse shapes and non-occluded texture information that was brought

to the table (as was the case when our approach demonstrated superior performance after being

trained on images in the LFPW training set partition), it is certainly worthy of investigation. This

investigation would also tie in with our previous point about merging face detection and alignment

into a single step.

An additional area of improvement could involve better context aware occlusion modeling to

make better inferences regarding the occlusion of various landmarks as a group rather than indi-

vidually, as we presently do. Such information would be even more useful to face recognition

algorithms, such as those described in [18], [28], and [29], as this could enable the exclusion of ap-

propriate region from the facial matching process or for its suitable reconstruction (hallucination)

prior to the matching stage. Such modeling could involve making assumptions about occlusion

zones, as in [11] and [94], though there are some occlusions that may not conform to these as-

sumptions.
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7.1.3 Handling Pitch Variation

As we have mentioned, our present facial alignment algorithm does not explicitly account for the

shape and textural variations manifested as a result of facial pitch. The problem of handling facial

pitch is an extremely challenging one and to the best of our knowledge, no work in the field is able

to robustly deal with excessive pitch variation (either individually or simultaneously along with

yaw and roll variation). In fact, even the PittPatt face detection algorithm, that is able to robustly

detect faces in several real-world images, does not account for pitch and often fails to detect faces

exhibiting even slight pitch.

Unlike yaw, which can be modeled using facial symmetry assumptions, the shape and appear-

ance changes to the face when a person looks down are completely different to those that occur

when a person looks up. For example, when a person looks down even slightly, the eye region

can disappear from view, which does not happen when a person looks up slightly. This asymmetry

exacerbates the pitch problem. In addition, there is lack of training data to explicitly account for

such variation and in the future more training sets with ground truth landmark locations, generated

either synthetically by using 3D modeling techniques to generate these texture and shape views

from frontal images, such as in [33], or by manual processing, will be needed to address this prob-

lem. Given such data, it would still require a significant amount of thought to suitably modify

our approach, or any existing technique for that matter, in order to handle pitch variation. While

separate yaw and pitch specific models could be built, this would significantly increase the compu-

tational complexity of any alignment algorithm and simultaneously demand more discriminative

techniques in order to suitably pick the best fitting one when fitting an unseen image with no prior

information available. However, as we have shown in Figure 5.6 in section 5.3.3, our approach

does exhibit some ability to generalize to handling variations in pitch with suitable initialization

(in this case using the previous frame in a video). Thus, it would also be of interest to determine

if robust models could be built by incorporating training images that exhibit more pitch variation

along with the the set of images with yaw variation used to build our current shape and texture
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models, i.e., whether a smaller set of pose models with pitch and yaw variations could perform just

as well as separate models trained by creating separate yaw and pitch models for various joint yaw

and pitch ranges.

7.1.4 Better Feature Extraction Techniques and Classifiers

While the field of facial alignment has not experienced quite the surge in the application of deep

learning methods and Convolutional Neural Networks (CNNs) as some other fields, such as face

recognition [205], [206], there has been some recent work on using large training sets in conjunc-

tion with these techniques in order to improve landmark localization accuracies [106], [107], [207],

[108]. However, while these methods achieve highly accurate landmark localization on challeng-

ing images, the restricted nature of the training data that is available is a problem that needs to be

addressed in the future. Since training such facial alignment algorithms requires a massive number

of images with manually annotated landmarks, it is hard to create or find such publicly available

datasets. Many current approaches focus on using the the LFW database and the recently created

Annotated Facial Landmarks in the Wild (AFLW) [208], [209] database. However, the images in

these datasets have manual annotations for only a sparse set of landmarks (10 for the LFW database

and 21 for the AFLW database) and there is thus still a shortage of large datasets with manual an-

notations for a dense set of landmarks, thus restricting many of these approaches to also localizing

only the same sparse set of landmarks. This is likely to change in the future with more and more

importance being placed on the task of facial alignment.

It could be possible to extend our framework to harness the power of deep learning techniques.

However, a few architectural changes to our approach could be required, such as the avoidance of

multiple pose models. Superior discriminative texture models could alleviate the burden placed

on the shape regularization stage, which often plays a crucial role in many current approaches,

including ours. Advances in the field of deep learning could also conceivably allow for a more

robust tackling of the previously mentioned pitch problem.
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7.1.5 Joint Face Detection and Alignment

Most present facial alignment approaches, including ours, require a bounding box that conforms to

certain specifications as input for initialization purposes. While this is an acceptable requirement or

assumption to make for images acquired under constrained conditions in which faces are detected

with high reliability, such as those in databases, passport style photographs, etc., it can be a serious

failing when dealing with real-world images with occlusions or severely degraded images in a fully

automated scenario, i.e., without a human in the loop to correct any errors that occur at any stage

of the pipeline. In such cases, such a pipeline could lead to a propagation of error from the face

detection stage all the way to the face recognition stage, for example, with the facial alignment

algorithm handicapped right from the start.

While progress has been made in the area of face detection in order to detect heavily occluded

faces or faces that exhibit large pose variation [17], [210], [211], a pipeline involving facial align-

ment following this stage could be avoided. Recent efforts, such as those in [6], [16], [94], [212],

and [213], have already begun to address this issue and carry out joint face detection and alignment,

rather than have the latter follow the former in a sequential fashion. In similar fashion, we believe

that it could be possible to extend our approach to function as a joint face detection and alignment

algorithm. Our approach searches for an optimal shape initialization in its first two stages and uses

simple scoring functions in order to do this. Additionally, we have observed that in cases when a

spurious face detection result, i.e., a region of an image that does not contain a face, is provided

as input our approach, the resultant alignment has very few inliers with very low percentage of

inliers. This fact could be used in a face detection scenario to reject non-faces. However, this

would required the use of suitable optimizations and thresholds in order to scale the operation

from one that operates on a limited bounding box region to one that operates on an entire image.

The training stage of our approach would also need to be modified to incorporate negative classes

(non-faces) into the setup, as in [6]. A massively parallelized GPU implementation of our align-

ment code would also be a crucial step to enable this transition to a simultaneous face detection
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and alignment algorithm.

7.1.6 Improvements to Landmark Tracking in Videos

We have already alluded to some of the possible improvements that could be made to our facial

alignment approach for videos in section 5.6 and reiterate them at this point. The facial landmark

alignment algorithm for video fitting that we have presented is one that made no assumptions about

the video sequences and could be used for more videos that also involve camera motion, scale

changes (due to zooming in or out), or scene changes. More precise models could be developed if

certain assumptions about the input videos can be made or if more prior information is available.

For example, an on-line training mechanism to develop and update person specific models using

accurately processed frames could also be investigated. Since the face is a 3D object, it would

also be interesting to explore whether superior landmark tracking results could be obtained using

a single set of landmarks to represent a face, as is the case in [16], with visibility and occlusion

labels used to denote missing landmarks in a frame. This could allow for smoother transitions

between frames than our current technique that switches between using 39 or 68 landmarks based

on the facial yaw of the subject in the video sequence. Superior tracking performance could also

be obtained by more tightly coupling a face detection and tracking process with the landmark

localization step. This could also allow for seamless tracking of multiple subjects in videos.

7.1.7 Improving Facial Alignment on Low-Resolution Images

There is a large scope for improving the performance of facial alignment algorithms when dealing

with low-resolution images. While we have demonstrated that the building of resolution spe-

cific models is a crucial first step, this work could be advanced in several ways. For example,

coupled dictionaries could be built to model relationships between the texture around landmarks

in low-resolution and corresponding high-resolution images and used to validate the locations of
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landmarks in test images. In addition to this, improved texture models could be built using deep

learning techniques using large training sets. Our work has also again focused on making very few

assumptions regarding the nature of the low-resolution images and the initialization available. With

low-resolution images, texture models are less reliable than the shape models and thus if accurate

initialization can be guaranteed, shape models could be used to better effect to ensure more accu-

rate localization of landmarks. Finally, facial alignment on low-resolution videos, in conjunction

with improved landmark tracking in videos, could be extremely useful in performing superreso-

lution of faces. Previous work has already been carried out on facial superresolution using single

images [18], [28], under the assumption that a set of facial landmarks are available for the faces in

question. This work could be extended to dealing with video-based superresolution, again under

the assumption that accurate landmark localization has been carried out on these frames.

7.1.8 Landmark Localization in Objects

This thesis has focused on facial landmark localization. However, our approach is quite general

in nature and can be easily modified to use a varying number of landmarks and also to localize

landmarks on any rigid object that can be modeled using landmarks that lie along its contours.

Objects, such as cars, that exhibit similar texture for a fixed landmark location and view and similar

overall shape for a particular viewpoint can be modeled by our approach by treating each viewpoint

as a different pose, as we did with faces (for which the different views corresponded to different

yaw ranges).

To demonstrate this we carried out an experiment using images of cars, trucks, and other such

similar vehicles in the MIT street scenes dataset [214], [215], which contains over 3500 images of

street scenes collected from around Boston, MA using a DSC-F717 camera, for the purposes of

object recognition and scene understanding. Landmarks for cars in the dataset are available and

Boddeti et al. [216] have made annotated and Procrustes aligned data (with image crops of size

356×356 containing the car of interest approximately in the center with a typical size of 250×130)
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Figure 7.1: Qualitative landmark localization results produced by our approach on car images
from our test set that was obtained from the MIT street scenes dataset. Alignment results for the
frontal view are shown. In all images with landmarks overlaid on them, yellow dots are used to
indicate the locations of facial landmarks and blue line segments connect them. The same color
scheme is maintained in all figures in this section that show facial alignment results produced by
our approach.

available for 3433 images of cars (varying in types, sizes, background, and presence of occlusions)

in the dataset [217]. The images were manually categorized into 5 views with 932 frontal view,

1, 400 half-frontal view, 803 profile view, 1, 230 half-back view and 1, 162 back view images each

with 8, 14, 10, 14 and 8 manually annotated landmarks, respectively.

Our alignment approach was trained using 3/4th of the total number of images in each view and

tested on the remaining images. Our facial alignment approach was only modified to use different

seed landmarks and to use a varying number of landmarks to model the shape in each view. At the

testing stage, a crop around the car of interest was generated using the available manual annotations

and scaled to match the training crops. Sample alignment results obtained using our approach are

shown in Figures 7.1 - 7.5. As can be seen, our approach generalizes quite well to localizing

landmarks in such non-facial images with minor changes to our implementation. However, it
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Figure 7.2: Qualitative landmark localization results produced by our approach on car images
from our test set that was obtained from the MIT street scenes dataset. Alignment results for the
half-frontal view are shown.

Figure 7.3: Qualitative landmark localization results produced by our approach on car images from
our test set that was obtained from the MIT street scenes dataset. Alignment results for the profile
view are shown.
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Figure 7.4: Qualitative landmark localization results produced by our approach on car images
from our test set that was obtained from the MIT street scenes dataset. Alignment results for the
half-back view are shown.

Figure 7.5: Qualitative landmark localization results produced by our approach on car images from
our test set that was obtained from the MIT street scenes dataset. Alignment results for the back
view are shown.
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was observed that it was not trivial to automatically infer the best fitting model after the shape

refinement stage due to the fact that all views had a similar number of sparse landmarks. Thus,

the results in the figures show alignment results with the best model chosen according to the true

view of the car in the image. The sparse number of landmarks in each view also posed a problem

to the shape refinement stage that uses inliers (that were very few in number this experiment)

landmarks only in order to determine a regularized shape. Finally, it must also be noted that the

cars (cars is lose term for sedans, trucks, vans, etc.) in each view did exhibit more variation than

typical human faces that posed a challenge at the test stage. Thus, we describe this experiment

to demonstrate the capability of our approach and as a proof of concept. In such cases, with only

a sparse set of landmarks to localize, better local texture models (appearance modeling) can lead

to higher landmark localization accuracies and this stage assumes a more significant role than

the shape regularization stage, as discussed in [216]. However, if more landmarks are available

to model an object of interest, then our approach could deliver more accurate alignment results

with better dense shape alignment to start with and our shape regularization technique to follow.

Additionally, clustering the data to train models specifically for sedans, trucks, vans, etc. could

also improve the alignment accuracy. Future work could include modifying our approach to align

such objects of interest with investigations into modifications needed in cases where only a sparse

set of landmarks are available to model the object. Research into a suitable joint object detection

and landmark localization framework, in a similar fashion to joint face detection and landmark

localization, would also be interesting to pursue.
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Appendix A

The Real AdaBoost Algorithm

Algorithms and equations in this appendix are reproduced for convenience from [114] with minor

changes in notation.

Let S = ((x1, y1), . . . , (xN , yN)) denote a set ofN training examples where xi ∈ RM is a set of

feature vectors and yi ∈ {−1,+1} is a set of labels for the features vectors in a binary classification

problem. Given these training samples, along with a set of weightswi for each data sample over the

indices of S, i.e., over {1, . . . , N}, the Real AdaBoost algorithm is an ensemble learning method

that aims at combining a set of weak learners or classifiers ft(x) to form a stronger prediction rule.

In the most general case, ft(x) has the form ft(x) : RM → R. Boosting uses a weak learner

repeatedly over a set of rounds t = 1, . . . , T . The weights of the training examples are updated

after each round (iteration) based on which samples were correctly or incorrectly classified in that

round. It is to be noted that the sign of ft(x) can be interpreted as the predicted label (−1 or +1) to

be assigned to instance x, and the magnitude of ft(x) (|f(x)|) as the confidence of the prediction.

When decision trees are used as the weak learners, this form of Real AdaBoost coincides with one

of the forms of the generalized AdaBoost algorithm, outlined by Schapire and Singer in [116]. The

Real AdaBoost algorithm is summarized in Algorithm 3.
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Algorithm 3 Overview of the Real AdaBoost algorithm.
Input: Training samples and labels S = ((x1, y1), . . . , (xN , yN)) where xi ∈ RM and yi ∈
{−1,+1} and initial weights for the samples wi = 1/N i = 1, . . . , N

Output: Ensemble classifier h(x) = sign[
T∑
t=1

ft(x)]

for t = 1, . . . , T do
Fit the classifier to obtain a class probability estimate pt(x) = Pw(y = 1|x) ∈ [0, 1] using
weights wi on the training data
Set ft(x)← 1

2
log pt(x)

1−pt(x)
∈ R

Set wi ← wiexp[−yift(xi)] i = 1, . . . , N and re-normalize so that
N∑
i=1

(wi) = 1

end for
Output the ensemble classifier h(x) = sign[

T∑
t=1

ft(x)]
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Appendix B

Solving the `1-Regularized Least Squares

Problem (LSP)

Algorithms and equations in this appendix are reproduced for convenience from [134] with minor

changes in notation. The reader is referred to [134] for more details on the problem and the

proposed solution.

Kim et al. [134] proposed an approach to solve the `1-regularized Least Squares Problem

(LSP), whose objective function is given in equation (B.1). In equation (B.1), A ∈ Rm×n is a

data matrix, y ∈ Rm is a vector of observations, x ∈ Rn is a vector of unknowns, and λ > 0 is a

regularization parameter.

minimize
x

‖Ax− y‖2
2 + λ‖x‖1 (B.1)

The objective function of the `1-regularized LSP is convex, but not differentiable and the fol-

lowing first-order optimality conditions, that are the necessary and sufficient conditions for x to be
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optimal, are obtained using subdifferential calculus:

(2AT(Ax− y))i ∈



{+λi} if xi > 0

{−λi} if xi < 0, i = 1, . . . , n

[−λi,+λi] if xi = 0

(B.2)

The condition that an all zero vector becomes an optimal solution is that (2ATy)i ∈ [−λ,+λ] i =

1, . . . , n, i.e., λ ≥ λmax = ‖2ATy‖∞.

A Lagrange dual of the problem in equation (B.1) can be obtained by introducing a variable

z ∈ Rm and an equality constraint z = Ax− y, to formulate the equivalent problem:

minimize zTz + λ‖x‖1 (B.3)

subject to z = Ax− y (B.4)

Associating dual variables νi ∈ R, i = 1, . . . ,m with the equality constraints zi = (Ax− y)i

results in the Lagrangian L(x, z,ν), given by equation (B.5).

L(x, z,ν) = zTz + λ‖x‖1 + νT(Ax− y − z) (B.5)

The dual function is given by equation (B.6).

inf
x,z

L(x, z,ν) =


−(1/4)νTν − νTy, |(ATν)i| ≤ λi, i = 1, . . . ,m

−∞, otherwise

(B.6)
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The Lagrangian dual of equation (B.4) is:

maximize G(ν) (B.7)

subject to |(ATν)i| ≤ λi, i = 1, . . . ,m (B.8)

where the dual objective G(ν) = −(1/4)νTν − νTy.

The dual problem in equation (B.8) is a convex optimization one with variable ν ∈ Rm that is

dual feasible if it satisfies the constraints of equation (B.8). Any dual feasible point gives a lower

bound on the optimal value p∗ of the primal problem in equation (B.1), i.e., G(ν) ≤ p∗. This is

called weak duality. However, it is to be noted that in this case, the optimal values of the primal

and dual are equal due to strong duality.

An important property of the `1-regularized LSP is that it is easy to derive a bound on the

suboptimality of an arbitrary x by constructing a dual feasible point, given by equation (B.10).

ν = 2s(Ax− y) (B.9)

s = min{λ/|2(ATAx)i − 2yi| i = 1, . . . ,m} (B.10)

The point ν is dual feasible, so G(ν) is a lower bound on p∗, the optimal value of the primal

version of the `1-regularized LSP in equation (B.1).

The difference between the primal objective value of x and the lower boundG(ν) is the duality

gap η, that is given by equation (B.11).

η = ‖Ax− y‖2
2 + λ‖x‖1 −G(ν) (B.11)

The duality gap is always nonnegative by weak duality. Strong duality holds at an optimal point,

and the duality gap is zero.

The objective function in equation (B.1) is convex but not differentiable and can be transformed
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into a convex Quadratic Problem (QP) with linear inequality constraints, as shown in equation

(B.12).

minimize
x

‖Ax− y‖2
2 + λ

n∑
i=1

ui

subject to− ui ≤ xi ≤ ui, i = 1, . . . , n (B.12)

In equation (B.12), x ∈ Rn and u ∈ Rn. This QP is solved using an interior-point method. The

logarithmic barrier for the bound constraints −ui ≤ xi ≤ ui in equation (B.12) is given by:

Φ(x,u) = −
n∑
i=1

log(ui + xi)−
n∑
i=1

log(ui − xi) (B.13)

defined over domΦ = {(x,u) ∈ Rn×Rn, |xi| < ui, i = 1, . . . , n}. The central path consists of

the unique minimizer (x∗(t),u∗(t)) of the convex function:

φt(x,u) = t‖Ax− y‖2
2 + t

n∑
i=1

λui + Φ(x,u) (B.14)

as the parameter t varies from 0 to∞. In the primal barrier method, Newton’s method is used to

minimize φt, i.e., the search direction is computed as the exact solution to the Newton system:

H

 ∆x

∆u

 = −g (B.15)

where H = ∇2φt(x,u) ∈ R2n×2n is the Hessian and g = ∇φt(x,u) ∈ R2n is the gradient

at the current iterate (x,u). For a large scale `1-regularized LSP, solving the Newton system is

not computationally feasible. In the method proposed in [134], the search direction is computed

using as an approximate solution to the Newton system in equation (B.15) using Preconditioned

Conjugate Gradients (PCG). The overall method is referred to as a truncated Newton method.
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Algorithm 4 The truncated Newton interior-point method for solving `1-regularized LSPs.
Input: relative tolerance εrel > 0 and regularization parameter λ > 0
Initialize: t = 1/λ, x = [0 0 . . . 0]T ∈ Rn, u = [1 1 . . . 1]T ∈ Rn

Repeat:
Compute the search direction (∆x,∆u) as an approximate solution to the Newton system in
equation (B.15)
Compute the step size s by backtracking line search
Update the iterate by (x,u) = (x,u) + s(∆x,∆u)
Construct a dual feasible point point ν using equation (B.10)
Evaluate the duality gap η using equation (B.11)
Quit if η/G(ν) ≤ εrel

Update t

Truncated Newton methods have been applied to interior-point methods in prior work [218], [219],

[220], [221]. In the primal barrier method, the parameter t is held constant until φt is approximately

minimized For faster convergence, t is updated in each iteration based on the duality gap that is

computed using the dual feasible point constructed using equation (B.10). The final algorithm

proposed in [134] is summarized in Algorithm 4.

The stopping criterion used in Algorithm 4 is the duality gap divided by the dual objective

value. By weak duality, the ratio is an upper bound on the relative suboptimality:

f(x)− p∗

p∗
≤ η

G(ν)
(B.16)

where p∗ has already been previously defined as the optimal value of the `1-regularized LSP and

f(x) is the primal objective computed with the point x. The method solves the problem to guar-

anteed relative accuracy (or tolerance) εrel > 0. The update rule used for t is given by equation

(B.17).

t =


max{µmin{2n/η, t}, t}, s ≥ smin

t, s < smin

(B.17)

In equation (B.17), µ > 1 and smin ∈ (0, 1] are parameters to be chosen. µ = 2 and smin = 0.5
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were the values chosen in [134] as these values were found to provide acceptable performance on

most problems. The proposed update rule was found to be quite robust and worked well when

combined with the PCG algorithm. The reader is referred to [134] for further details on the PCG

algorithm and the overall solution to the `1-regularized LSP.
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