Supporting Information ## Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber Based Self-Charging Power Fabric Yanqin Yangt, Lingjie Xiet, Zhen Went, *, Chen Chent, Xiaoping Chent, Aiming Weit, Ping Chengt, Xinkai Xiet and Xuhui Sunt.* †Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China. *Corresponding Authors E-mail: Z. Wen: wenzhen2011@suda.edu.cn; X. Sun: xhsun@suda.edu.cn **Figure S1.** a) SEM image of the carbon fiber bundle serving as the electrode of the supercapacitor. b) SEM image of a single carbon fiber. Figure S2. CV curves of the SC when (a) knotting and (b) enwinding. **Figure S3.** Short-circuit transferred charge of the coaxial fiber cycling for over 8000 cycles at the working frequency of 1.5 Hz. **Figure S4.** Photograph of washing test of the multifunctional coaxial self-charging power fiber. ## Note S1 The self-charging power textile which includes 8 TENG fibers connected in parallel and four SCs connected in series which has a capacitance of $\sim 18.75 \,\mu\text{F}$. After rectifying, the output charge of the TENG was accumulated to $\sim 12 \,\mu\text{C}$ in 10 s. The efficiency can be calculated as $$\eta = \frac{output\ charge\ of\ TENG\ after\ rectifying}{stored\ charge\ of\ supercapacitor}$$ where the stored charge can be calculated as $Q = C \cdot V$, according to Figure 4e, the voltage is about 0.2 V in 10 s so that the stored charge is $Q = C \cdot V = 0.2 \times 18.75 = 3.75 \,\mu\text{C}$. And the efficiency is 31.25% Figure S5. The curve of accumulated charges generated by TENG after rectified. Table S1. Comparison of the coaxial fiber with other TENG fibers. | Materials | Mode | Diameter
of the
fiber/mm | Contact
Area
/cm² | Freque
ncy/Hz | Voc/
V | Isc/μA | Qtr/μC
·m ⁻² | Power | Ref. | |---|---------------------------------------|--------------------------------|-------------------------|------------------|-----------|--------|----------------------------|------------------------------|--| | Silione
rubber/Stai
nless steel | Single-
electrode | 3 | 4×4 | 2 | 140 | 0.75 | 31.25 | 85
mW·m ⁻² | ACS Nano
2017, 11,
9490–9499 | | Silione
rubber/Stai
nless steel | Single-
electrode | 1.25 | 16.51×11.
43 | / | 200 | 200 | 15.89 | 14 mW | Adv. Funct.
Mater. 2017,
27, 1604462 | | PDMS/Stai
nless steel | 3D-
TENG | 3.5 | 1.5×1.5 | 3 | 45 | 0.78 | 80 | 263.36
mW·m ⁻² | Adv. Mater.
2017, 1702648 | | PDMS/Car
bon wire-
PTFE/Cu | Contact
and
separatio
n mode | 2.5 | <2.25×5 | 2 | 6 | 2 | / | / | Adv. Mater.
2015, 27,
4830–4836 | | Nylon /Ag
fiber-
Polyester
/Ag fiber | Contact
and
separatio
n mode | 7 mm in width, 29 cm in length | 5×5 | / | 65 | 2.5 | 6 | / | ACS Appl.
Mater.
Interfaces
2014, 6,
14695–14701 | | Parylene/N
i-Ni-Cotton
cloth | Contact
and
separatio
n mode | Not
cylindrical | 10×10 | 5 | 40 | 5 | / | / | Adv. Mater.
2016, 28, 98–
105 | | Silicone
rubber/carb
on fiber | Single
electrode
mode | 2.01 | <0.2×10 | 2.5 | 42.9 | 0.51 | >75.5 | 1.2 μW | This work |