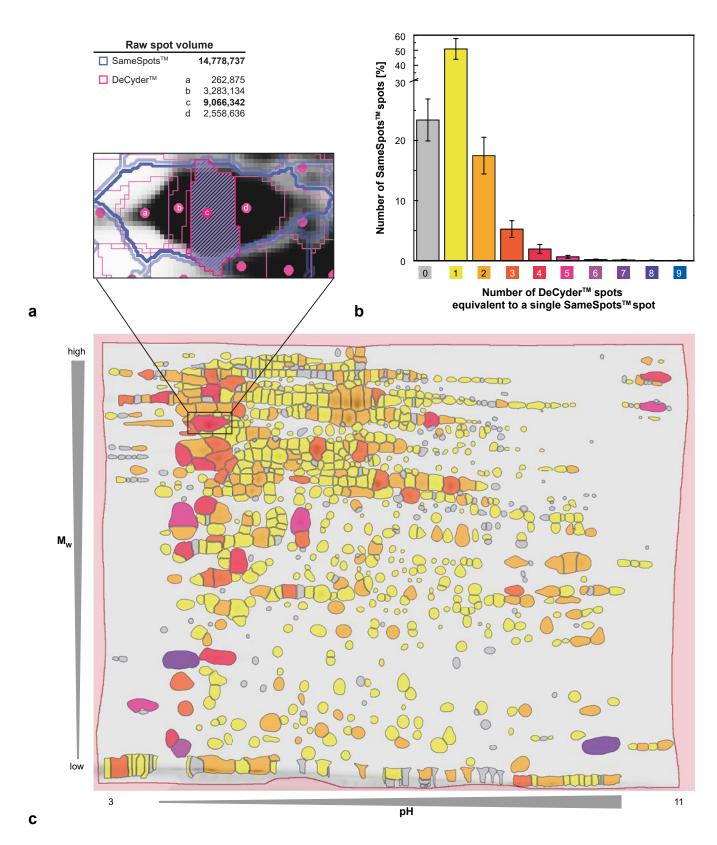

Supporting Information for


What's the difference? 2D DIGE image ana	lysis by DeCyd	er™ versus SameSpots™
--	----------------	-----------------------

Vanessa Schnaars^a, Marvin Dörries^{a,b}, Michael Hutchins^c, Lars Wöhlbrand^a and Ralf Rabus^a

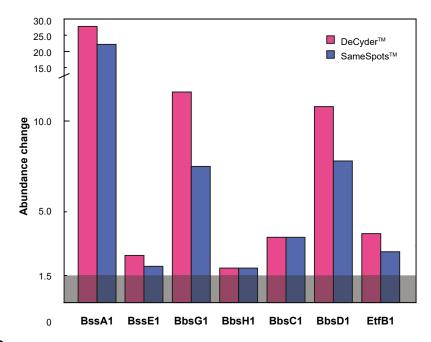

- ^a General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- ^b Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- ^c TotalLab Ltd., Newcastle upon Tyne, UK

Fig. S1: Effect of the estimated number of spots setting in the DeCyderTM Batch processor module. Average number of detected spots per gel applying different settings for the estimated number of spots within the DeCyderTM software for the three model organisms: *D. toluolica* Tol2 (light pink), "*A. aromaticum*" EbN1 (pink) and *P. inhibens* DSM 17395 (purple). The number of spots matched in all gels of the respective gel-set is indicated by hatching. Standard deviation is indicated.

Fig. S2: Spot fractionation encountered with DeCyderTM. Image detail of an overlay of DeCyderTM (pink) and SameSpotsTM (blue) spot maps (**a**). Multiple DeCyderTM spots could be assigned to one SameSpotsTM spot (dark blue boundary), denoted by their center of mass (pink circles, marked a-d). For inter-software matching, the DeCyderTM spots with largest raw volume within the internal standard (here spot c) was assigned to the corresponding SameSpotsTM spot (respective volumes indicated). Average share of SameSpotsTM spots with none, single, or multiple DeCyderTM spot equivalents of all studied gel-sets (**b**; standard deviation indicated). SameSpotsTM spot map of *D. toluolica* Tol2 indicating the number of DeCyderTM spot equivalents per spot (**c**). Color coding according to bar chart b.

a EtfAB1_{red} COO COSCoA COSCoA COSCoA COSCoA COSCoA COO COO BbsEF1 BbsG1 BbsH1 BbsCD1 BbsAB1 b

Fig. S3: Abundance changes of proteins involved in anaerobic degradation of toluene by D. toluolica Tol2 calculated with DeCyderTM and SampeSpotsTM (a). Proteins are given in consecutive order of the pathway (b). The threshold of significance is indicated by grey shading. Enzyme names are as follows: BssABCDE1, succinyl-CoA:(R)-benzylsuccinate benzylsuccinate synthase; BbsEF1, CoA-transferase; BbsG1, (R)-benzylsuccinyl-CoA BbsCD1, dehydrogenase; BbsH1, phenylitaconyl-CoA hydratase; 2-[hydroxy(phenyl)methyl]-succinyl-CoA dehydrogenase; BbsAB1, benzoylsuccinyl-CoA thiolase; EftAB1, electron transfer flavoprotein. Compound names: 1, toluene; 2, (R)-benzylsuccinate; 3, (R)-benzylsuccinyl-CoA; 4, (E)-phenylitaconyl-CoA; 5, 2-[hydroxyl(phenyl)methyl]succinyl-CoA; 6, benzoylsuccinyl-CoA; 7, benzoyl-CoA.